Abstract

An integrated Stokes vector receiver (SVR) that can retrieve state of polarization of light in the three-dimensional (3D) Stokes space has widespread applications, such as short-reach communication links, polarization-sensitive imaging, and sensing. While various approaches have been demonstrated to date, monolithic integration of polarization components on InP has been a challenging issue. In this paper, we develop a novel 4-port SVR circuit integrated on a compact InP chip to retrieve complete Stokes parameters of incoming light with various intensity and degree-of-polarization. By judiciously designing the lengths and positions of asymmetric waveguide sections, we demonstrate that the SV of signal can be projected onto four vertices of a regular tetrahedron inscribed in the Poincaré sphere. Additionally, we employ this device in decoding 10-Gbaud 4-ary and 8-ary Stokes-vector-modulated signals in the 3D Stokes space.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-analyzing circuit on InP for integrated Stokes vector receiver

Samir Ghosh, Yuto Kawabata, Takuo Tanemura, and Yoshiaki Nakano
Opt. Express 25(11) 12303-12310 (2017)

100G and 200G single carrier transmission over 2880 and 320 km using an InP IQ modulator and Stokes vector receiver

Mohammed Y. S. Sowailem, Thang M. Hoang, Mathieu Chagnon, Mohamed Morsy-Osman, Meng Qiu, Stephane Paquet, Carl Paquet, Ian Woods, Odile Liboiron-Ladouceur, and David V. Plant
Opt. Express 24(26) 30485-30493 (2016)

Spectrally efficient optical transmission based on Stokes vector direct detection

