Abstract

A 2.5nm-thickness molybdenum diselenide (MoSe2) saturable absorber (SA) is prepared by electron beam evaporation (EBE) method. Applying the prepared MoSe2 SA to an acousto-optic (AO) Q-switched fundamental laser, a dual-loss-modulated intra-cavity optical parametric oscillator (IOPO) has been experimentally realized. The signal-pulse train from this IOPO has 0.0053 standard deviation (SD) of pulse amplitude. When the MoSe2 SA is applied to IOPO, the signal pulse is compressed by maximum 68%, the peak power increases by 274%, and the nonlinear conversion increases by 12.6%. To solve the established rate equation of IOPO, the ground-state and excited-state absorption cross section of MoSe2 are rationally estimated to be 1.04×10−18cm−2 and 6.25×10−19cm−2 from the measured transmittance curve, and the excited-state lifetime is 275.6µs. The numerical solution of the equations fits the experimental data well.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sub-nanosecond KTP-OPO pumped by a hybrid Q-switched laser with WS2 saturable absorber and AOM

Junpeng Qiao, Shengzhi Zhao, Kejian Yang, Jia Zhao, Guiqiu Li, Dechun Li, Tao Li, Wenchao Qiao, and Yonggang Wang
Opt. Mater. Express 7(11) 3998-4009 (2017)

Pulse compression and threshold decrease in high- repetition-rate doubly Q-switched intracavity optical parametric oscillator

Jing Wang, Shengzhi Zhao, Kejian Yang, Lei Dong, Guiqiu Li, Dechun Li, Ming Li, Jing An, and Wenchao Qiao
J. Opt. Soc. Am. B 24(9) 2521-2525 (2007)

Hybrid Q-switched laser with MoS2 saturable absorber and AOM driven sub-nanosecond KTP-OPO

Junpeng Qiao, Shengzhi Zhao, Kejian Yang, Jia Zhao, Guiqiu Li, Dechun Li, Tao Li, and Wenchao Qiao
Opt. Express 25(4) 4227-4238 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. V. Sevastyanov, “An Experimental Study of the Specific Features of Laser Radiation Propagation through the Optical System of the Human Eye and the Optic Nerve,” Biomed. Eng. 52(5), 340–343 (2019).
    [Crossref]
  2. T. Wei, X. Qiu, and Z. Gang, “High-efficiency frequency upconversion of 1.5 µm laser based on a doubly resonant external ring cavity with a low finesse for signal field,” Appl. Phys. B. 123(2), 52–55 (2017).
    [Crossref]
  3. F. Angelini and F. Colao, “Optimization of laser wavelength, power and pulse duration for eye-safe Raman spectroscopy,” J. Eur. Opt. Soc. Rapid 15(1), 2 (2019).
    [Crossref]
  4. I. A. Gorbunov, O. V. Kulagin, and A. M. Sergeev, “Eye-safe picosecond Raman laser,” Quantum Electron. 46(10), 863–869 (2016).
    [Crossref]
  5. P. B. Jiang, Q. Sheng, and X. Ding, “Dual-wavelength eye-safe Nd:GYSGG/YVO4 intracavity Raman laser under in-band pumping,” Opt. Commun. 383(15), 6–10 (2017).
    [Crossref]
  6. Y. Yu, X. Chen, and L. Cheng, “Continuous-Wave Intracavity Multiple Optical Parametric Oscillator Using an Aperiodically Poled Lithium Niobate Around 1.57 and 3.84 µm,” IEEE Photonics J. 9(2), 1–8 (2017).
    [Crossref]
  7. A. A. Boyko, N. Y. Kostyukova, and V. Badikov, “Intracavity difference-frequency mixing of optical parametric oscillator signal and idler pulses in BaGa4Se7,” Appl. Opt. 56(10), 2783–2788 (2017).
    [Crossref]
  8. Z. Ding, P. Liu, and Y. Li, “Continuous-wave, singly-resonant, intracavity optical parametric oscillator based on a single-mode-laser-diode-pumped Yb:KYW laser,” Opt. Lett. 43(12), 2807–2813 (2018).
    [Crossref]
  9. J. Raffy, J. P. Pocholle, and M. Papuchon, “Intracavity optical parametric oscillator: study of the dynamics in pulsed regime,” J. Opt. Soc. Am. B 13(7), 1569–1587 (1996).
    [Crossref]
  10. S. Biswas and J. K. Bhattacharjee, “On the properties of a class of higher-order mathieu equations originating from a parametric quantum oscillator,” Nonlinear Dyn. 96(1), 737–750 (2019).
    [Crossref]
  11. X. Z. Xie, G. Y. Chen, and L. J. Li, “Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser,” Opt. Laser Technol. 36(5), 409–419 (2004).
    [Crossref]
  12. L. Huang, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4(7), 511–514 (2007).
    [Crossref]
  13. U. Keller, D. A. Miller, and G. D. Boyd, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
    [Crossref]
  14. C. F. Hönninger, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–53 (1999).
    [Crossref]
  15. F. Q. Liu, H. R. Xia, and S. D. Pan, “Passively Q-switched Nd:LuVO4 laser using Cr4+:YAG as saturable absorber,” Opt. Laser Technol. 39(7), 1449–1453 (2007).
    [Crossref]
  16. D. Li, S. Zhao, and G. Li, “Optimization of pulse width of double passively Q-switched lasers with GaAs and Cr4+-doped saturable absorbers,” Opt. Laser Technol. 41(3), 272–279 (2009).
    [Crossref]
  17. K. Tian, Y. Li, and J. Yang, “Passively Q-switched Yb:KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber,” Appl. Phys. B: Lasers Opt. 125(2), 125–129 (2019).
    [Crossref]
  18. K. Wu, X. Zhang, and J. Wang, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11459 (2015).
    [Crossref]
  19. Z. Luo, Y. Huang, and M. Zhong, “1-, 1.5-, and 2-µm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
    [Crossref]
  20. X. Song, J. Hu, and H. Zeng, “Two-dimensional semiconductors: recent progress and future perspectives,” J. Mater. Chem. C 1(17), 2952–2969 (2013).
    [Crossref]
  21. B. Bai, Y. Bai, and D. Li, “Double Q-switched 946 nm laser with MgO:LN electro-optic crystal and MoSe2 saturable absorber,” Chin. Opt. Lett. 16(3), 031402 (2018).
    [Crossref]
  22. L. J. Li, X. Yang, and L. Zhou, “Active/passive Q-switching operation of 2 µm Tm,Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror,” Photonics Res. 6(6), 614–619 (2018).
    [Crossref]
  23. D. Wang, J. Zhao, and K. Yang, “Doubly Q-switched Nd:GGG laser with a few-layer MoS2 saturable absorber and an acousto-optic modulator,” Opt. Mater. 72(10), 464–469 (2017).
    [Crossref]
  24. Y. Sun, Y. Bai, and D. Li, “946 nm Nd: YAG double Q-switched laser based on monolayer WSe2 saturable absorber,” Opt. Express 25(18), 21037–21048 (2017).
    [Crossref]
  25. J. Qiao, S. Zhao, and K. Yang, “Hybrid Q-switched laser with MoS2 saturable absorber and AOM driven sub-nanosecond KTP-OPO,” Opt. Express 25(4), 4227–4232 (2017).
    [Crossref]
  26. E. J. R. Kelleher, F. Torrisi, and G. Hu, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
    [Crossref]
  27. H. Ahmad, M. A. Ismail, and S. Sathiyan, “S-band Q-switched fiber laser using MoSe2 saturable absorber,” Opt. Commun. 382(93), 93–98 (2017).
    [Crossref]
  28. G. Zhou, “Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires,” Appl. Phys. Lett. 109(14), 143904 (2016).
    [Crossref]
  29. J. Wang, S. Zhao, K. Yang, D. Li, G. Li, and J. An, “Pulse compression and threshold decrease in high- repetition-rate doubly Q-switched intracavity optical parametric oscillator,” J. Opt. Soc. Am. B 24(9), 2521–2525 (2007).
    [Crossref]
  30. K. Yang, S. Zhao, G. Li, and D. Li, “Doubly Passively Self-Q-Switched Cr4+:Nd3+:YAG Laser With a GaAs Output Coupler in a Short Cavity,” IEEE J. Quantum Electron. 43(2), 109–115 (2007).
    [Crossref]
  31. W. G. Wagner and B. A. Lengyel, “Evolution of the Giant Pulse in a Laser,” J. Appl. Phys. 34(7), 2040–2046 (1963).
    [Crossref]
  32. M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 5(4), 206 (1969).
    [Crossref]
  33. D. Nam, J. U. Lee, and H. Cheong, “Excitation energy dependent raman spectrum of MoSe2,” Sci. Rep. 5(1), 17113 (2015).
    [Crossref]
  34. S. Zhao, D. He, and J. He, “Probing Excitons in Transition Metal Dichalcogenides by Drude-Like Exciton Intraband Absorption,” Nanoscale 10(20), 9538–9546 (2018).
    [Crossref]
  35. Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
    [Crossref]
  36. Q. Hao, J. B. Pang, Y. Zhang, J. W. Wang, L. B. Ma, and O. G. Schmidt, “Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap,” Adv. Opt. Mater. 6(2), 1700984 (2018).
    [Crossref]
  37. J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
    [Crossref]
  38. P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras, “Resonance effects in the Raman scattering of monolayer and few-layer MoSe2,” Phys. Rev. B 93(15), 155407 (2016).
    [Crossref]
  39. K. Kim, J. U. Lee, D. Nam, and H. Cheong, “Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2,” ACS Nano 10(8), 8113–8120 (2016).
    [Crossref]
  40. Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
    [Crossref]
  41. K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology 24(46), 465705 (2013).
    [Crossref]
  42. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, Ovidiu Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express 21(4), 4908–4916 (2013).
    [Crossref]
  43. X. Zhang, D. Sun, and Y. Li, “Measurement of lateral and interfacial thermal conductivity of single- and bi-layer MoS2 and MoSe2 using refined optothermal Raman technique,” ACS Appl. Mater. Interfaces 7(46), 25923–25929 (2015).
    [Crossref]
  44. A. Puretzky, L. Liang, and X. Li, “Twisted MoSe2 Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy,” ACS Nano 10(2), 2736–2744 (2016).
    [Crossref]
  45. K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
    [Crossref]
  46. H. Zhang, J. Zhao, K. Yang, S. Zhao, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 79–84 (2015).
    [Crossref]
  47. J. Wang, S. Zhao, and G. Li, “Pulse Compression in Laser-Diode-Pumped Doubly Q-Switched Intracavity Optical Parametric Oscillator Considering Gaussian Distribution of Intracavity Photon Densities,” Jpn. J. Appl. Phys. 46(4A), 1505–1510 (2007).
    [Crossref]
  48. Y. K. Kuo, M. F. Huang, and M. Birnbaum, “unable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31(4), 657–663 (1995).
    [Crossref]
  49. P. V. Avizonis and R. L. Grotbeck, “Experimental and Theoretical Ruby Laser Amplifier Dynamics,” J. Appl. Phys. 37(2), 687–693 (1966).
    [Crossref]
  50. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
    [Crossref]
  51. X. Zhang, S. Zhao, and Q. Wang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
    [Crossref]
  52. R. Coehoorn, C. Haas, and J. Dijkstra, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B 35(12), 6195–6202 (1987).
    [Crossref]
  53. O. Svelto, “Principle of Laser. 4th edition,” A Division of Plenum Publishing Corporation, New York (1998).
  54. H. M. Chen, X. Y. Zhao, and J. L. Wang, “Principles and Applictions of Laser. 3rd edition,” Electronic Industry Press, Beijing (2017).
  55. R. Guo, Y. Meng, and M. Gong, “Anisotropic stimulated emission cross-section measurement in Nd: YVO4,” Chin. Phys. B 28(4), 044204 (2019).
    [Crossref]
  56. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals,” J. Opt. Soc. Am. B 26(11), 2084–2088 (2009).
    [Crossref]
  57. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO: LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
    [Crossref]
  58. R. Soulard, A. Zinoviev, J. L. Doualan, E. Lvakin, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18(2), 1553–1568 (2010).
    [Crossref]
  59. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals. 3rd edition,” Springer, Berlin (2009).

