Abstract

We have developed a membrane buried-heterostructure (BH) distributed feedback (DFB) laser consisting of an optically coupled III-V/Si waveguide and SiN surface grating. A 230-nm-thick membrane III-V layer enables us to construct an optical supermode in a 220-nm-thick Si waveguide and control the optical confinement factor in both the III-V and Si layers by changing Si waveguide width. This makes it possible to use a conventional Si photonics platform because the Si waveguides widely used on it are around 220-nm thick. To fabricate the BH—the key component for constructing a membrane laser with a lateral current-injection structure—we used direct wafer bonding and regrowth by metalorganic vapor phase epitaxy. Light output from the DFB laser is transferred to the Si waveguide through a short inverse-taper InP waveguide. A fiber-chip interface constructed by using inverse-taper Si waveguides and SiOx waveguides provides 2-dB fiber coupling loss. Fiber coupling power of 7.9 mW is obtained with a λ/4-shifted DFB laser with a 500-µm-long cavity. Single-mode lasing with a side-mode suppression ratio of 50 dB and lasing up to 120°C are also demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer

Shinji Matsuo, Takuro Fujii, Koichi Hasebe, Koji Takeda, Tomonari Sato, and Takaaki Kakitsuka
Opt. Express 22(10) 12139-12147 (2014)

Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser

Jing Zhang, Bahawal Haq, James O’Callaghan, Angieska Gocalinska, Emanuele Pelucchi, António José Trindade, Brian Corbett, Geert Morthier, and Gunther Roelkens
Opt. Express 26(7) 8821-8830 (2018)

Bufferless 1.5  µm III-V lasers grown on Si-photonics 220  nm silicon-on-insulator platforms

Yu Han, Zhao Yan, Wai Kit Ng, Ying Xue, Kam Sing Wong, and Kei May Lau
Optica 7(2) 148-153 (2020)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3(37), 1–16 (2015).
    [Crossref]
  2. S.-H. Jeong, D. Shimura, T. Simoyama, T. Horikawa, Y. Tanaka, and K. Morito, “Si-nanowire-based multistage delayed Mach–Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on 300 mm SOI wafer,” Opt. Lett. 39(13), 3702–3705 (2014).
    [Crossref]
  3. S. Cheung, T. Su, and K. Okamoto, “Ultra-compact silicon photonics 512×512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
    [Crossref]
  4. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [Crossref]
  5. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
    [Crossref]
  6. J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE 106(12), 2158–2182 (2018).
    [Crossref]
  7. M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous Silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
    [Crossref]
  8. A. Abbasi, J. Verbist, J. V. Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23(20), 26479–26485 (2015).
    [Crossref]
  9. T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
    [Crossref]
  10. C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/IIIV platform,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
    [Crossref]
  11. T. Ferrotti, B. Blampey, C. Jany, H. Duprez, A. Chantre, F. Boeuf, C. Seassal, and B. B. Bakir, “Co-integrated 1.3 µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/s,” Opt. Express 24(26), 30379–30401 (2016).
    [Crossref]
  12. M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8(7), 1139 (2018).
    [Crossref]
  13. P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/III-V hybrid laser,” Opt. Express 22(22), 26854–26861 (2014).
    [Crossref]
  14. B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
    [Crossref]
  15. T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
    [Crossref]
  16. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
    [Crossref]
  17. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
    [Crossref]
  18. H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
    [Crossref]
  19. T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
    [Crossref]
  20. E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
    [Crossref]
  21. T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
    [Crossref]
  22. T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
    [Crossref]
  23. T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).
  24. T. L. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8(3), 274–293 (1990).
    [Crossref]
  25. X. Tun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
    [Crossref]
  26. T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
    [Crossref]
  27. T. Amazawa, T. Ono, M. Shimada, S. Matsuo, and H. Oikawa, “Ultrathin oxide films deposited using electron cyclotron resonance sputter,” J. Vac. Sci. Technol., B 17(5), 2222–2225 (1999).
    [Crossref]
  28. M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
    [Crossref]
  29. S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III V/Si distributed feedback laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 24(23), 2155–2158 (2012).
    [Crossref]
  30. K. Doi, T. Shindo, J. Lee, T. Amemiya, N. Nishiyama, and S. Arai, “Thermal analysis of lateral-current-injection membrane distributed feedback laser,” IEEE J. Quantum Electron. 50(5), 321–326 (2014).
    [Crossref]
  31. T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Low-threshold singlemode operation of membrane BH-DFB lasers,” Electron. Lett. 38(23), 1444–1446 (2002).
    [Crossref]