An Li, Di Che, Vivian Chen, and William Shieh
Opt. Express 22(13) 15662-15667 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22(7), 7374–7387 (2014).
    [Crossref]
  2. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for short-reach optical communication,” Opt. Lett. 39(11), 3110–3113 (2014).
    [Crossref]
  3. M. Chagnon, M. M-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. Plant, “Digital signal processing for dual-polarization intensity and interpolarization phase modulation formats using Stokes detection,” J. Lightwave Technol. 34(1), 188–195 (2016).
    [Crossref]
  4. P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y.-K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
    [Crossref]
  5. B. Schrenk, F. Laudenbach, and H. Hübel, “High-order polarization overlay for future optical access,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper W4G.1 (2018).
  6. D. Che, C. Sun, and W. Shieh, “Optical field recovery in Stokes space,” J. Lightwave Technol. 37(2), 451–460 (2019).
    [Crossref]
  7. D. Che, S. Chandrasekhar, X. Chen, G. Raybon, P. Winzer, C. Sun, and W. Shieh, “Single-channel direct detection reception beyond 1 Tb/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Th4B.7 (2019).
  8. C. Ma, W. D. Sacher, Z. Tang, J. C. Mikkelsen, Y. Yang, F. Xu, T. Thiessen, H. K. Lo, and J. K. S. Poon, “Silicon photonic transmitter for polarization-encoded quantum key distribution,” Optica 3(11), 1274–1278 (2016).
    [Crossref]
  9. H. Cai, C. M. Long, C. T. DeRose, N. Boynton, J. Urayama, R. Camacho, A. Pomerene, A. L. Starbuck, D. C. Trotter, P. S. Davids, and A. L. Lentine, “Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution,” Opt. Express 25(11), 12282–12294 (2017).
    [Crossref]
  10. P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, and M. G. Thompson, “Integrated silicon photonics for high-speed quantum key distribution,” Optica 4(2), 172–177 (2017).
    [Crossref]
  11. D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
    [Crossref]
  12. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  13. Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 1–12 (2018).
    [Crossref]
  14. Z. Wang, H.-C. Lee, D. Vermeulen, L. Chen, T. Nielsen, S. Y. Park, A. Ghaemi, E. Swanson, C. Doerr, and J. Fujimoto, “Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection,” Biomed. Opt. Express 6(7), 2562–2574 (2015).
    [Crossref]
  15. M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
    [Crossref]
  16. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review,” Biomed. Opt. Express 8(3), 1838–1873 (2017).
    [Crossref]
  17. M. Baier, F. M. Soares, A. Schoenau, Y. D. Gupta, D. Melzer, M. Moehrle, and M. Schell, “Fully integrated Stokes vector receiver for 400 Gbit/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Tu3E.2 (2019).
  18. S. Keyvaninia, T. Beckerwerth, G. Zhou, M. Gruner, F. Ganzer, W. Ebert, S. Mutschall, A. Seeger, P. Runge, and M. Schell, “Novel photodetector chip for polarization diverse detection,” J. Lightwave Technol. 37(16), 3972–3978 (2019).
    [Crossref]
  19. T. Tanemura and Y. Nakano, “Compact InP Stokes-vector modulator and receiver circuits for short-reach direct-detection optical links,” IEICE Trans. Electron. E101.C(7), 594–601 (2018).
    [Crossref]
  20. S. Ghosh, Y. Kawabata, T. Tanemura, and Y. Nakano, “Polarization analysing circuit on InP for integrated Stokes vector receiver,” Opt. Express 25(11), 12303–12310 (2017).
    [Crossref]
  21. S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightwave Technol. 36(2), 187–194 (2018).
    [Crossref]
  22. T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightwave Technol. 36(5), 1268–1274 (2018).
    [Crossref]
  23. L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
    [Crossref]
  24. K. Watanabe, Y. Nasu, Y. Ohiso, and R. Iga, “Easy adjustment structure and method for realizing InP based polarization beam splitter via Pockels effect dependence on crystal orientation,” Jpn. J. Appl. Phys. 55(8S3), 08RB04 (2016).
    [Crossref]
  25. N. Abadía, X. Dai, Q. Lu, W.-H. Guo, D. Patel, D. V. Plant, and J. F. Donegan, “Highly fabrication tolerant InP based polarization beam splitter based on p-i-n structure,” Opt. Express 25(9), 10070–10077 (2017).
    [Crossref]
  26. S. Keyvaninia, H. Boerma, M. Wössner, F. Ganzer, P. Runge, and M. Schell, “Highly efficient passive InP polarization rotator-splitter,” Opt. Express 27(18), 25872–25881 (2019).
    [Crossref]
  27. T. Tanemura, T. Suganuma, and Y. Nakano, “Sensitivity analysis of photonic integrated direct-detection Stokes-vector receiver,” J. Lightwave Technol., to be published (doi: 10.1109/JLT.2019.2952980).
  28. M. R. Foreman, A. Favaro, and A. Aiello, “Optimal frames for polarization state reconstruction,” Phys. Rev. Lett. 115(26), 263901 (2015).
    [Crossref]
  29. M. Zaitsu, T. Tanemura, A. Higo, and Y. Nakano, “Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits,” Opt. Express 21(6), 6910–6918 (2013).
    [Crossref]
  30. S. Ghosh, S. Ishimura, T. Suganuma, T. Tanemura, and Y. Nakano, “8-ary Stokes-vector signal generation and transmission employing a simplified transmitter,” in Proc. Conf. on Lasers and Electro-Optics (CLEO), paper SM3G.4 (2019).

2019 (3)

2018 (5)

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightwave Technol. 36(2), 187–194 (2018).
[Crossref]

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightwave Technol. 36(5), 1268–1274 (2018).
[Crossref]

T. Tanemura and Y. Nakano, “Compact InP Stokes-vector modulator and receiver circuits for short-reach direct-detection optical links,” IEICE Trans. Electron. E101.C(7), 594–601 (2018).
[Crossref]

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 1–12 (2018).
[Crossref]

2017 (5)

2016 (5)

2015 (2)

2014 (2)

2013 (2)

2007 (1)

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

Abadía, N.

Aiello, A.