2019 (6)

V. V. Sevastyanov, “An Experimental Study of the Specific Features of Laser Radiation Propagation through the Optical System of the Human Eye and the Optic Nerve,” Biomed. Eng. 52(5), 340–343 (2019).
[Crossref]

F. Angelini and F. Colao, “Optimization of laser wavelength, power and pulse duration for eye-safe Raman spectroscopy,” J. Eur. Opt. Soc. Rapid 15(1), 2 (2019).
[Crossref]

S. Biswas and J. K. Bhattacharjee, “On the properties of a class of higher-order mathieu equations originating from a parametric quantum oscillator,” Nonlinear Dyn. 96(1), 737–750 (2019).
[Crossref]

K. Tian, Y. Li, and J. Yang, “Passively Q-switched Yb:KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber,” Appl. Phys. B: Lasers Opt. 125(2), 125–129 (2019).
[Crossref]

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

R. Guo, Y. Meng, and M. Gong, “Anisotropic stimulated emission cross-section measurement in Nd: YVO4,” Chin. Phys. B 28(4), 044204 (2019).
[Crossref]

2018 (5)

S. Zhao, D. He, and J. He, “Probing Excitons in Transition Metal Dichalcogenides by Drude-Like Exciton Intraband Absorption,” Nanoscale 10(20), 9538–9546 (2018).
[Crossref]

Q. Hao, J. B. Pang, Y. Zhang, J. W. Wang, L. B. Ma, and O. G. Schmidt, “Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap,” Adv. Opt. Mater. 6(2), 1700984 (2018).
[Crossref]

B. Bai, Y. Bai, and D. Li, “Double Q-switched 946 nm laser with MgO:LN electro-optic crystal and MoSe2 saturable absorber,” Chin. Opt. Lett. 16(3), 031402 (2018).
[Crossref]

L. J. Li, X. Yang, and L. Zhou, “Active/passive Q-switching operation of 2 µm Tm,Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror,” Photonics Res. 6(6), 614–619 (2018).
[Crossref]

Z. Ding, P. Liu, and Y. Li, “Continuous-wave, singly-resonant, intracavity optical parametric oscillator based on a single-mode-laser-diode-pumped Yb:KYW laser,” Opt. Lett. 43(12), 2807–2813 (2018).
[Crossref]

2017 (10)

P. B. Jiang, Q. Sheng, and X. Ding, “Dual-wavelength eye-safe Nd:GYSGG/YVO4 intracavity Raman laser under in-band pumping,” Opt. Commun. 383(15), 6–10 (2017).
[Crossref]

Y. Yu, X. Chen, and L. Cheng, “Continuous-Wave Intracavity Multiple Optical Parametric Oscillator Using an Aperiodically Poled Lithium Niobate Around 1.57 and 3.84 µm,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

A. A. Boyko, N. Y. Kostyukova, and V. Badikov, “Intracavity difference-frequency mixing of optical parametric oscillator signal and idler pulses in BaGa4Se7,” Appl. Opt. 56(10), 2783–2788 (2017).
[Crossref]

