Abstract

Bessel terahertz (THz) imaging employing a pair of thin silicon multi-phase diffractive optical elements is demonstrated in continuous wave mode at 0.6 THz. A proposed Bessel zone plate (BZP) design – discrete axicon containing 4 phase quantization levels – based on high-resistivity silicon and produced by laser ablation technology allowed to extend the focal depth up to 20 mm with minimal optical losses and refuse employment of bulky parabolic mirrors in the imaging setup. Compact THz imaging system in transmission geometry reveals a possibility to inspect objects of more than 10 mm thickness with enhanced contrast and increased resolution up to 0.6 of the wavelength by applying deconvolution algorithms.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fibonacci terahertz imaging by silicon diffractive optics

D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis
Opt. Lett. 43(12) 2795-2798 (2018)

Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis
Opt. Lett. 42(10) 1875-1878 (2017)

Characterization of T-ray binary lenses

S. Wang, T. Yuan, E. D. Walsby, R. J. Blaikie, S. M. Durbin, D. R. S. Cumming, J. Xu, and X.-C. Zhang
Opt. Lett. 27(13) 1183-1185 (2002)

References

  • View by:
  • |
  • |
  • |

  1. X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
    [Crossref]
  2. M. J. Sun and J. M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: A brief review,” Sensors 19(3), 732 (2019).
    [Crossref]
  3. D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 1 (2019).
    [Crossref]
  4. G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
    [Crossref]
  5. M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8(1), 1390 (2018).
    [Crossref]
  6. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632–638 (2012).
    [Crossref]
  7. L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, and J. Faist, “Thermoelectrically cooled THz quantum cascade laser operating up to 210 K,” Appl. Phys. Lett. 115(1), 010601 (2019).
    [Crossref]
  8. A. Albo, Y. V. Flores, Q. Hu, and J. L. Reno, “Split-well direct-phonon terahertz quantum cascade lasers,” Appl. Phys. Lett. 114(19), 191102 (2019).
    [Crossref]
  9. B. Röben, X. Lü, K. Biermann, L. Schrottke, and H. T. Grahn, “Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines,” J. Appl. Phys. 125(15), 151613 (2019).
    [Crossref]
  10. P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, “Terahertz Imaging and Sensing Applications With Silicon-Based Technologies,” IEEE Trans. Terahertz Sci. Technol. 9(1), 1–19 (2019).
    [Crossref]
  11. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
    [Crossref]
  12. M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
    [Crossref]
  13. K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
    [Crossref]
  14. I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
    [Crossref]
  15. F. Simoens and J. Meilhan, “Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers,” Philos. Trans. R. Soc., A 372(2012), 20130111 (2014).
    [Crossref]
  16. N. Oda, “Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
    [Crossref]
  17. J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
    [Crossref]
  18. I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
    [Crossref]
  19. L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
    [Crossref]
  20. A. Semenov, O. Cojocari, H. W. Hübers, F. Song, A. Klushin, and A. S. Müller, “Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
    [Crossref]
  21. A. Siemion, “Terahertz Diffractive Optics—Smart Control over Radiation,” J. Infrared, Millimeter, Terahertz Waves 40(5), 477–499 (2019).
    [Crossref]
  22. L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
    [Crossref]
  23. L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
    [Crossref]
  24. M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
    [Crossref]
  25. D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Fibonacci terahertz imaging by silicon diffractive optics,” Opt. Lett. 43(12), 2795–2798 (2018).
    [Crossref]
  26. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref]
  27. T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
    [Crossref]
  28. R. C. Gonzalez and R. E. Woods, “Minimum Mean Square Error (Wiener) Filtering,” in Digital Image Processing (Prentice Hall, 2007), chap. 5.8, pp. 374–379.
  29. Y. Yu and W. Dou, “Generation of pseudo-Bessel beams at THz frequencies by use of binary axicons.,” Opt. Express 17(2), 888–893 (2009).
    [Crossref]
  30. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6(11), 1748 (1989).
    [Crossref]
  31. J. C. Gutiérrez-Vega and M. A. Bandres, “Helmholtz–Gauss waves,” J. Opt. Soc. Am. A 22(2), 289 (2005).
    [Crossref]
  32. D. Madhi, M. Ornigotti, and A. Aiello, “Cylindrically polarized Bessel–Gauss beams,” J. Opt. 17(2), 025603 (2015).
    [Crossref]
  33. K. Iizuka, “Fresnel-Kirchhoff’s Approximate Formula,” in Engineering Optics, (Springer, 2008), chap. 3.3, pp. 60–62, 3rd ed.