M. R. Foreman, A. Favaro, and A. Aiello, “Optimal frames for polarization state reconstruction,” Phys. Rev. Lett. 115(26), 263901 (2015).
[Crossref]

Augustin, L. M.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

Baier, M.

M. Baier, F. M. Soares, A. Schoenau, Y. D. Gupta, D. Melzer, M. Moehrle, and M. Schell, “Fully integrated Stokes vector receiver for 400 Gbit/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Tu3E.2 (2019).

Beckerwerth, T.

Boerma, H.

Bouma, B. E.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Boynton, N.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

H. Cai, C. M. Long, C. T. DeRose, N. Boynton, J. Urayama, R. Camacho, A. Pomerene, A. L. Starbuck, D. C. Trotter, P. S. Davids, and A. L. Lentine, “Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution,” Opt. Express 25(11), 12282–12294 (2017).
[Crossref]

Bunandar, D.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Cai, H.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

H. Cai, C. M. Long, C. T. DeRose, N. Boynton, J. Urayama, R. Camacho, A. Pomerene, A. L. Starbuck, D. C. Trotter, P. S. Davids, and A. L. Lentine, “Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution,” Opt. Express 25(11), 12282–12294 (2017).
[Crossref]

Camacho, R.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

H. Cai, C. M. Long, C. T. DeRose, N. Boynton, J. Urayama, R. Camacho, A. Pomerene, A. L. Starbuck, D. C. Trotter, P. S. Davids, and A. L. Lentine, “Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution,” Opt. Express 25(11), 12282–12294 (2017).
[Crossref]

Capmany, J.

Chagnon, M.

Chandrasekhar, S.

P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y.-K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
[Crossref]

D. Che, S. Chandrasekhar, X. Chen, G. Raybon, P. Winzer, C. Sun, and W. Shieh, “Single-channel direct detection reception beyond 1 Tb/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Th4B.7 (2019).

Che, D.

Chen, C.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Chen, L.

Chen, X.

Chen, Y.-K.

Dai, X.

Davids, P.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Davids, P. S.

de Boer, J. F.

de Laat, W. J. M.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

DeRose, C.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

DeRose, C. T.

Doerr, C.

Donegan, J. F.

Dong, P.

Ebert, W.

Englund, D.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Erven, C.

Favaro, A.

M. R. Foreman, A. Favaro, and A. Aiello, “Optimal frames for polarization state reconstruction,” Phys. Rev. Lett. 115(26), 263901 (2015).
[Crossref]

Foreman, M. R.

M. R. Foreman, A. Favaro, and A. Aiello, “Optimal frames for polarization state reconstruction,” Phys. Rev. Lett. 115(26), 263901 (2015).
[Crossref]

Fujimoto, J.

Ganzer, F.

Gasulla, I.

Ghaemi, A.

Ghosh, S.

Grein, M.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Gruner, M.

Guo, W.-H.

Gupta, Y. D.

M. Baier, F. M. Soares, A. Schoenau, Y. D. Gupta, D. Melzer, M. Moehrle, and M. Schell, “Fully integrated Stokes vector receiver for 400 Gbit/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Tu3E.2 (2019).

Hamilton, S.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Hanfoug, R.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

Higo, A.

Hitzenberger, C. K.

Hu, Q.

Hübel, H.

B. Schrenk, F. Laudenbach, and H. Hübel, “High-order polarization overlay for future optical access,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper W4G.1 (2018).

Iga, R.

K. Watanabe, Y. Nasu, Y. Ohiso, and R. Iga, “Easy adjustment structure and method for realizing InP based polarization beam splitter via Pockels effect dependence on crystal orientation,” Jpn. J. Appl. Phys. 55(8S3), 08RB04 (2016).
[Crossref]

Ishimura, S.

S. Ghosh, S. Ishimura, T. Suganuma, T. Tanemura, and Y. Nakano, “8-ary Stokes-vector signal generation and transmission employing a simplified transmitter,” in Proc. Conf. on Lasers and Electro-Optics (CLEO), paper SM3G.4 (2019).