T. Wei, X. Qiu, and Z. Gang, “High-efficiency frequency upconversion of 1.5 µm laser based on a doubly resonant external ring cavity with a low finesse for signal field,” Appl. Phys. B. 123(2), 52–55 (2017).
[Crossref]

D. Wang, J. Zhao, and K. Yang, “Doubly Q-switched Nd:GGG laser with a few-layer MoS2 saturable absorber and an acousto-optic modulator,” Opt. Mater. 72(10), 464–469 (2017).
[Crossref]

Y. Sun, Y. Bai, and D. Li, “946 nm Nd: YAG double Q-switched laser based on monolayer WSe2 saturable absorber,” Opt. Express 25(18), 21037–21048 (2017).
[Crossref]

J. Qiao, S. Zhao, and K. Yang, “Hybrid Q-switched laser with MoS2 saturable absorber and AOM driven sub-nanosecond KTP-OPO,” Opt. Express 25(4), 4227–4232 (2017).
[Crossref]

H. Ahmad, M. A. Ismail, and S. Sathiyan, “S-band Q-switched fiber laser using MoSe2 saturable absorber,” Opt. Commun. 382(93), 93–98 (2017).
[Crossref]

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

2016 (5)

A. Puretzky, L. Liang, and X. Li, “Twisted MoSe2 Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy,” ACS Nano 10(2), 2736–2744 (2016).
[Crossref]

P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras, “Resonance effects in the Raman scattering of monolayer and few-layer MoSe2,” Phys. Rev. B 93(15), 155407 (2016).
[Crossref]

K. Kim, J. U. Lee, D. Nam, and H. Cheong, “Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2,” ACS Nano 10(8), 8113–8120 (2016).
[Crossref]

G. Zhou, “Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires,” Appl. Phys. Lett. 109(14), 143904 (2016).
[Crossref]

I. A. Gorbunov, O. V. Kulagin, and A. M. Sergeev, “Eye-safe picosecond Raman laser,” Quantum Electron. 46(10), 863–869 (2016).
[Crossref]

2015 (5)

K. Wu, X. Zhang, and J. Wang, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11459 (2015).
[Crossref]

E. J. R. Kelleher, F. Torrisi, and G. Hu, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers,” Opt. Express 23(15), 20051–20061 (2015).
[Crossref]

X. Zhang, D. Sun, and Y. Li, “Measurement of lateral and interfacial thermal conductivity of single- and bi-layer MoS2 and MoSe2 using refined optothermal Raman technique,” ACS Appl. Mater. Interfaces 7(46), 25923–25929 (2015).
[Crossref]

D. Nam, J. U. Lee, and H. Cheong, “Excitation energy dependent raman spectrum of MoSe2,” Sci. Rep. 5(1), 17113 (2015).
[Crossref]

H. Zhang, J. Zhao, K. Yang, S. Zhao, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 79–84 (2015).
[Crossref]

2014 (2)

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Z. Luo, Y. Huang, and M. Zhong, “1-, 1.5-, and 2-µm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

2013 (3)

X. Song, J. Hu, and H. Zeng, “Two-dimensional semiconductors: recent progress and future perspectives,” J. Mater. Chem. C 1(17), 2952–2969 (2013).
[Crossref]

K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology 24(46), 465705 (2013).
[Crossref]

P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, Ovidiu Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express 21(4), 4908–4916 (2013).
[Crossref]

2010 (1)

2009 (2)

G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals,” J. Opt. Soc. Am. B 26(11), 2084–2088 (2009).
[Crossref]

D. Li, S. Zhao, and G. Li, “Optimization of pulse width of double passively Q-switched lasers with GaAs and Cr4+-doped saturable absorbers,” Opt. Laser Technol. 41(3), 272–279 (2009).
[Crossref]

2007 (5)

F. Q. Liu, H. R. Xia, and S. D. Pan, “Passively Q-switched Nd:LuVO4 laser using Cr4+:YAG as saturable absorber,” Opt. Laser Technol. 39(7), 1449–1453 (2007).
[Crossref]

J. Wang, S. Zhao, and G. Li, “Pulse Compression in Laser-Diode-Pumped Doubly Q-Switched Intracavity Optical Parametric Oscillator Considering Gaussian Distribution of Intracavity Photon Densities,” Jpn. J. Appl. Phys. 46(4A), 1505–1510 (2007).
[Crossref]

J. Wang, S. Zhao, K. Yang, D. Li, G. Li, and J. An, “Pulse compression and threshold decrease in high- repetition-rate doubly Q-switched intracavity optical parametric oscillator,” J. Opt. Soc. Am. B 24(9), 2521–2525 (2007).
[Crossref]

K. Yang, S. Zhao, G. Li, and D. Li, “Doubly Passively Self-Q-Switched Cr4+:Nd3+:YAG Laser With a GaAs Output Coupler in a Short Cavity,” IEEE J. Quantum Electron. 43(2), 109–115 (2007).
[Crossref]

L. Huang, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4(7), 511–514 (2007).
[Crossref]

2004 (1)

X. Z. Xie, G. Y. Chen, and L. J. Li, “Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser,” Opt. Laser Technol. 36(5), 409–419 (2004).
[Crossref]

1999 (1)

1997 (1)

X. Zhang, S. Zhao, and Q. Wang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

1996 (1)

1995 (2)

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “unable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31(4), 657–663 (1995).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

1992 (1)

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO: LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

1987 (1)

R. Coehoorn, C. Haas, and J. Dijkstra, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B 35(12), 6195–6202 (1987).
[Crossref]

1969 (1)

M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 5(4), 206 (1969).
[Crossref]

1966 (1)

P. V. Avizonis and R. L. Grotbeck, “Experimental and Theoretical Ruby Laser Amplifier Dynamics,” J. Appl. Phys. 37(2), 687–693 (1966).
[Crossref]

1963 (1)

W. G. Wagner and B. A. Lengyel, “Evolution of the Giant Pulse in a Laser,” J. Appl. Phys. 34(7), 2040–2046 (1963).
[Crossref]

Ahmad, H.

H. Ahmad, M. A. Ismail, and S. Sathiyan, “S-band Q-switched fiber laser using MoSe2 saturable absorber,” Opt. Commun. 382(93), 93–98 (2017).
[Crossref]

Ajayan, P. M.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Albrecht, M.

Amani, M.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

An, J.

Angelini, F.

F. Angelini and F. Colao, “Optimization of laser wavelength, power and pulse duration for eye-safe Raman spectroscopy,” J. Eur. Opt. Soc. Rapid 15(1), 2 (2019).
[Crossref]

Avizonis, P. V.

P. V. Avizonis and R. L. Grotbeck, “Experimental and Theoretical Ruby Laser Amplifier Dynamics,” J. Appl. Phys. 37(2), 687–693 (1966).
[Crossref]

Bachmatiuk, A.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Badikov, V.

Bai, B.

Bai, Y.

Bass, M.

Bhattacharjee, J. K.

S. Biswas and J. K. Bhattacharjee, “On the properties of a class of higher-order mathieu equations originating from a parametric quantum oscillator,” Nonlinear Dyn. 96(1), 737–750 (2019).
[Crossref]

Birdwell, A. G.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Birnbaum, M.

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “unable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31(4), 657–663 (1995).
[Crossref]

Biswas, S.

S. Biswas and J. K. Bhattacharjee, “On the properties of a class of higher-order mathieu equations originating from a parametric quantum oscillator,” Nonlinear Dyn. 96(1), 737–750 (2019).
[Crossref]

Börner, J.

Böttger, P.

Boyd, G. D.

Boyko, A. A.

