P. G. Stegmann, B. Sun, J. Ding, P. Yang, and X. Zhang, “Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio,” J. Quant. Spectrosc. Radiat. Transfer 225, 1–15 (2019).

[Crossref]

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Light scattering from a drop with an embedded particle and its exploitation in the time-shift technique,” J. Quant. Spectrosc. Radiat. Transfer 227, 20–31 (2019).

[Crossref]

M. I. Mishchenko and P. Yang, “Far-field Lorenz–Mie scattering in an absorbing host medium: theoretical formalism and FORTRAN program,” J. Quant. Spectrosc. Radiat. Transfer 205, 241–252 (2018).

[Crossref]

C. Li, X. C. Wu, J. Z. Cao, L. H. Chen, G. Gréhan, and K. F. Cen, “Application of rainbow refractometry for measurement of droplets with solid inclusions,” Opt. Laser Technol. 98, 354–362 (2018).

[Crossref]

M. P. Sentis, F. Onofri, L. Méès, and S. Radev, “Scattering of light by large bubbles: Coupling of geometrical and physical optics approximations,” J. Quant. Spectrosc. Radiat. Transfer 170, 8–18 (2016).

[Crossref]

P. G. Stegmann, C. Tropea, E. Järvinen, and M. Schnaiter, “Comparison of measured and computed phase functions of individual tropospheric ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 178, 379–389 (2016).

[Crossref]

S. Rosenkranz, W. Schäfer, C. Tropea, and A. M. Zoubir, “Modeling photon transport in turbid media for measuring colloidal concentration in drops using the time-shift technique,” Appl. Opt. 55(34), 9703–9711 (2016).

[Crossref]

H. Yu, F. Xu, and C. Tropea, “Simulation of optical caustics associated with the secondary rainbow of oblate droplets,” Opt. Lett. 38(21), 4469–4472 (2013).

[Crossref]

D. Jakubczyk, G. Derkachov, M. Kolwas, and K. Kolwas, “Combining weighting and scatterometry: Application to a levitated droplet of suspension,” J. Quant. Spectrosc. Radiat. Transfer 126, 99–104 (2013).

[Crossref]

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation of light scattering by large air bubbles,” Particuology 6(5), 340–346 (2008).

[Crossref]

T. Wriedt and R. Schuh, “The inclusion-concentration measurement of suspension droplets based on Monte Carlo ray tracing,” Meas. Sci. Technol. 13(3), 276–279 (2002).

[Crossref]

B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40(16), 2769–2777 (2001).

[Crossref]

Y. X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70(4-6), 569–579 (2001).

[Crossref]

M. J. Raković, G. W. Kattawar, M. Mehrűbeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38(15), 3399–3408 (1999).

[Crossref]

F. Onofri, L. Bergougnoux, J. L. Firpo, and J. Misguich-Ripault, “Size, velocity, and concentration in suspension measurements of spherical droplets and cylindrical jets,” Appl. Opt. 38(21), 4681–4690 (1999).

[Crossref]

J. P. Briton, B. Maheu, G. Gréhan, and G. Gouesbet, “Monte Carlo simulation of multiple scattering in arbitrary 3-D geometry,” Part. Part. Syst. Charact. 9(1-4), 52–58 (1992).

[Crossref]

E. Collett, “Mueller-Stokes matrix formulation of Fresnel's equations,” Am. J. Phys. 39(5), 517–528 (1971).

[Crossref]

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).

[Crossref]

H. E. Albrecht, N. Damaschke, M. Borys, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques. (Springer Science & Business Media, 2013).

Y. X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70(4-6), 569–579 (2001).

[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. (John Wiley & Sons, 2008).

H. E. Albrecht, N. Damaschke, M. Borys, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques. (Springer Science & Business Media, 2013).

J. P. Briton, B. Maheu, G. Gréhan, and G. Gouesbet, “Monte Carlo simulation of multiple scattering in arbitrary 3-D geometry,” Part. Part. Syst. Charact. 9(1-4), 52–58 (1992).

[Crossref]

C. Li, X. C. Wu, J. Z. Cao, L. H. Chen, G. Gréhan, and K. F. Cen, “Application of rainbow refractometry for measurement of droplets with solid inclusions,” Opt. Laser Technol. 98, 354–362 (2018).

[Crossref]

C. Li, X. C. Wu, J. Z. Cao, L. H. Chen, G. Gréhan, and K. F. Cen, “Application of rainbow refractometry for measurement of droplets with solid inclusions,” Opt. Laser Technol. 98, 354–362 (2018).