Katoh, K.

Kawabata, Y.

Kawakami, S.

Kazi, M.

Kennard, J. E.

Keyvaninia, S.

Kikuchi, K.

Kim, K.

Kirk, R. W.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Kobayashi, R.

Laudenbach, F.

B. Schrenk, F. Laudenbach, and H. Hübel, “High-order polarization overlay for future optical access,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper W4G.1 (2018).

Lee, C.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Lee, H.-C.

Lentine, A.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Lentine, A. L.

Li, A.

Lloret, J.

Lo, H. K.

Long, C. M.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

H. Cai, C. M. Long, C. T. DeRose, N. Boynton, J. Urayama, R. Camacho, A. Pomerene, A. L. Starbuck, D. C. Trotter, P. S. Davids, and A. L. Lentine, “Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution,” Opt. Express 25(11), 12282–12294 (2017).
[Crossref]

Lorenser, D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Lu, Q.

Ma, C.

Martinez, N.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

McLaughlin, R. A.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Melzer, D.

M. Baier, F. M. Soares, A. Schoenau, Y. D. Gupta, D. Melzer, M. Moehrle, and M. Schell, “Fully integrated Stokes vector receiver for 400 Gbit/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Tu3E.2 (2019).

Mikkelsen, J. C.

Moehrle, M.

M. Baier, F. M. Soares, A. Schoenau, Y. D. Gupta, D. Melzer, M. Moehrle, and M. Schell, “Fully integrated Stokes vector receiver for 400 Gbit/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Tu3E.2 (2019).

Mora, J.

M-Osman, M.

Mutschall, S.

Nakano, Y.

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightwave Technol. 36(5), 1268–1274 (2018).
[Crossref]

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightwave Technol. 36(2), 187–194 (2018).
[Crossref]

T. Tanemura and Y. Nakano, “Compact InP Stokes-vector modulator and receiver circuits for short-reach direct-detection optical links,” IEICE Trans. Electron. E101.C(7), 594–601 (2018).
[Crossref]

S. Ghosh, Y. Kawabata, T. Tanemura, and Y. Nakano, “Polarization analysing circuit on InP for integrated Stokes vector receiver,” Opt. Express 25(11), 12303–12310 (2017).
[Crossref]

M. Zaitsu, T. Tanemura, A. Higo, and Y. Nakano, “Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits,” Opt. Express 21(6), 6910–6918 (2013).
[Crossref]

S. Ghosh, S. Ishimura, T. Suganuma, T. Tanemura, and Y. Nakano, “8-ary Stokes-vector signal generation and transmission employing a simplified transmitter,” in Proc. Conf. on Lasers and Electro-Optics (CLEO), paper SM3G.4 (2019).

T. Tanemura, T. Suganuma, and Y. Nakano, “Sensitivity analysis of photonic integrated direct-detection Stokes-vector receiver,” J. Lightwave Technol., to be published (doi: 10.1109/JLT.2019.2952980).

Nasu, Y.

K. Watanabe, Y. Nasu, Y. Ohiso, and R. Iga, “Easy adjustment structure and method for realizing InP based polarization beam splitter via Pockels effect dependence on crystal orientation,” Jpn. J. Appl. Phys. 55(8S3), 08RB04 (2016).
[Crossref]

Nielsen, T.

O’Brien, J. L.

Ohiso, Y.

K. Watanabe, Y. Nasu, Y. Ohiso, and R. Iga, “Easy adjustment structure and method for realizing InP based polarization beam splitter via Pockels effect dependence on crystal orientation,” Jpn. J. Appl. Phys. 55(8S3), 08RB04 (2016).
[Crossref]

Pan, S.

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 1–12 (2018).
[Crossref]

Park, S. Y.

Patel, D.

Plant, D.

Plant, D. V.