Bratschitsch, R.

Bruchhausen, A. E.

P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras, “Resonance effects in the Raman scattering of monolayer and few-layer MoSe2,” Phys. Rev. B 93(15), 155407 (2016).
[Crossref]

Burshtein, Z.

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO: LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Chen, G. Y.

X. Z. Xie, G. Y. Chen, and L. J. Li, “Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser,” Opt. Laser Technol. 36(5), 409–419 (2004).
[Crossref]

Chen, H. M.

H. M. Chen, X. Y. Zhao, and J. L. Wang, “Principles and Applictions of Laser. 3rd edition,” Electronic Industry Press, Beijing (2017).

Chen, X.

Y. Yu, X. Chen, and L. Cheng, “Continuous-Wave Intracavity Multiple Optical Parametric Oscillator Using an Aperiodically Poled Lithium Niobate Around 1.57 and 3.84 µm,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Chen, Y.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

Cheng, L.

Y. Yu, X. Chen, and L. Cheng, “Continuous-Wave Intracavity Multiple Optical Parametric Oscillator Using an Aperiodically Poled Lithium Niobate Around 1.57 and 3.84 µm,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Cheong, H.

K. Kim, J. U. Lee, D. Nam, and H. Cheong, “Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2,” ACS Nano 10(8), 8113–8120 (2016).
[Crossref]

D. Nam, J. U. Lee, and H. Cheong, “Excitation energy dependent raman spectrum of MoSe2,” Sci. Rep. 5(1), 17113 (2015).
[Crossref]

Coehoorn, R.

R. Coehoorn, C. Haas, and J. Dijkstra, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B 35(12), 6195–6202 (1987).
[Crossref]

Colao, F.

F. Angelini and F. Colao, “Optimization of laser wavelength, power and pulse duration for eye-safe Raman spectroscopy,” J. Eur. Opt. Soc. Rapid 15(1), 2 (2019).
[Crossref]

Cornacchia, F.

Crowne, F. J.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Deng, Y.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

Dijkstra, J.

R. Coehoorn, C. Haas, and J. Dijkstra, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B 35(12), 6195–6202 (1987).
[Crossref]

Ding, X.

P. B. Jiang, Q. Sheng, and X. Ding, “Dual-wavelength eye-safe Nd:GYSGG/YVO4 intracavity Raman laser under in-band pumping,” Opt. Commun. 383(15), 6–10 (2017).
[Crossref]

Ding, Z.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals. 3rd edition,” Springer, Berlin (2009).

Doualan, J. L.

Du, X.

K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology 24(46), 465705 (2013).
[Crossref]

Dubey, M.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO: LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Eckert, J.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Fainstein, A.

P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras, “Resonance effects in the Raman scattering of monolayer and few-layer MoSe2,” Phys. Rev. B 93(15), 155407 (2016).
[Crossref]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO: LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Faugeras, C.

P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras, “Resonance effects in the Raman scattering of monolayer and few-layer MoSe2,” Phys. Rev. B 93(15), 155407 (2016).
[Crossref]

Fu, L.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Gang, Z.

T. Wei, X. Qiu, and Z. Gang, “High-efficiency frequency upconversion of 1.5 µm laser based on a doubly resonant external ring cavity with a low finesse for signal field,” Appl. Phys. B. 123(2), 52–55 (2017).
[Crossref]

Gemming, T.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Giebeler, L.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Gong, M.

R. Guo, Y. Meng, and M. Gong, “Anisotropic stimulated emission cross-section measurement in Nd: YVO4,” Chin. Phys. B 28(4), 044204 (2019).
[Crossref]

Gorbunov, I. A.

I. A. Gorbunov, O. V. Kulagin, and A. M. Sergeev, “Eye-safe picosecond Raman laser,” Quantum Electron. 46(10), 863–869 (2016).
[Crossref]

Gordan, Ovidiu

Grotbeck, R. L.

P. V. Avizonis and R. L. Grotbeck, “Experimental and Theoretical Ruby Laser Amplifier Dynamics,” J. Appl. Phys. 37(2), 687–693 (1966).
[Crossref]

Guo, R.

R. Guo, Y. Meng, and M. Gong, “Anisotropic stimulated emission cross-section measurement in Nd: YVO4,” Chin. Phys. B 28(4), 044204 (2019).
[Crossref]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals. 3rd edition,” Springer, Berlin (2009).

Haas, C.

R. Coehoorn, C. Haas, and J. Dijkstra, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B 35(12), 6195–6202 (1987).
[Crossref]

Hao, Q.

Q. Hao, J. B. Pang, Y. Zhang, J. W. Wang, L. B. Ma, and O. G. Schmidt, “Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap,” Adv. Opt. Mater. 6(2), 1700984 (2018).
[Crossref]

Harris, S.

M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 5(4), 206 (1969).
[Crossref]

He, D.

S. Zhao, D. He, and J. He, “Probing Excitons in Transition Metal Dichalcogenides by Drude-Like Exciton Intraband Absorption,” Nanoscale 10(20), 9538–9546 (2018).
[Crossref]

He, J.

S. Zhao, D. He, and J. He, “Probing Excitons in Transition Metal Dichalcogenides by Drude-Like Exciton Intraband Absorption,” Nanoscale 10(20), 9538–9546 (2018).
[Crossref]

K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology 24(46), 465705 (2013).
[Crossref]

Hönninger, C. F.

Hu, G.

Hu, J.

X. Song, J. Hu, and H. Zeng, “Two-dimensional semiconductors: recent progress and future perspectives,” J. Mater. Chem. C 1(17), 2952–2969 (2013).
[Crossref]

Huang, L.

L. Huang, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4(7), 511–514 (2007).
[Crossref]

Huang, M. F.

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “unable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31(4), 657–663 (1995).
[Crossref]

Huang, Y.

Z. Luo, Y. Huang, and M. Zhong, “1-, 1.5-, and 2-µm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Ismail, M. A.

H. Ahmad, M. A. Ismail, and S. Sathiyan, “S-band Q-switched fiber laser using MoSe2 saturable absorber,” Opt. Commun. 382(93), 93–98 (2017).
[Crossref]

Jenssen, H. P.

Jiang, C.

K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology 24(46), 465705 (2013).
[Crossref]

Jiang, P. B.

P. B. Jiang, Q. Sheng, and X. Ding, “Dual-wavelength eye-safe Nd:GYSGG/YVO4 intracavity Raman laser under in-band pumping,” Opt. Commun. 383(15), 6–10 (2017).
[Crossref]

Kalisky, Y.

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Kelleher, E. J. R.

Keller, U.

Kim, K.

K. Kim, J. U. Lee, D. Nam, and H. Cheong, “Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2,” ACS Nano 10(8), 8113–8120 (2016).
[Crossref]

Kloc, C.

Kostyukova, N. Y.

Kulagin, O. V.

I. A. Gorbunov, O. V. Kulagin, and A. M. Sergeev, “Eye-safe picosecond Raman laser,” Quantum Electron. 46(10), 863–869 (2016).
[Crossref]

Kuo, Y. K.

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “unable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31(4), 657–663 (1995).
[Crossref]

Lee, J. U.

K. Kim, J. U. Lee, D. Nam, and H. Cheong, “Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2,” ACS Nano 10(8), 8113–8120 (2016).
[Crossref]

D. Nam, J. U. Lee, and H. Cheong, “Excitation energy dependent raman spectrum of MoSe2,” Sci. Rep. 5(1), 17113 (2015).
[Crossref]

Lengyel, B. A.

W. G. Wagner and B. A. Lengyel, “Evolution of the Giant Pulse in a Laser,” J. Appl. Phys. 34(7), 2040–2046 (1963).
[Crossref]

Li, D.