2019 (9)

X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
[Crossref]

M. J. Sun and J. M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: A brief review,” Sensors 19(3), 732 (2019).
[Crossref]

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 1 (2019).
[Crossref]

L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, and J. Faist, “Thermoelectrically cooled THz quantum cascade laser operating up to 210 K,” Appl. Phys. Lett. 115(1), 010601 (2019).
[Crossref]

A. Albo, Y. V. Flores, Q. Hu, and J. L. Reno, “Split-well direct-phonon terahertz quantum cascade lasers,” Appl. Phys. Lett. 114(19), 191102 (2019).
[Crossref]

B. Röben, X. Lü, K. Biermann, L. Schrottke, and H. T. Grahn, “Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines,” J. Appl. Phys. 125(15), 151613 (2019).
[Crossref]

P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, “Terahertz Imaging and Sensing Applications With Silicon-Based Technologies,” IEEE Trans. Terahertz Sci. Technol. 9(1), 1–19 (2019).
[Crossref]

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

A. Siemion, “Terahertz Diffractive Optics—Smart Control over Radiation,” J. Infrared, Millimeter, Terahertz Waves 40(5), 477–499 (2019).
[Crossref]

2018 (5)

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8(1), 1390 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Fibonacci terahertz imaging by silicon diffractive optics,” Opt. Lett. 43(12), 2795–2798 (2018).
[Crossref]

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

2017 (2)

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

2016 (1)

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

2015 (1)

D. Madhi, M. Ornigotti, and A. Aiello, “Cylindrically polarized Bessel–Gauss beams,” J. Opt. 17(2), 025603 (2015).
[Crossref]

2014 (2)

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

F. Simoens and J. Meilhan, “Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers,” Philos. Trans. R. Soc., A 372(2012), 20130111 (2014).
[Crossref]

2013 (2)

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

2012 (1)

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632–638 (2012).
[Crossref]

2011 (2)

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
[Crossref]

2010 (2)

A. Semenov, O. Cojocari, H. W. Hübers, F. Song, A. Klushin, and A. S. Müller, “Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

N. Oda, “Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
[Crossref]

2009 (1)

2005 (1)

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

1989 (1)

Aiello, A.

D. Madhi, M. Ornigotti, and A. Aiello, “Cylindrically polarized Bessel–Gauss beams,” J. Opt. 17(2), 025603 (2015).
[Crossref]

Albo, A.

A. Albo, Y. V. Flores, Q. Hu, and J. L. Reno, “Split-well direct-phonon terahertz quantum cascade lasers,” Appl. Phys. Lett. 114(19), 191102 (2019).
[Crossref]

Bandres, M. A.

Bauer, M.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

Beck, M.

L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, and J. Faist, “Thermoelectrically cooled THz quantum cascade laser operating up to 210 K,” Appl. Phys. Lett. 115(1), 010601 (2019).
[Crossref]

Bespalov, V. G.

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8(1), 1390 (2018).
[Crossref]

Biermann, K.

B. Röben, X. Lü, K. Biermann, L. Schrottke, and H. T. Grahn, “Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines,” J. Appl. Phys. 125(15), 151613 (2019).
[Crossref]

Boppel, S.

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

Bosco, L.

L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, and J. Faist, “Thermoelectrically cooled THz quantum cascade laser operating up to 210 K,” Appl. Phys. Lett. 115(1), 010601 (2019).
[Crossref]

Chevtchenko, S. A.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

Cibiraite, D.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

Cižmár, T.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Cojocari, O.