Pomerene, A.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

H. Cai, C. M. Long, C. T. DeRose, N. Boynton, J. Urayama, R. Camacho, A. Pomerene, A. L. Starbuck, D. C. Trotter, P. S. Davids, and A. L. Lentine, “Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution,” Opt. Express 25(11), 12282–12294 (2017).
[Crossref]

Poon, J. K. S.

Quirk, B. C.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Raybon, G.

D. Che, S. Chandrasekhar, X. Chen, G. Raybon, P. Winzer, C. Sun, and W. Shieh, “Single-channel direct detection reception beyond 1 Tb/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Th4B.7 (2019).

Runge, P.

Sacher, W. D.

Sales, S.

Samani, A.

Sampson, D. D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Sancho, J.

Schell, M.

Schoenau, A.

M. Baier, F. M. Soares, A. Schoenau, Y. D. Gupta, D. Melzer, M. Moehrle, and M. Schell, “Fully integrated Stokes vector receiver for 400 Gbit/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Tu3E.2 (2019).

Schrenk, B.

B. Schrenk, F. Laudenbach, and H. Hübel, “High-order polarization overlay for future optical access,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper W4G.1 (2018).

Seeger, A.

Shieh, W.

Sibson, P.

Sinsky, J. H.

Smit, M. K.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

Soares, F. M.

M. Baier, F. M. Soares, A. Schoenau, Y. D. Gupta, D. Melzer, M. Moehrle, and M. Schell, “Fully integrated Stokes vector receiver for 400 Gbit/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Tu3E.2 (2019).

Stanisic, S.

Starbuck, A.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Starbuck, A. L.

Suganuma, T.

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightwave Technol. 36(5), 1268–1274 (2018).
[Crossref]

T. Tanemura, T. Suganuma, and Y. Nakano, “Sensitivity analysis of photonic integrated direct-detection Stokes-vector receiver,” J. Lightwave Technol., to be published (doi: 10.1109/JLT.2019.2952980).

S. Ghosh, S. Ishimura, T. Suganuma, T. Tanemura, and Y. Nakano, “8-ary Stokes-vector signal generation and transmission employing a simplified transmitter,” in Proc. Conf. on Lasers and Electro-Optics (CLEO), paper SM3G.4 (2019).

Sun, C.

D. Che, C. Sun, and W. Shieh, “Optical field recovery in Stokes space,” J. Lightwave Technol. 37(2), 451–460 (2019).
[Crossref]

D. Che, S. Chandrasekhar, X. Chen, G. Raybon, P. Winzer, C. Sun, and W. Shieh, “Single-channel direct detection reception beyond 1 Tb/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Th4B.7 (2019).

Swanson, E.

Tanemura, T.

T. Tanemura and Y. Nakano, “Compact InP Stokes-vector modulator and receiver circuits for short-reach direct-detection optical links,” IEICE Trans. Electron. E101.C(7), 594–601 (2018).
[Crossref]

S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multilevel Stokes-vector modulated signal by polarization-analyzing circuit on InP,” J. Lightwave Technol. 36(2), 187–194 (2018).
[Crossref]

T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector receiver with multiple-quantum-well photodetectors,” J. Lightwave Technol. 36(5), 1268–1274 (2018).
[Crossref]

S. Ghosh, Y. Kawabata, T. Tanemura, and Y. Nakano, “Polarization analysing circuit on InP for integrated Stokes vector receiver,” Opt. Express 25(11), 12303–12310 (2017).
[Crossref]

M. Zaitsu, T. Tanemura, A. Higo, and Y. Nakano, “Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits,” Opt. Express 21(6), 6910–6918 (2013).
[Crossref]

S. Ghosh, S. Ishimura, T. Suganuma, T. Tanemura, and Y. Nakano, “8-ary Stokes-vector signal generation and transmission employing a simplified transmitter,” in Proc. Conf. on Lasers and Electro-Optics (CLEO), paper SM3G.4 (2019).