Li, G.

D. Li, S. Zhao, and G. Li, “Optimization of pulse width of double passively Q-switched lasers with GaAs and Cr4+-doped saturable absorbers,” Opt. Laser Technol. 41(3), 272–279 (2009).
[Crossref]

J. Wang, S. Zhao, K. Yang, D. Li, G. Li, and J. An, “Pulse compression and threshold decrease in high- repetition-rate doubly Q-switched intracavity optical parametric oscillator,” J. Opt. Soc. Am. B 24(9), 2521–2525 (2007).
[Crossref]

K. Yang, S. Zhao, G. Li, and D. Li, “Doubly Passively Self-Q-Switched Cr4+:Nd3+:YAG Laser With a GaAs Output Coupler in a Short Cavity,” IEEE J. Quantum Electron. 43(2), 109–115 (2007).
[Crossref]

J. Wang, S. Zhao, and G. Li, “Pulse Compression in Laser-Diode-Pumped Doubly Q-Switched Intracavity Optical Parametric Oscillator Considering Gaussian Distribution of Intracavity Photon Densities,” Jpn. J. Appl. Phys. 46(4A), 1505–1510 (2007).
[Crossref]

Li, H.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

Li, L. J.

L. J. Li, X. Yang, and L. Zhou, “Active/passive Q-switching operation of 2 µm Tm,Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror,” Photonics Res. 6(6), 614–619 (2018).
[Crossref]

X. Z. Xie, G. Y. Chen, and L. J. Li, “Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser,” Opt. Laser Technol. 36(5), 409–419 (2004).
[Crossref]

Li, X.

A. Puretzky, L. Liang, and X. Li, “Twisted MoSe2 Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy,” ACS Nano 10(2), 2736–2744 (2016).
[Crossref]

Li, Y.

K. Tian, Y. Li, and J. Yang, “Passively Q-switched Yb:KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber,” Appl. Phys. B: Lasers Opt. 125(2), 125–129 (2019).
[Crossref]

Z. Ding, P. Liu, and Y. Li, “Continuous-wave, singly-resonant, intracavity optical parametric oscillator based on a single-mode-laser-diode-pumped Yb:KYW laser,” Opt. Lett. 43(12), 2807–2813 (2018).
[Crossref]

X. Zhang, D. Sun, and Y. Li, “Measurement of lateral and interfacial thermal conductivity of single- and bi-layer MoS2 and MoSe2 using refined optothermal Raman technique,” ACS Appl. Mater. Interfaces 7(46), 25923–25929 (2015).
[Crossref]

Liang, L.

A. Puretzky, L. Liang, and X. Li, “Twisted MoSe2 Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy,” ACS Nano 10(2), 2736–2744 (2016).
[Crossref]

Liebig, A.

Liu, C.

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

Liu, F. Q.

F. Q. Liu, H. R. Xia, and S. D. Pan, “Passively Q-switched Nd:LuVO4 laser using Cr4+:YAG as saturable absorber,” Opt. Laser Technol. 39(7), 1449–1453 (2007).
[Crossref]

Liu, H.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

Liu, P.

Liu, Z.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Lou, J.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Luan, C.

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

Luo, Z.

Z. Luo, Y. Huang, and M. Zhong, “1-, 1.5-, and 2-µm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Lvakin, E.

Ma, L. B.

Q. Hao, J. B. Pang, Y. Zhang, J. W. Wang, L. B. Ma, and O. G. Schmidt, “Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap,” Adv. Opt. Mater. 6(2), 1700984 (2018).
[Crossref]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO: LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Mendes, R. G.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Meng, Y.

R. Guo, Y. Meng, and M. Gong, “Anisotropic stimulated emission cross-section measurement in Nd: YVO4,” Chin. Phys. B 28(4), 044204 (2019).
[Crossref]

Michaelis de Vasconcellos, S.

Miller, D. A.

Moncorgé, R.

Najmaei, S.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Nam, D.

K. Kim, J. U. Lee, D. Nam, and H. Cheong, “Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2,” ACS Nano 10(8), 8113–8120 (2016).
[Crossref]

D. Nam, J. U. Lee, and H. Cheong, “Excitation energy dependent raman spectrum of MoSe2,” Sci. Rep. 5(1), 17113 (2015).
[Crossref]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals. 3rd edition,” Springer, Berlin (2009).

Nogajewski, K.

P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras, “Resonance effects in the Raman scattering of monolayer and few-layer MoSe2,” Phys. Rev. B 93(15), 155407 (2016).
[Crossref]

Oshman, M.

M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 5(4), 206 (1969).
[Crossref]

Pan, S. D.

F. Q. Liu, H. R. Xia, and S. D. Pan, “Passively Q-switched Nd:LuVO4 laser using Cr4+:YAG as saturable absorber,” Opt. Laser Technol. 39(7), 1449–1453 (2007).
[Crossref]

Pang, J.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Pang, J. B.

Q. Hao, J. B. Pang, Y. Zhang, J. W. Wang, L. B. Ma, and O. G. Schmidt, “Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap,” Adv. Opt. Mater. 6(2), 1700984 (2018).
[Crossref]

Papuchon, M.

Pocholle, J. P.

Puretzky, A.

A. Puretzky, L. Liang, and X. Li, “Twisted MoSe2 Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy,” ACS Nano 10(2), 2736–2744 (2016).
[Crossref]

Qiao, J.

Qiu, C.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Qiu, X.

T. Wei, X. Qiu, and Z. Gang, “High-efficiency frequency upconversion of 1.5 µm laser based on a doubly resonant external ring cavity with a low finesse for signal field,” Appl. Phys. B. 123(2), 52–55 (2017).
[Crossref]

Raffy, J.

Rummeli, M. H.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Safdar, M.

K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology 24(46), 465705 (2013).
[Crossref]

Sathiyan, S.

H. Ahmad, M. A. Ismail, and S. Sathiyan, “S-band Q-switched fiber laser using MoSe2 saturable absorber,” Opt. Commun. 382(93), 93–98 (2017).
[Crossref]

Schmidt, O. G.

Q. Hao, J. B. Pang, Y. Zhang, J. W. Wang, L. B. Ma, and O. G. Schmidt, “Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap,” Adv. Opt. Mater. 6(2), 1700984 (2018).
[Crossref]

Schmidt, R.

Sergeev, A. M.

I. A. Gorbunov, O. V. Kulagin, and A. M. Sergeev, “Eye-safe picosecond Raman laser,” Quantum Electron. 46(10), 863–869 (2016).
[Crossref]

Sevastyanov, V. V.

V. V. Sevastyanov, “An Experimental Study of the Specific Features of Laser Radiation Propagation through the Optical System of the Human Eye and the Optic Nerve,” Biomed. Eng. 52(5), 340–343 (2019).
[Crossref]

Sheng, Q.

P. B. Jiang, Q. Sheng, and X. Ding, “Dual-wavelength eye-safe Nd:GYSGG/YVO4 intracavity Raman laser under in-band pumping,” Opt. Commun. 383(15), 6–10 (2017).
[Crossref]

Shimony, Y.

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Song, X.

X. Song, J. Hu, and H. Zeng, “Two-dimensional semiconductors: recent progress and future perspectives,” J. Mater. Chem. C 1(17), 2952–2969 (2013).
[Crossref]

Soubelet, P.

P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras, “Resonance effects in the Raman scattering of monolayer and few-layer MoSe2,” Phys. Rev. B 93(15), 155407 (2016).
[Crossref]

Soulard, R.