2019 (2)

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
[Crossref]

2018 (4)

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE 106(12), 2158–2182 (2018).
[Crossref]

2017 (1)

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

2016 (4)

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous Silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

T. Ferrotti, B. Blampey, C. Jany, H. Duprez, A. Chantre, F. Boeuf, C. Seassal, and B. B. Bakir, “Co-integrated 1.3 µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/s,” Opt. Express 24(26), 30379–30401 (2016).
[Crossref]

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

2015 (5)

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

A. Abbasi, J. Verbist, J. V. Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23(20), 26479–26485 (2015).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3(37), 1–16 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

2014 (6)

K. Doi, T. Shindo, J. Lee, T. Amemiya, N. Nishiyama, and S. Arai, “Thermal analysis of lateral-current-injection membrane distributed feedback laser,” IEEE J. Quantum Electron. 50(5), 321–326 (2014).
[Crossref]

S.-H. Jeong, D. Shimura, T. Simoyama, T. Horikawa, Y. Tanaka, and K. Morito, “Si-nanowire-based multistage delayed Mach–Zehnder interferometer optical MUX/DeMUX fabricated by an ArF-immersion lithography process on 300 mm SOI wafer,” Opt. Lett. 39(13), 3702–3705 (2014).
[Crossref]

S. Cheung, T. Su, and K. Okamoto, “Ultra-compact silicon photonics 512×512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/IIIV platform,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref]

P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/III-V hybrid laser,” Opt. Express 22(22), 26854–26861 (2014).
[Crossref]

2012 (1)

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III V/Si distributed feedback laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

2011 (1)

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

2002 (1)

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Low-threshold singlemode operation of membrane BH-DFB lasers,” Electron. Lett. 38(23), 1444–1446 (2002).
[Crossref]

1999 (1)

T. Amazawa, T. Ono, M. Shimada, S. Matsuo, and H. Oikawa, “Ultrathin oxide films deposited using electron cyclotron resonance sputter,” J. Vac. Sci. Technol., B 17(5), 2222–2225 (1999).
[Crossref]

1990 (1)

T. L. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8(3), 274–293 (1990).
[Crossref]

Abbasi, A.

Aihara, T.

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).

Amazawa, T.

T. Amazawa, T. Ono, M. Shimada, S. Matsuo, and H. Oikawa, “Ultrathin oxide films deposited using electron cyclotron resonance sputter,” J. Vac. Sci. Technol., B 17(5), 2222–2225 (1999).
[Crossref]

Amemiya, T.

K. Doi, T. Shindo, J. Lee, T. Amemiya, N. Nishiyama, and S. Arai, “Thermal analysis of lateral-current-injection membrane distributed feedback laser,” IEEE J. Quantum Electron. 50(5), 321–326 (2014).
[Crossref]

Arai, S.

K. Doi, T. Shindo, J. Lee, T. Amemiya, N. Nishiyama, and S. Arai, “Thermal analysis of lateral-current-injection membrane distributed feedback laser,” IEEE J. Quantum Electron. 50(5), 321–326 (2014).
[Crossref]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Low-threshold singlemode operation of membrane BH-DFB lasers,” Electron. Lett. 38(23), 1444–1446 (2002).
[Crossref]

Arakawa, Y.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Bakir, B. B.

Bauwelinck, J.

Blampey, B.

Boeuf, F.

Bowers, J.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Bowers, J. E.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous Silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
[Crossref]

Chantre, A.

Chen, Y.-K.

Cheung, S.

S. Cheung, T. Su, and K. Okamoto, “Ultra-compact silicon photonics 512×512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

Cohen, O.