T. Tanemura, T. Suganuma, and Y. Nakano, “Sensitivity analysis of photonic integrated direct-detection Stokes-vector receiver,” J. Lightwave Technol., to be published (doi: 10.1109/JLT.2019.2952980).

Tang, Z.

Thiessen, T.

Thompson, M. G.

Trotter, D.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Trotter, D. C.

Urayama, J.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

H. Cai, C. M. Long, C. T. DeRose, N. Boynton, J. Urayama, R. Camacho, A. Pomerene, A. L. Starbuck, D. C. Trotter, P. S. Davids, and A. L. Lentine, “Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution,” Opt. Express 25(11), 12282–12294 (2017).
[Crossref]

van der Tol, J. J. G. M.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

Veerasubramanian, V.

Vermeulen, D.

Villiger, M.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Wang, Y.

Wang, Z.

Watanabe, K.

K. Watanabe, Y. Nasu, Y. Ohiso, and R. Iga, “Easy adjustment structure and method for realizing InP based polarization beam splitter via Pockels effect dependence on crystal orientation,” Jpn. J. Appl. Phys. 55(8S3), 08RB04 (2016).
[Crossref]

Winzer, P.

D. Che, S. Chandrasekhar, X. Chen, G. Raybon, P. Winzer, C. Sun, and W. Shieh, “Single-channel direct detection reception beyond 1 Tb/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Th4B.7 (2019).

Wong, F. N. C.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Wössner, M.

Xu, F.

Yang, Y.

Yasuno, Y.

Zaitsu, M.

Zhang, Y.

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 1–12 (2018).
[Crossref]

Zhou, G.

Biomed. Opt. Express (2)

IEEE J. Quantum Electron. (1)

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54(4), 1–12 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

IEICE Trans. Electron. (1)

T. Tanemura and Y. Nakano, “Compact InP Stokes-vector modulator and receiver circuits for short-reach direct-detection optical links,” IEICE Trans. Electron. E101.C(7), 594–601 (2018).
[Crossref]

J. Lightwave Technol. (6)

Jpn. J. Appl. Phys. (1)

K. Watanabe, Y. Nasu, Y. Ohiso, and R. Iga, “Easy adjustment structure and method for realizing InP based polarization beam splitter via Pockels effect dependence on crystal orientation,” Jpn. J. Appl. Phys. 55(8S3), 08RB04 (2016).
[Crossref]

Opt. Express (7)

K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22(7), 7374–7387 (2014).
[Crossref]

S. Keyvaninia, H. Boerma, M. Wössner, F. Ganzer, P. Runge, and M. Schell, “Highly efficient passive InP polarization rotator-splitter,” Opt. Express 27(18), 25872–25881 (2019).
[Crossref]

N. Abadía, X. Dai, Q. Lu, W.-H. Guo, D. Patel, D. V. Plant, and J. F. Donegan, “Highly fabrication tolerant InP based polarization beam splitter based on p-i-n structure,” Opt. Express 25(9), 10070–10077 (2017).
[Crossref]

M. Zaitsu, T. Tanemura, A. Higo, and Y. Nakano, “Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits,” Opt. Express 21(6), 6910–6918 (2013).
[Crossref]

S. Ghosh, Y. Kawabata, T. Tanemura, and Y. Nakano, “Polarization analysing circuit on InP for integrated Stokes vector receiver,” Opt. Express 25(11), 12303–12310 (2017).
[Crossref]

P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y.-K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
[Crossref]

H. Cai, C. M. Long, C. T. DeRose, N. Boynton, J. Urayama, R. Camacho, A. Pomerene, A. L. Starbuck, D. C. Trotter, P. S. Davids, and A. L. Lentine, “Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution,” Opt. Express 25(11), 12282–12294 (2017).
[Crossref]

Opt. Lett. (1)

Optica (2)

Phys. Rev. Lett. (1)

M. R. Foreman, A. Favaro, and A. Aiello, “Optimal frames for polarization state reconstruction,” Phys. Rev. Lett. 115(26), 263901 (2015).
[Crossref]

Phys. Rev. X (1)

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8(2), 021009 (2018).
[Crossref]

Sci. Rep. (1)

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Other (5)

M. Baier, F. M. Soares, A. Schoenau, Y. D. Gupta, D. Melzer, M. Moehrle, and M. Schell, “Fully integrated Stokes vector receiver for 400 Gbit/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Tu3E.2 (2019).