Sun, D.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

X. Zhang, D. Sun, and Y. Li, “Measurement of lateral and interfacial thermal conductivity of single- and bi-layer MoS2 and MoSe2 using refined optothermal Raman technique,” ACS Appl. Mater. Interfaces 7(46), 25923–25929 (2015).
[Crossref]

Sun, Y.

Svelto, O.

O. Svelto, “Principle of Laser. 4th edition,” A Division of Plenum Publishing Corporation, New York (1998).

Ta, H. Q.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Tian, K.

K. Tian, Y. Li, and J. Yang, “Passively Q-switched Yb:KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber,” Appl. Phys. B: Lasers Opt. 125(2), 125–129 (2019).
[Crossref]

Tonelli, M.

Tonndorf, P.

Torrisi, F.

Trzebicka, B.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Turri, G.

Vajtai, R.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Wagner, W. G.

W. G. Wagner and B. A. Lengyel, “Evolution of the Giant Pulse in a Laser,” J. Appl. Phys. 34(7), 2040–2046 (1963).
[Crossref]

Wang, A.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

Wang, D.

D. Wang, J. Zhao, and K. Yang, “Doubly Q-switched Nd:GGG laser with a few-layer MoS2 saturable absorber and an acousto-optic modulator,” Opt. Mater. 72(10), 464–469 (2017).
[Crossref]

Wang, J.

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

K. Wu, X. Zhang, and J. Wang, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11459 (2015).
[Crossref]

J. Wang, S. Zhao, K. Yang, D. Li, G. Li, and J. An, “Pulse compression and threshold decrease in high- repetition-rate doubly Q-switched intracavity optical parametric oscillator,” J. Opt. Soc. Am. B 24(9), 2521–2525 (2007).
[Crossref]

J. Wang, S. Zhao, and G. Li, “Pulse Compression in Laser-Diode-Pumped Doubly Q-Switched Intracavity Optical Parametric Oscillator Considering Gaussian Distribution of Intracavity Photon Densities,” Jpn. J. Appl. Phys. 46(4A), 1505–1510 (2007).
[Crossref]

Wang, J. L.

H. M. Chen, X. Y. Zhao, and J. L. Wang, “Principles and Applictions of Laser. 3rd edition,” Electronic Industry Press, Beijing (2017).

Wang, J. W.

Q. Hao, J. B. Pang, Y. Zhang, J. W. Wang, L. B. Ma, and O. G. Schmidt, “Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap,” Adv. Opt. Mater. 6(2), 1700984 (2018).
[Crossref]

Wang, K.

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

Wang, Q.

X. Zhang, S. Zhao, and Q. Wang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Wang, Z.

K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology 24(46), 465705 (2013).
[Crossref]

Wei, T.

T. Wei, X. Qiu, and Z. Gang, “High-efficiency frequency upconversion of 1.5 µm laser based on a doubly resonant external ring cavity with a low finesse for signal field,” Appl. Phys. B. 123(2), 52–55 (2017).
[Crossref]

Wlodarski, M. D.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Wrobel, P. S.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Wu, K.

Xia, H. R.

F. Q. Liu, H. R. Xia, and S. D. Pan, “Passively Q-switched Nd:LuVO4 laser using Cr4+:YAG as saturable absorber,” Opt. Laser Technol. 39(7), 1449–1453 (2007).
[Crossref]

Xia, Z.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Xie, X. Z.

X. Z. Xie, G. Y. Chen, and L. J. Li, “Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser,” Opt. Laser Technol. 36(5), 409–419 (2004).
[Crossref]

Xu, J.

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

Xu, K.

K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology 24(46), 465705 (2013).
[Crossref]

Xu, Q.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Xu, X.

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

Yakobson, B. I.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Yang, J.

K. Tian, Y. Li, and J. Yang, “Passively Q-switched Yb:KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber,” Appl. Phys. B: Lasers Opt. 125(2), 125–129 (2019).
[Crossref]

Yang, K.

D. Wang, J. Zhao, and K. Yang, “Doubly Q-switched Nd:GGG laser with a few-layer MoS2 saturable absorber and an acousto-optic modulator,” Opt. Mater. 72(10), 464–469 (2017).
[Crossref]

J. Qiao, S. Zhao, and K. Yang, “Hybrid Q-switched laser with MoS2 saturable absorber and AOM driven sub-nanosecond KTP-OPO,” Opt. Express 25(4), 4227–4232 (2017).
[Crossref]

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

H. Zhang, J. Zhao, K. Yang, S. Zhao, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 79–84 (2015).
[Crossref]

J. Wang, S. Zhao, K. Yang, D. Li, G. Li, and J. An, “Pulse compression and threshold decrease in high- repetition-rate doubly Q-switched intracavity optical parametric oscillator,” J. Opt. Soc. Am. B 24(9), 2521–2525 (2007).
[Crossref]

K. Yang, S. Zhao, G. Li, and D. Li, “Doubly Passively Self-Q-Switched Cr4+:Nd3+:YAG Laser With a GaAs Output Coupler in a Short Cavity,” IEEE J. Quantum Electron. 43(2), 109–115 (2007).
[Crossref]

Yang, L.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

Yang, X.

L. J. Li, X. Yang, and L. Zhou, “Active/passive Q-switching operation of 2 µm Tm,Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror,” Photonics Res. 6(6), 614–619 (2018).
[Crossref]

Yu, T.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Yu, Y.

Y. Yu, X. Chen, and L. Cheng, “Continuous-Wave Intracavity Multiple Optical Parametric Oscillator Using an Aperiodically Poled Lithium Niobate Around 1.57 and 3.84 µm,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Zahn, D. R. T.

Zeng, H.

X. Song, J. Hu, and H. Zeng, “Two-dimensional semiconductors: recent progress and future perspectives,” J. Mater. Chem. C 1(17), 2952–2969 (2013).
[Crossref]

Zhang, H.

H. Zhang, J. Zhao, K. Yang, S. Zhao, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 79–84 (2015).
[Crossref]

Zhang, X.

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

X. Zhang, D. Sun, and Y. Li, “Measurement of lateral and interfacial thermal conductivity of single- and bi-layer MoS2 and MoSe2 using refined optothermal Raman technique,” ACS Appl. Mater. Interfaces 7(46), 25923–25929 (2015).
[Crossref]

K. Wu, X. Zhang, and J. Wang, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11459 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, Ovidiu Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express 21(4), 4908–4916 (2013).
[Crossref]

X. Zhang, S. Zhao, and Q. Wang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, Y.

Q. Hao, J. B. Pang, Y. Zhang, J. W. Wang, L. B. Ma, and O. G. Schmidt, “Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap,” Adv. Opt. Mater. 6(2), 1700984 (2018).
[Crossref]

Zhao, B.

H. Zhang, J. Zhao, K. Yang, S. Zhao, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 79–84 (2015).
[Crossref]

Zhao, J.

D. Wang, J. Zhao, and K. Yang, “Doubly Q-switched Nd:GGG laser with a few-layer MoS2 saturable absorber and an acousto-optic modulator,” Opt. Mater. 72(10), 464–469 (2017).
[Crossref]

H. Zhang, J. Zhao, K. Yang, S. Zhao, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 79–84 (2015).
[Crossref]

Zhao, L.

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

Zhao, S.