[Crossref]

C. Li, X. C. Wu, J. Z. Cao, L. H. Chen, G. Gréhan, and K. F. Cen, “Application of rainbow refractometry for measurement of droplets with solid inclusions,” Opt. Laser Technol. 98, 354–362 (2018).

[Crossref]

E. Collett, “Mueller-Stokes matrix formulation of Fresnel's equations,” Am. J. Phys. 39(5), 517–528 (1971).

[Crossref]

H. E. Albrecht, N. Damaschke, M. Borys, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques. (Springer Science & Business Media, 2013).

D. Jakubczyk, G. Derkachov, M. Kolwas, and K. Kolwas, “Combining weighting and scatterometry: Application to a levitated droplet of suspension,” J. Quant. Spectrosc. Radiat. Transfer 126, 99–104 (2013).

[Crossref]

P. G. Stegmann, B. Sun, J. Ding, P. Yang, and X. Zhang, “Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio,” J. Quant. Spectrosc. Radiat. Transfer 225, 1–15 (2019).

[Crossref]

J. P. Briton, B. Maheu, G. Gréhan, and G. Gouesbet, “Monte Carlo simulation of multiple scattering in arbitrary 3-D geometry,” Part. Part. Syst. Charact. 9(1-4), 52–58 (1992).

[Crossref]

C. Li, X. C. Wu, J. Z. Cao, L. H. Chen, G. Gréhan, and K. F. Cen, “Application of rainbow refractometry for measurement of droplets with solid inclusions,” Opt. Laser Technol. 98, 354–362 (2018).

[Crossref]

J. P. Briton, B. Maheu, G. Gréhan, and G. Gouesbet, “Monte Carlo simulation of multiple scattering in arbitrary 3-D geometry,” Part. Part. Syst. Charact. 9(1-4), 52–58 (1992).

[Crossref]

E. Hecht, Optics. (Addison-Wesley, 2002).

Y. X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70(4-6), 569–579 (2001).

[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. (John Wiley & Sons, 2008).

H. C. Hulst, Light Scattering by Small Particles. (Wiley, 1981).

D. Jakubczyk, G. Derkachov, M. Kolwas, and K. Kolwas, “Combining weighting and scatterometry: Application to a levitated droplet of suspension,” J. Quant. Spectrosc. Radiat. Transfer 126, 99–104 (2013).

[Crossref]

P. G. Stegmann, C. Tropea, E. Järvinen, and M. Schnaiter, “Comparison of measured and computed phase functions of individual tropospheric ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 178, 379–389 (2016).

[Crossref]

F. A. Jenkins and H. E. White, Fundamentals of Optics. (Tata McGraw-Hill Education, 1976).

D. Jakubczyk, G. Derkachov, M. Kolwas, and K. Kolwas, “Combining weighting and scatterometry: Application to a levitated droplet of suspension,” J. Quant. Spectrosc. Radiat. Transfer 126, 99–104 (2013).

[Crossref]

D. Jakubczyk, G. Derkachov, M. Kolwas, and K. Kolwas, “Combining weighting and scatterometry: Application to a levitated droplet of suspension,” J. Quant. Spectrosc. Radiat. Transfer 126, 99–104 (2013).

[Crossref]

C. Li, X. C. Wu, J. Z. Cao, L. H. Chen, G. Gréhan, and K. F. Cen, “Application of rainbow refractometry for measurement of droplets with solid inclusions,” Opt. Laser Technol. 98, 354–362 (2018).

[Crossref]

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Light scattering from a drop with an embedded particle and its exploitation in the time-shift technique,” J. Quant. Spectrosc. Radiat. Transfer 227, 20–31 (2019).

[Crossref]

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Sensitivity of the time-shift technique in characterizing non-spherical drops,” In: Proceedings of the nineteenth International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon; 16-19 July. 2018.

I. Lux, Monte Carlo Particle Transport Methods. (CRC, 1991).

J. P. Briton, B. Maheu, G. Gréhan, and G. Gouesbet, “Monte Carlo simulation of multiple scattering in arbitrary 3-D geometry,” Part. Part. Syst. Charact. 9(1-4), 52–58 (1992).

[Crossref]

M. P. Sentis, F. Onofri, L. Méès, and S. Radev, “Scattering of light by large bubbles: Coupling of geometrical and physical optics approximations,” J. Quant. Spectrosc. Radiat. Transfer 170, 8–18 (2016).

[Crossref]

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).