Davenport, M.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Davenport, M. L.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous Silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

Diamontopoulos, N.-P.

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

Doerr, C. R.

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3(37), 1–16 (2015).
[Crossref]

Doi, K.

K. Doi, T. Shindo, J. Lee, T. Amemiya, N. Nishiyama, and S. Arai, “Thermal analysis of lateral-current-injection membrane distributed feedback laser,” IEEE J. Quantum Electron. 50(5), 321–326 (2014).
[Crossref]

Dong, P.

Duan, G.-H.

Duprez, H.

Fang, A. W.

Ferrotti, T.

Fish, G.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Fujii, T.

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
[Crossref]

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref]

T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).

Fukuda, H.

Hasebe, K.

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref]

T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).

Hatori, N.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Heck, J. M.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III V/Si distributed feedback laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Heck, M. J. R.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous Silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

Hiraki, T.

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).

Horikawa, T.

Hu, T.-C.

Huang, D.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Hulme, J. C.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous Silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

Itabashi, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref]

Iwamoto, S.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Jang, B.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Jany, C.

Jeong, S.-H.

Jones, R.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III V/Si distributed feedback laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
[Crossref]

Kakitsuka, T.

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref]

T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).

Kako, S.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

kanno, E.

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
[Crossref]

Kerrebrouck, J. V.

Koch, T. L.

T. L. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8(3), 274–293 (1990).
[Crossref]

Komljenovic, T.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Kopf, R.

Koren, U.

T. L. Koch and U. Koren, “Semiconductor lasers for coherent optical fiber communications,” J. Lightwave Technol. 8(3), 274–293 (1990).
[Crossref]

Kow, R.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Lee, J.

K. Doi, T. Shindo, J. Lee, T. Amemiya, N. Nishiyama, and S. Arai, “Thermal analysis of lateral-current-injection membrane distributed feedback laser,” IEEE J. Quantum Electron. 50(5), 321–326 (2014).
[Crossref]

Lelarge, F.

Liow, T.-Y.

Liu, H.-C.

Lo, G.-Q.

Luo, X.

Malik, A.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Matsuo, S.

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref]

T. Amazawa, T. Ono, M. Shimada, S. Matsuo, and H. Oikawa, “Ultrathin oxide films deposited using electron cyclotron resonance sputter,” J. Vac. Sci. Technol., B 17(5), 2222–2225 (1999).
[Crossref]

T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).

Morito, K.

Morthier, G.

Nakamura, T.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Nakao, R.

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

Nishi, H.

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref]

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Nishiyama, N.

K. Doi, T. Shindo, J. Lee, T. Amemiya, N. Nishiyama, and S. Arai, “Thermal analysis of lateral-current-injection membrane distributed feedback laser,” IEEE J. Quantum Electron. 50(5), 321–326 (2014).
[Crossref]

Noguchi, M.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Norberg, E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Nunoya, N.

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Low-threshold singlemode operation of membrane BH-DFB lasers,” Electron. Lett. 38(23), 1444–1446 (2002).
[Crossref]

Oikawa, H.

T. Amazawa, T. Ono, M. Shimada, S. Matsuo, and H. Oikawa, “Ultrathin oxide films deposited using electron cyclotron resonance sputter,” J. Vac. Sci. Technol., B 17(5), 2222–2225 (1999).
[Crossref]

Okamoto, K.

S. Cheung, T. Su, and K. Okamoto, “Ultra-compact silicon photonics 512×512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

Okamoto, T.

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Low-threshold singlemode operation of membrane BH-DFB lasers,” Electron. Lett. 38(23), 1444–1446 (2002).
[Crossref]

Ono, T.

T. Amazawa, T. Ono, M. Shimada, S. Matsuo, and H. Oikawa, “Ultrathin oxide films deposited using electron cyclotron resonance sputter,” J. Vac. Sci. Technol., B 17(5), 2222–2225 (1999).
[Crossref]

Onodera, Y.

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Low-threshold singlemode operation of membrane BH-DFB lasers,” Electron. Lett. 38(23), 1444–1446 (2002).
[Crossref]

Paniccia, M.