S. Zhao, D. He, and J. He, “Probing Excitons in Transition Metal Dichalcogenides by Drude-Like Exciton Intraband Absorption,” Nanoscale 10(20), 9538–9546 (2018).
[Crossref]

J. Qiao, S. Zhao, and K. Yang, “Hybrid Q-switched laser with MoS2 saturable absorber and AOM driven sub-nanosecond KTP-OPO,” Opt. Express 25(4), 4227–4232 (2017).
[Crossref]

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

H. Zhang, J. Zhao, K. Yang, S. Zhao, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 79–84 (2015).
[Crossref]

D. Li, S. Zhao, and G. Li, “Optimization of pulse width of double passively Q-switched lasers with GaAs and Cr4+-doped saturable absorbers,” Opt. Laser Technol. 41(3), 272–279 (2009).
[Crossref]

K. Yang, S. Zhao, G. Li, and D. Li, “Doubly Passively Self-Q-Switched Cr4+:Nd3+:YAG Laser With a GaAs Output Coupler in a Short Cavity,” IEEE J. Quantum Electron. 43(2), 109–115 (2007).
[Crossref]

J. Wang, S. Zhao, K. Yang, D. Li, G. Li, and J. An, “Pulse compression and threshold decrease in high- repetition-rate doubly Q-switched intracavity optical parametric oscillator,” J. Opt. Soc. Am. B 24(9), 2521–2525 (2007).
[Crossref]

J. Wang, S. Zhao, and G. Li, “Pulse Compression in Laser-Diode-Pumped Doubly Q-Switched Intracavity Optical Parametric Oscillator Considering Gaussian Distribution of Intracavity Photon Densities,” Jpn. J. Appl. Phys. 46(4A), 1505–1510 (2007).
[Crossref]

X. Zhang, S. Zhao, and Q. Wang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhao, X. Y.

H. M. Chen, X. Y. Zhao, and J. L. Wang, “Principles and Applictions of Laser. 3rd edition,” Electronic Industry Press, Beijing (2017).

Zhong, M.

Z. Luo, Y. Huang, and M. Zhong, “1-, 1.5-, and 2-µm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Zhou, G.

G. Zhou, “Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires,” Appl. Phys. Lett. 109(14), 143904 (2016).
[Crossref]

Zhou, L.

L. J. Li, X. Yang, and L. Zhou, “Active/passive Q-switching operation of 2 µm Tm,Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror,” Photonics Res. 6(6), 614–619 (2018).
[Crossref]

Zhou, W.

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Zinoviev, A.

Zou, X.

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Zhang, D. Sun, and Y. Li, “Measurement of lateral and interfacial thermal conductivity of single- and bi-layer MoS2 and MoSe2 using refined optothermal Raman technique,” ACS Appl. Mater. Interfaces 7(46), 25923–25929 (2015).
[Crossref]

ACS Nano (3)

A. Puretzky, L. Liang, and X. Li, “Twisted MoSe2 Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy,” ACS Nano 10(2), 2736–2744 (2016).
[Crossref]

J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, L. Fu, Z. Liu, J. Eckert, A. Bachmatiuk, and M. H. Rummeli, “A self terminating confinement approach for large area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition,” ACS Nano 11(2), 1946–1956 (2017).
[Crossref]

K. Kim, J. U. Lee, D. Nam, and H. Cheong, “Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2,” ACS Nano 10(8), 8113–8120 (2016).
[Crossref]

Adv. Opt. Mater. (1)

Q. Hao, J. B. Pang, Y. Zhang, J. W. Wang, L. B. Ma, and O. G. Schmidt, “Boosting the Photoluminescence of Monolayer MoS2 on High-Density Nanodimer Arrays with Sub-10 nm Gap,” Adv. Opt. Mater. 6(2), 1700984 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B. (1)

T. Wei, X. Qiu, and Z. Gang, “High-efficiency frequency upconversion of 1.5 µm laser based on a doubly resonant external ring cavity with a low finesse for signal field,” Appl. Phys. B. 123(2), 52–55 (2017).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

K. Tian, Y. Li, and J. Yang, “Passively Q-switched Yb:KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber,” Appl. Phys. B: Lasers Opt. 125(2), 125–129 (2019).
[Crossref]

Appl. Phys. Lett. (1)

G. Zhou, “Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires,” Appl. Phys. Lett. 109(14), 143904 (2016).
[Crossref]

Biomed. Eng. (1)

V. V. Sevastyanov, “An Experimental Study of the Specific Features of Laser Radiation Propagation through the Optical System of the Human Eye and the Optic Nerve,” Biomed. Eng. 52(5), 340–343 (2019).
[Crossref]

Chin. Opt. Lett. (1)

Chin. Phys. B (1)

R. Guo, Y. Meng, and M. Gong, “Anisotropic stimulated emission cross-section measurement in Nd: YVO4,” Chin. Phys. B 28(4), 044204 (2019).
[Crossref]

IEEE J. Quantum Electron. (6)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO: LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

X. Zhang, S. Zhao, and Q. Wang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

K. Yang, S. Zhao, G. Li, and D. Li, “Doubly Passively Self-Q-Switched Cr4+:Nd3+:YAG Laser With a GaAs Output Coupler in a Short Cavity,” IEEE J. Quantum Electron. 43(2), 109–115 (2007).
[Crossref]

Y. K. Kuo, M. F. Huang, and M. Birnbaum, “unable Cr4+:YSO Q-switched Cr:LiCAF laser,” IEEE J. Quantum Electron. 31(4), 657–663 (1995).
[Crossref]

M. Oshman and S. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. 5(4), 206 (1969).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Wang, K. Yang, X. Zhang, S. Zhao, C. Luan, C. Liu, J. Wang, X. Xu, and J. Xu, “Passively Q-switched laser at 1.3 µm with few-layered MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 71–75 (2017).
[Crossref]

H. Zhang, J. Zhao, K. Yang, S. Zhao, and B. Zhao, “Low repetition rate subnanosecond pulse characteristics of Nd:Lu0.5Y0.5VO4/KTP green laser with EO and MWCNT,” IEEE J. Sel. Top. Quantum Electron. 21(1), 79–84 (2015).
[Crossref]

IEEE Photonics J. (1)

Y. Yu, X. Chen, and L. Cheng, “Continuous-Wave Intracavity Multiple Optical Parametric Oscillator Using an Aperiodically Poled Lithium Niobate Around 1.57 and 3.84 µm,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

J. Appl. Phys. (2)

W. G. Wagner and B. A. Lengyel, “Evolution of the Giant Pulse in a Laser,” J. Appl. Phys. 34(7), 2040–2046 (1963).
[Crossref]

P. V. Avizonis and R. L. Grotbeck, “Experimental and Theoretical Ruby Laser Amplifier Dynamics,” J. Appl. Phys. 37(2), 687–693 (1966).
[Crossref]

J. Eur. Opt. Soc. Rapid (1)

F. Angelini and F. Colao, “Optimization of laser wavelength, power and pulse duration for eye-safe Raman spectroscopy,” J. Eur. Opt. Soc. Rapid 15(1), 2 (2019).
[Crossref]

J. Lightwave Technol. (1)

Z. Luo, Y. Huang, and M. Zhong, “1-, 1.5-, and 2-µm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS2 Saturable Absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

J. Mater. Chem. C (1)

X. Song, J. Hu, and H. Zeng, “Two-dimensional semiconductors: recent progress and future perspectives,” J. Mater. Chem. C 1(17), 2952–2969 (2013).
[Crossref]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

J. Wang, S. Zhao, and G. Li, “Pulse Compression in Laser-Diode-Pumped Doubly Q-Switched Intracavity Optical Parametric Oscillator Considering Gaussian Distribution of Intracavity Photon Densities,” Jpn. J. Appl. Phys. 46(4A), 1505–1510 (2007).
[Crossref]

Laser Phys. Lett. (1)

L. Huang, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4(7), 511–514 (2007).
[Crossref]

Nano Energy (1)

Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy 62(36), 338–347 (2019).
[Crossref]

Nanoscale (1)