[Crossref]

M. I. Mishchenko and P. Yang, “Far-field Lorenz–Mie scattering in an absorbing host medium: theoretical formalism and FORTRAN program,” J. Quant. Spectrosc. Radiat. Transfer 205, 241–252 (2018).

[Crossref]

M. F. Modest, Radiative Heat Transfer. (Academic, 2013).

M. P. Sentis, F. Onofri, L. Méès, and S. Radev, “Scattering of light by large bubbles: Coupling of geometrical and physical optics approximations,” J. Quant. Spectrosc. Radiat. Transfer 170, 8–18 (2016).

[Crossref]

M. P. Sentis, F. Onofri, O. Dhez, J. Y. Laurent, and F. Chauchard, “Organic photo sensors for multi-angle light scattering characterization of particle systems,” Opt. Express 23(21), 27536–27541 (2015).

[Crossref]

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36(3), 370–372 (2011).

[Crossref]

F. Onofri, L. Bergougnoux, J. L. Firpo, and J. Misguich-Ripault, “Size, velocity, and concentration in suspension measurements of spherical droplets and cylindrical jets,” Appl. Opt. 38(21), 4681–4690 (1999).

[Crossref]

Y. X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70(4-6), 569–579 (2001).

[Crossref]

M. P. Sentis, F. Onofri, L. Méès, and S. Radev, “Scattering of light by large bubbles: Coupling of geometrical and physical optics approximations,” J. Quant. Spectrosc. Radiat. Transfer 170, 8–18 (2016).

[Crossref]

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Light scattering from a drop with an embedded particle and its exploitation in the time-shift technique,” J. Quant. Spectrosc. Radiat. Transfer 227, 20–31 (2019).

[Crossref]

S. Rosenkranz, W. Schäfer, C. Tropea, and A. M. Zoubir, “Modeling photon transport in turbid media for measuring colloidal concentration in drops using the time-shift technique,” Appl. Opt. 55(34), 9703–9711 (2016).

[Crossref]

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Sensitivity of the time-shift technique in characterizing non-spherical drops,” In: Proceedings of the nineteenth International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon; 16-19 July. 2018.

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Light scattering from a drop with an embedded particle and its exploitation in the time-shift technique,” J. Quant. Spectrosc. Radiat. Transfer 227, 20–31 (2019).

[Crossref]

S. Rosenkranz, W. Schäfer, C. Tropea, and A. M. Zoubir, “Modeling photon transport in turbid media for measuring colloidal concentration in drops using the time-shift technique,” Appl. Opt. 55(34), 9703–9711 (2016).

[Crossref]

W. Schäfer and C. Tropea, “Time-shift technique for simultaneous measurement of size, velocity and relative refractive index of transparent droplets or particles in a flow,” Appl. Opt. 53(4), 588–596 (2014).

[Crossref]

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Sensitivity of the time-shift technique in characterizing non-spherical drops,” In: Proceedings of the nineteenth International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon; 16-19 July. 2018.

P. G. Stegmann, C. Tropea, E. Järvinen, and M. Schnaiter, “Comparison of measured and computed phase functions of individual tropospheric ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 178, 379–389 (2016).

[Crossref]

T. Wriedt and R. Schuh, “The inclusion-concentration measurement of suspension droplets based on Monte Carlo ray tracing,” Meas. Sci. Technol. 13(3), 276–279 (2002).

[Crossref]

M. P. Sentis, F. Onofri, L. Méès, and S. Radev, “Scattering of light by large bubbles: Coupling of geometrical and physical optics approximations,” J. Quant. Spectrosc. Radiat. Transfer 170, 8–18 (2016).

[Crossref]

M. P. Sentis, F. Onofri, O. Dhez, J. Y. Laurent, and F. Chauchard, “Organic photo sensors for multi-angle light scattering characterization of particle systems,” Opt. Express 23(21), 27536–27541 (2015).

[Crossref]

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation of light scattering by large air bubbles,” Particuology 6(5), 340–346 (2008).

[Crossref]

P. G. Stegmann, B. Sun, J. Ding, P. Yang, and X. Zhang, “Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio,” J. Quant. Spectrosc. Radiat. Transfer 225, 1–15 (2019).

[Crossref]

P. G. Stegmann, C. Tropea, E. Järvinen, and M. Schnaiter, “Comparison of measured and computed phase functions of individual tropospheric ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 178, 379–389 (2016).

[Crossref]

P. G. Stegmann, B. Sun, J. Ding, P. Yang, and X. Zhang, “Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio,” J. Quant. Spectrosc. Radiat. Transfer 225, 1–15 (2019).