Park, H.

Park, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Peters, J.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Raday, O.

Roelkens, G.

A. Abbasi, J. Verbist, J. V. Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23(20), 26479–26485 (2015).
[Crossref]

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III V/Si distributed feedback laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Santis, C. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/IIIV platform,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Sato, T.

Seassal, C.

Shimada, M.

T. Amazawa, T. Ono, M. Shimada, S. Matsuo, and H. Oikawa, “Ultrathin oxide films deposited using electron cyclotron resonance sputter,” J. Vac. Sci. Technol., B 17(5), 2222–2225 (1999).
[Crossref]

Shimura, D.

Shindo, T.

K. Doi, T. Shindo, J. Lee, T. Amemiya, N. Nishiyama, and S. Arai, “Thermal analysis of lateral-current-injection membrane distributed feedback laser,” IEEE J. Quantum Electron. 50(5), 321–326 (2014).
[Crossref]

Shinojima, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Shinojima, S.

Simoyama, T.

Skendzic, S.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous Silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

Srinivasan, S.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

Stankovic, S.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III V/Si distributed feedback laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Steger, S. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/IIIV platform,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Su, T.

S. Cheung, T. Su, and K. Okamoto, “Ultra-compact silicon photonics 512×512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

Sugawara, M.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Sysak, M. N.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III V/Si distributed feedback laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
[Crossref]

Takeda, K.

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
[Crossref]

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
[Crossref]

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref]

T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).

Takemasa, K.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Tamura, S.

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Low-threshold singlemode operation of membrane BH-DFB lasers,” Electron. Lett. 38(23), 1444–1446 (2002).
[Crossref]

Tanabe, K.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Tanaka, Y.

Tate, A.

Thourhout, D. V.

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III V/Si distributed feedback laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

Tran, M.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Tsuchizawa, T.

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
[Crossref]

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref]

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref]

T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).

Tun, X.

Vasilyev, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/IIIV platform,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Verbist, J.

Vilenchik, Y.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/IIIV platform,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Volet, N.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous Silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref]

Witzens, J.

J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE 106(12), 2158–2182 (2018).
[Crossref]

Xie, C.

Yamada, K.

Yamamoto, T.

Yariv, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/IIIV platform,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

X. Tun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
[Crossref]

Yin, X.

Appl. Phys. Express (1)

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9(9), 092102 (2016).
[Crossref]

Appl. Sci. (1)

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Electron. Lett. (1)

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Low-threshold singlemode operation of membrane BH-DFB lasers,” Electron. Lett. 38(23), 1444–1446 (2002).
[Crossref]

Front. Phys. (1)

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3(37), 1–16 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Doi, T. Shindo, J. Lee, T. Amemiya, N. Nishiyama, and S. Arai, “Thermal analysis of lateral-current-injection membrane distributed feedback laser,” IEEE J. Quantum Electron. 50(5), 321–326 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

S. Cheung, T. Su, and K. Okamoto, “Ultra-compact silicon photonics 512×512 25 GHz arrayed waveguide grating router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 310–316 (2014).
[Crossref]

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kow, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunication applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous Silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22(6), 78–88 (2016).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 214–222 (2015).
[Crossref]

T. Fujii, K. Takeda, N.-P. Diamontopoulos, E. kanno, K. Hasebe, H. Nishi, R. Nakao, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated membrane lasers on Si substrate for low operating energy optical links,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1–8 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Stankovic, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. V. Thourhout, “Hybrid III V/Si distributed feedback laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 24(23), 2155–2158 (2012).
[Crossref]

IET Optoelectron. (1)

T. Fujii, T. Sato, K. Takeda, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon,” IET Optoelectron. 9(4), 151–157 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Vac. Sci. Technol., B (1)

T. Amazawa, T. Ono, M. Shimada, S. Matsuo, and H. Oikawa, “Ultrathin oxide films deposited using electron cyclotron resonance sputter,” J. Vac. Sci. Technol., B 17(5), 2222–2225 (1999).
[Crossref]