S. Zhao, D. He, and J. He, “Probing Excitons in Transition Metal Dichalcogenides by Drude-Like Exciton Intraband Absorption,” Nanoscale 10(20), 9538–9546 (2018).
[Crossref]

Nanotechnology (1)

K. Xu, Z. Wang, X. Du, M. Safdar, C. Jiang, and J. He, “Atomic-layer triangular WSe2 sheets: synthesis and layer-dependent photoluminescence property,” Nanotechnology 24(46), 465705 (2013).
[Crossref]

Nat. Commun. (1)

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, “Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition,” Nat. Commun. 5(1), 5246–5250 (2014).
[Crossref]

Nonlinear Dyn. (1)

S. Biswas and J. K. Bhattacharjee, “On the properties of a class of higher-order mathieu equations originating from a parametric quantum oscillator,” Nonlinear Dyn. 96(1), 737–750 (2019).
[Crossref]

Opt. Commun. (2)

P. B. Jiang, Q. Sheng, and X. Ding, “Dual-wavelength eye-safe Nd:GYSGG/YVO4 intracavity Raman laser under in-band pumping,” Opt. Commun. 383(15), 6–10 (2017).
[Crossref]

H. Ahmad, M. A. Ismail, and S. Sathiyan, “S-band Q-switched fiber laser using MoSe2 saturable absorber,” Opt. Commun. 382(93), 93–98 (2017).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (3)

X. Z. Xie, G. Y. Chen, and L. J. Li, “Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser,” Opt. Laser Technol. 36(5), 409–419 (2004).
[Crossref]

F. Q. Liu, H. R. Xia, and S. D. Pan, “Passively Q-switched Nd:LuVO4 laser using Cr4+:YAG as saturable absorber,” Opt. Laser Technol. 39(7), 1449–1453 (2007).
[Crossref]

D. Li, S. Zhao, and G. Li, “Optimization of pulse width of double passively Q-switched lasers with GaAs and Cr4+-doped saturable absorbers,” Opt. Laser Technol. 41(3), 272–279 (2009).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

D. Wang, J. Zhao, and K. Yang, “Doubly Q-switched Nd:GGG laser with a few-layer MoS2 saturable absorber and an acousto-optic modulator,” Opt. Mater. 72(10), 464–469 (2017).
[Crossref]

Photonics Res. (1)

L. J. Li, X. Yang, and L. Zhou, “Active/passive Q-switching operation of 2 µm Tm,Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror,” Photonics Res. 6(6), 614–619 (2018).
[Crossref]

Phys. Rev. B (2)

P. Soubelet, A. E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras, “Resonance effects in the Raman scattering of monolayer and few-layer MoSe2,” Phys. Rev. B 93(15), 155407 (2016).
[Crossref]

R. Coehoorn, C. Haas, and J. Dijkstra, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy,” Phys. Rev. B 35(12), 6195–6202 (1987).
[Crossref]

Quantum Electron. (1)

I. A. Gorbunov, O. V. Kulagin, and A. M. Sergeev, “Eye-safe picosecond Raman laser,” Quantum Electron. 46(10), 863–869 (2016).
[Crossref]

Sci. Rep. (1)

D. Nam, J. U. Lee, and H. Cheong, “Excitation energy dependent raman spectrum of MoSe2,” Sci. Rep. 5(1), 17113 (2015).
[Crossref]

Other (3)

O. Svelto, “Principle of Laser. 4th edition,” A Division of Plenum Publishing Corporation, New York (1998).

H. M. Chen, X. Y. Zhao, and J. L. Wang, “Principles and Applictions of Laser. 3rd edition,” Electronic Industry Press, Beijing (2017).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals. 3rd edition,” Springer, Berlin (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. The photograph and microscopic observation of deposited MoSe2 on sapphire substrate. (a) Photograph of the centimeter scale MoSe2 material deposited on c-cut sapphire. (b) Optical microscopy atomic force microscopy. (c) Raman mapping of peak intensity at A1g mode of MoSe2. (d) Raman spectrum collected with excitation laser of 532 nm wavelength. (e) Scanning electron microscopy. (f) Atomic force microscopy.
Fig. 2.
Fig. 2. Transmittance of MoSe2 SA versus incident power density at 1.06 µm. Inset provides the linear relation for low-power density.
Fig. 3.
Fig. 3. Experimental setup of LD-pumped MoSe2+AO doubly Q-switched Nd3+:YVO4 /KTP IOPO.
Fig. 4.
Fig. 4. Corresponding spectrum from doubly Q-switched IOPO under the LD-pump power of 5.5 W and AO-modulation rate of 15 kHz.
Fig. 5.
Fig. 5. (a) Typical temporal pulse train of passively Q-switched laser with MoSe2-SA under incident pumped power of 6.6 W. (b), (c) Typical temporal pulse train of signal light from Q-switched IOPO, under incident pumped power of 6.6 W and fp=15 kHz. SD: standard deviation.
Fig. 6.
Fig. 6. Average output powers and pulse widths of signal light versus incident pump powers when fp=15 kHz and 25 kHz. (a) and (c), average power; (b) and (d), pulse width.
Fig. 7.
Fig. 7. Dependence of the peak power for signal light on incident pumped power at two different AO modulation rate.
Fig. 8.
Fig. 8. (a) and (b), undepleted and depleted fundamental profiles from Q-switched laser cavity under incident pumped power of 7.4 W and fp=15 kHz; (c), conversion efficiencies from two IOPOs versus incident pump power when fp=15 kHz.
Fig. 9.
Fig. 9. The beam profile of the signal light from the doubly Q-switched IOPO under incident pumped power of 7.4W and modulation rate of 15 kHz
Fig. 10.
Fig. 10. Temporal-pulse profiles of the fundamental and signal light. (a) temporal-pulse profiles of the fundamental light for the doubly Q-switched IOPO based on MoSe2 SA; (b) temporal-pulse profiles of the signal light for the doubly Q-switched IOPO based on MoSe2 SA; (c) pulses from MoSe2 SA passively Q-switched laser. Solid, calculated values from rate equations; Scatter, experimental data.

Tables (2)

Tables Icon

Table 1. The key parameters for saturable absorption properties of 2D-MoSe2 SA

Tables Icon

Table 2. The other parameters in rate equations

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E p u l s e = P a v e r a g e / f p
P p e a k = E p u l s e / W
η = E 1 E 2 E 1
d E p ( t ) d t = 1 2 t r [ 2 σ l g n ( t ) ( σ g σ e ) l y n y 1 ( t ) σ e l y n y 0 δ T ( t ) δ a ( t ) L ] E p ( t ) δ ω p I l K T P 4 ε p l E s ( t ) E i ( t ) ,
d E s ( t ) d t = E s ( t ) 2 τ s + δ ω s I l K T P 4 ε s l o p o E p ( t ) E i ( t ) ,
d E i ( t ) d t = E i ( t ) 2 τ i + δ ω i I l K T P 4 ε i l o p o E p ( t ) E s ( t ) ,
d n ( t ) d t = R i n n ( t ) τ σ c ε p n ( t ) 4 ω p E p 2 ( t ) ,
d n y 1 ( r , t ) d t = n y 0 n y 1 ( r , t ) τ y ε p 4 ω p σ g c n y 1 ( r , t ) E p 2 ( r , t ) ,
d E d z = h ν n y 0 ( 1 σ e σ g ) [ 1 exp ( σ g E h ν ) ] n y 0 σ e E
σ g σ e = ln T 0 ln T max
( σ g σ e ) × T 0 h ν = k
σ e = ln 2 A 21 v 2 4 π 3 2 ν 0 2 Δ ν
Δ ν = 2 ν 0 c ( 2 k b T ln 2 m ) 2

Metrics