[Crossref]

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Light scattering from a drop with an embedded particle and its exploitation in the time-shift technique,” J. Quant. Spectrosc. Radiat. Transfer 227, 20–31 (2019).

[Crossref]

P. G. Stegmann, C. Tropea, E. Järvinen, and M. Schnaiter, “Comparison of measured and computed phase functions of individual tropospheric ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 178, 379–389 (2016).

[Crossref]

S. Rosenkranz, W. Schäfer, C. Tropea, and A. M. Zoubir, “Modeling photon transport in turbid media for measuring colloidal concentration in drops using the time-shift technique,” Appl. Opt. 55(34), 9703–9711 (2016).

[Crossref]

W. Schäfer and C. Tropea, “Time-shift technique for simultaneous measurement of size, velocity and relative refractive index of transparent droplets or particles in a flow,” Appl. Opt. 53(4), 588–596 (2014).

[Crossref]

H. Yu, F. Xu, and C. Tropea, “Simulation of optical caustics associated with the secondary rainbow of oblate droplets,” Opt. Lett. 38(21), 4469–4472 (2013).

[Crossref]

C. Tropea, “Optical particle characterization in flows,” Annu. Rev. Fluid Mech. 43(1), 399–426 (2011).

[Crossref]

H. E. Albrecht, N. Damaschke, M. Borys, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques. (Springer Science & Business Media, 2013).

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Sensitivity of the time-shift technique in characterizing non-spherical drops,” In: Proceedings of the nineteenth International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon; 16-19 July. 2018.

Y. X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70(4-6), 569–579 (2001).

[Crossref]

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation of light scattering by large air bubbles,” Particuology 6(5), 340–346 (2008).

[Crossref]

M. Wendisch and P. Yang, Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction. (John Wiley & Sons, 2012).

F. A. Jenkins and H. E. White, Fundamentals of Optics. (Tata McGraw-Hill Education, 1976).

Y. X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70(4-6), 569–579 (2001).

[Crossref]

T. Wriedt and R. Schuh, “The inclusion-concentration measurement of suspension droplets based on Monte Carlo ray tracing,” Meas. Sci. Technol. 13(3), 276–279 (2002).

[Crossref]

C. Li, X. C. Wu, J. Z. Cao, L. H. Chen, G. Gréhan, and K. F. Cen, “Application of rainbow refractometry for measurement of droplets with solid inclusions,” Opt. Laser Technol. 98, 354–362 (2018).

[Crossref]

P. G. Stegmann, B. Sun, J. Ding, P. Yang, and X. Zhang, “Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio,” J. Quant. Spectrosc. Radiat. Transfer 225, 1–15 (2019).

[Crossref]

M. I. Mishchenko and P. Yang, “Far-field Lorenz–Mie scattering in an absorbing host medium: theoretical formalism and FORTRAN program,” J. Quant. Spectrosc. Radiat. Transfer 205, 241–252 (2018).

[Crossref]

Y. X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70(4-6), 569–579 (2001).

[Crossref]

M. Wendisch and P. Yang, Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction. (John Wiley & Sons, 2012).

H. Yu, F. Xu, and C. Tropea, “Simulation of optical caustics associated with the secondary rainbow of oblate droplets,” Opt. Lett. 38(21), 4469–4472 (2013).

[Crossref]

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation of light scattering by large air bubbles,” Particuology 6(5), 340–346 (2008).

[Crossref]

P. G. Stegmann, B. Sun, J. Ding, P. Yang, and X. Zhang, “Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio,” J. Quant. Spectrosc. Radiat. Transfer 225, 1–15 (2019).

[Crossref]

E. Collett, “Mueller-Stokes matrix formulation of Fresnel's equations,” Am. J. Phys. 39(5), 517–528 (1971).

[Crossref]

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).

[Crossref]

C. Tropea, “Optical particle characterization in flows,” Annu. Rev. Fluid Mech. 43(1), 399–426 (2011).

[Crossref]

M. J. Raković, G. W. Kattawar, M. Mehrűbeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38(15), 3399–3408 (1999).

[Crossref]

F. Onofri, L. Bergougnoux, J. L. Firpo, and J. Misguich-Ripault, “Size, velocity, and concentration in suspension measurements of spherical droplets and cylindrical jets,” Appl. Opt. 38(21), 4681–4690 (1999).

[Crossref]

B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40(16), 2769–2777 (2001).

[Crossref]

P. Laven, “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt. 42(3), 436–444 (2003).

[Crossref]

F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003).