Nat. Photonics (1)

T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics 11(8), 482–485 (2017).
[Crossref]

Opt. Express (9)

H. Nishi, T. Fujii, K. Takeda, K. Hasebe, T. Kakitsuka, T. Tsuchizawa, T. Yamamoto, K. Yamada, and S. Matsuo, “Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate,” Opt. Express 24(16), 18346–18352 (2016).
[Crossref]

T. Ferrotti, B. Blampey, C. Jany, H. Duprez, A. Chantre, F. Boeuf, C. Seassal, and B. B. Bakir, “Co-integrated 1.3 µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/s,” Opt. Express 24(26), 30379–30401 (2016).
[Crossref]

M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. Paniccia, “Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser,” Opt. Express 15(23), 15041–15046 (2007).
[Crossref]

S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22(10), 12139–12147 (2014).
[Crossref]

P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/III-V hybrid laser,” Opt. Express 22(22), 26854–26861 (2014).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, S. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[Crossref]

A. Abbasi, J. Verbist, J. V. Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23(20), 26479–26485 (2015).
[Crossref]

E. Kanno, K. Takeda, T. Fujii, K. Hasebe, H. Nishi, T. Yamamoto, T. Kakitsuka, and S. Matsuo, “Twin-mirror membrane distributed-reflector lasers using 20-µm-long active region on Si substrate,” Opt. Express 26(2), 1268–1277 (2018).
[Crossref]

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Membrane InGaAsP Mach-Zehnder modulator with SiN:D waveguides on Si platform,” Opt. Express 27(13), 18612–18619 (2019).
[Crossref]

Opt. Lett. (2)

Proc. CLEO (1)

T. Hiraki, T. Aihara, K. Takeda, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Heterogeneously Integrated Low-power-consumption Semiconductor Optical Amplifier on Si Platform,” Proc. CLEO 2019, STh3N.1 (2019).
[Crossref]

Proc. IEEE (1)

J. Witzens, “High-speed silicon photonics modulators,” Proc. IEEE 106(12), 2158–2182 (2018).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/IIIV platform,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Other (1)

T. Aihara, T. Hiraki, K. Takeda, K. Hasebe, T. Fujii, T. Tsuchizawa, T. Kakitsuka, and S. Matsuo, “Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide,” Proc. OFC 2018, W3F.4 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Calculated effective refractive indices of Si and III-V waveguides for TE mode. Schematics of a (b) bird’s eye view and (c) cross section of membrane BH DFB laser consisting of heterogeneous III-V/Si waveguide with a SiN grating. (d) Schematic of top view of device containing two output waveguides and HNAF for device characterization.
Fig. 2.
Fig. 2. (a) Calculated filling factors in p-InP, QWs, and Si for heterogeneous III-V/Si waveguide. (b) Calculated transmittance between III-V/Si waveguide and Si waveguide via inverse InP taper.
Fig. 3.
Fig. 3. Fabrication procedure for membrane BH DFB LD on Si waveguide.
Fig. 4.
Fig. 4. Cross-sectional SEM image of fabricated laser.
Fig. 5.
Fig. 5. (a) Optical output power versus injection current at a stage temperature of 25°C with and without HNAF. (b) Lasing spectrum at stage temperature of 25°C and injection current of 40 mA. Inset: lasing spectrum at stage temperature of 25°C and injection current of 5 mA and spectrum calculated based on transfer matrix model.
Fig. 6.
Fig. 6. (a) Optical output power versus injection current at stage temperatures ranging from 25 to 120°C. (b) Lasing spectrum at stage temperatures ranging from 25 to 120°C and injection current of 35 mA.
Fig. 7.
Fig. 7. Threshold current (a) and maximum fiber output power (b) versus stage temperatures ranging from 25 to 120°C.
Fig. 8.
Fig. 8. (a) Calculated temperature distribution for the laser with a 100-mW heat source in the p-InP region. (b) Calculated temperature increment for active and Si cores.
Fig. 9.
Fig. 9. Lasing wavelength shifts versus (a) electrical power and (b) stage temperature.

Metrics