T. Tanemura, T. Suganuma, and Y. Nakano, “Sensitivity analysis of photonic integrated direct-detection Stokes-vector receiver,” J. Lightwave Technol., to be published (doi: 10.1109/JLT.2019.2952980).

S. Ghosh, S. Ishimura, T. Suganuma, T. Tanemura, and Y. Nakano, “8-ary Stokes-vector signal generation and transmission employing a simplified transmitter,” in Proc. Conf. on Lasers and Electro-Optics (CLEO), paper SM3G.4 (2019).

B. Schrenk, F. Laudenbach, and H. Hübel, “High-order polarization overlay for future optical access,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper W4G.1 (2018).

D. Che, S. Chandrasekhar, X. Chen, G. Raybon, P. Winzer, C. Sun, and W. Shieh, “Single-channel direct detection reception beyond 1 Tb/s,” in Proc. Opt. Fiber Commun. Conf. (OFC), paper Th4B.7 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic top-view (XZ-plane) of the integrated Stokes vector (SV) receiver on InP. (b) Symmetric waveguide (SW) and (c) asymmetric waveguide (ASW) used in the receiver. The birefringence vector b on the Poincaré sphere is solely determined by the waveguide cross-section as depicted in (b) and (c). (d) Illustrations of 4 basis vectors on the Poincaré sphere.
Fig. 2.
Fig. 2. (a) Top photograph of the fabricated device and cross-sectional SEM images at (b) SW and (c) ASW sections.
Fig. 3.
Fig. 3. Schematic of the experimental setup. The transmitter for the static and high-speed measurements are shown in inset-I and inset-II, respectively. The resultant constellations of SVM signal at different points (marked as a, b and c) of the high-speed transmitter are shown on the Poincare sphere.
Fig. 4.
Fig. 4. (a,b) Measured optical power at four ports as the input SV is rotated on S1-S3 plane (ϕ = 0) around S2 axis (a) and on S2-S3 plane (ϕ = 90°) around S1 axis (b). (c) Definitions of θ and ϕ. (d) Basis vectors ${{\textbf m}^{(i )}}$ of the actual fabricated device. We see that ${{\textbf m}^{(i )}}$ constitute vertices of a nearly perfect tetrahedron, as designed.
Fig. 5.
Fig. 5. Static measurement of SV for perfectly polarized light (DOP = 100%). (a) Measured SVs plotted in the Stokes space with (inner trajectories) and without (outer trajectories) 3-dB attenuation. (b) Measured Stokes parameters for the 3-dB-attenuated case. The lines and dots represent the input SOP and the SOP retrieved by the device, respectively.
Fig. 6.
Fig. 6. Measured Stokes parameters for (a) 70% and (b) 40% DOP. The lines and dots represent the input SOP and the SOP retrieved by the device, respectively.
Fig. 7.
Fig. 7. Retrieved SV for (a) 20-Gbps 4-ary SVM and (b) 30-Gbps 8-ary SVM signals. SV after removing transient points for (c) 20-Gbps 4-ary SVM and (d) 30-Gbps 8-ary SVM signals.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = A S in .
A = K Δ R [ r m 11 ( 1 ) m 12 ( 1 ) m 13 ( 1 ) r m 11 ( 2 ) m 12 ( 2 ) m 13 ( 2 ) r m 11 ( 3 ) m 12 ( 3 ) m 13 ( 3 ) r m 11 ( 4 ) m 12 ( 4 ) m 13 ( 4 ) ] ,
I i = K Δ R ( r S 0 + m ( i ) S in ) .

Metrics