[Crossref]

W. Schäfer and C. Tropea, “Time-shift technique for simultaneous measurement of size, velocity and relative refractive index of transparent droplets or particles in a flow,” Appl. Opt. 53(4), 588–596 (2014).

[Crossref]

S. Rosenkranz, W. Schäfer, C. Tropea, and A. M. Zoubir, “Modeling photon transport in turbid media for measuring colloidal concentration in drops using the time-shift technique,” Appl. Opt. 55(34), 9703–9711 (2016).

[Crossref]

M. I. Mishchenko and P. Yang, “Far-field Lorenz–Mie scattering in an absorbing host medium: theoretical formalism and FORTRAN program,” J. Quant. Spectrosc. Radiat. Transfer 205, 241–252 (2018).

[Crossref]

Y. X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70(4-6), 569–579 (2001).

[Crossref]

D. Jakubczyk, G. Derkachov, M. Kolwas, and K. Kolwas, “Combining weighting and scatterometry: Application to a levitated droplet of suspension,” J. Quant. Spectrosc. Radiat. Transfer 126, 99–104 (2013).

[Crossref]

P. G. Stegmann, B. Sun, J. Ding, P. Yang, and X. Zhang, “Study of the effects of phytoplankton morphology and vertical profile on lidar attenuated backscatter and depolarization ratio,” J. Quant. Spectrosc. Radiat. Transfer 225, 1–15 (2019).

[Crossref]

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Light scattering from a drop with an embedded particle and its exploitation in the time-shift technique,” J. Quant. Spectrosc. Radiat. Transfer 227, 20–31 (2019).

[Crossref]

P. G. Stegmann, C. Tropea, E. Järvinen, and M. Schnaiter, “Comparison of measured and computed phase functions of individual tropospheric ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 178, 379–389 (2016).

[Crossref]

M. P. Sentis, F. Onofri, L. Méès, and S. Radev, “Scattering of light by large bubbles: Coupling of geometrical and physical optics approximations,” J. Quant. Spectrosc. Radiat. Transfer 170, 8–18 (2016).

[Crossref]

T. Wriedt and R. Schuh, “The inclusion-concentration measurement of suspension droplets based on Monte Carlo ray tracing,” Meas. Sci. Technol. 13(3), 276–279 (2002).

[Crossref]

M. P. Sentis, F. Onofri, O. Dhez, J. Y. Laurent, and F. Chauchard, “Organic photo sensors for multi-angle light scattering characterization of particle systems,” Opt. Express 23(21), 27536–27541 (2015).

[Crossref]

M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12(26), 6530–6539 (2004).

[Crossref]

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005).

[Crossref]

C. Li, X. C. Wu, J. Z. Cao, L. H. Chen, G. Gréhan, and K. F. Cen, “Application of rainbow refractometry for measurement of droplets with solid inclusions,” Opt. Laser Technol. 98, 354–362 (2018).

[Crossref]

K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36(3), 370–372 (2011).

[Crossref]

H. Yu, F. Xu, and C. Tropea, “Simulation of optical caustics associated with the secondary rainbow of oblate droplets,” Opt. Lett. 38(21), 4469–4472 (2013).

[Crossref]

J. P. Briton, B. Maheu, G. Gréhan, and G. Gouesbet, “Monte Carlo simulation of multiple scattering in arbitrary 3-D geometry,” Part. Part. Syst. Charact. 9(1-4), 52–58 (1992).

[Crossref]

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation of light scattering by large air bubbles,” Particuology 6(5), 340–346 (2008).

[Crossref]

F. A. Jenkins and H. E. White, Fundamentals of Optics. (Tata McGraw-Hill Education, 1976).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. (John Wiley & Sons, 2008).

E. Hecht, Optics. (Addison-Wesley, 2002).

M. Wendisch and P. Yang, Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction. (John Wiley & Sons, 2012).

L. Li, S. Rosenkranz, W. Schäfer, and C. Tropea, “Sensitivity of the time-shift technique in characterizing non-spherical drops,” In: Proceedings of the nineteenth International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon; 16-19 July. 2018.

I. Lux, Monte Carlo Particle Transport Methods. (CRC, 1991).

M. F. Modest, Radiative Heat Transfer. (Academic, 2013).

H. C. Hulst, Light Scattering by Small Particles. (Wiley, 1981).

AOM-Systems, https://www.aom-systems.com/de/

H. E. Albrecht, N. Damaschke, M. Borys, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques. (Springer Science & Business Media, 2013).

FMP-Technology GmbH, https://fmp-technology.com/?lang=en