A. Semenov, O. Cojocari, H. W. Hübers, F. Song, A. Klushin, and A. S. Müller, “Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Coll-Lladó, C.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Coquillat, D.

Dalgarno, H. I.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Dholakia, K.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Dou, W.

Ducournau, G.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Dussopt, L.

Fahrbach, F. O.

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632–638 (2012).
[Crossref]

Faist, J.

L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, and J. Faist, “Thermoelectrically cooled THz quantum cascade laser operating up to 210 K,” Appl. Phys. Lett. 115(1), 010601 (2019).
[Crossref]

Faucher, M.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Ferrier, D. E.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Flores, Y. V.

A. Albo, Y. V. Flores, Q. Hu, and J. L. Reno, “Split-well direct-phonon terahertz quantum cascade lasers,” Appl. Phys. Lett. 114(19), 191102 (2019).
[Crossref]

Franckié, M.

L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, and J. Faist, “Thermoelectrically cooled THz quantum cascade laser operating up to 210 K,” Appl. Phys. Lett. 115(1), 010601 (2019).
[Crossref]

Friberg, A. T.

Gao, X.

X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
[Crossref]

Gaquière, C.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Giffard, B.

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, “Minimum Mean Square Error (Wiener) Filtering,” in Digital Image Processing (Prentice Hall, 2007), chap. 5.8, pp. 374–379.

Gonzalez, T.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Grahn, H. T.

B. Röben, X. Lü, K. Biermann, L. Schrottke, and H. T. Grahn, “Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines,” J. Appl. Phys. 125(15), 151613 (2019).
[Crossref]

Grimbert, B.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Grzyb, J.

P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, “Terahertz Imaging and Sensing Applications With Silicon-Based Technologies,” IEEE Trans. Terahertz Sci. Technol. 9(1), 1–19 (2019).
[Crossref]

Gunn-Moore, F. J.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

Gutiérrez-Vega, J. C.

Heinrich, W.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

Hillger, P.

P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, “Terahertz Imaging and Sensing Applications With Silicon-Based Technologies,” IEEE Trans. Terahertz Sci. Technol. 9(1), 1–19 (2019).
[Crossref]

Hu, Q.

A. Albo, Y. V. Flores, Q. Hu, and J. L. Reno, “Split-well direct-phonon terahertz quantum cascade lasers,” Appl. Phys. Lett. 114(19), 191102 (2019).
[Crossref]

Hübers, H. W.

A. Semenov, O. Cojocari, H. W. Hübers, F. Song, A. Klushin, and A. S. Müller, “Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

I niguez-de-la Torre, I.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Iizuka, K.

K. Iizuka, “Fresnel-Kirchhoff’s Approximate Formula,” in Engineering Optics, (Springer, 2008), chap. 3.3, pp. 60–62, 3rd ed.

Ikamas, K.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

Indrišiunas, S.

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Fibonacci terahertz imaging by silicon diffractive optics,” Opt. Lett. 43(12), 2795–2798 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

Jain, R.

P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, “Terahertz Imaging and Sensing Applications With Silicon-Based Technologies,” IEEE Trans. Terahertz Sci. Technol. 9(1), 1–19 (2019).
[Crossref]

Janonis, V.

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

Jokubauskis, D.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 1 (2019).
[Crossref]

D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Fibonacci terahertz imaging by silicon diffractive optics,” Opt. Lett. 43(12), 2795–2798 (2018).
[Crossref]

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

Karaliunas, M.

Kašalynas, I.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 1 (2019).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Fibonacci terahertz imaging by silicon diffractive optics,” Opt. Lett. 43(12), 2795–2798 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

Klushin, A.

A. Semenov, O. Cojocari, H. W. Hübers, F. Song, A. Klushin, and A. S. Müller, “Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Knap, W.

Köhler, K.

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

Krozer, V.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

Kulya, M. S.

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8(1), 1390 (2018).
[Crossref]

Lisauskas, A.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

Lü, X.

B. Röben, X. Lü, K. Biermann, L. Schrottke, and H. T. Grahn, “Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines,” J. Appl. Phys. 125(15), 151613 (2019).
[Crossref]

Madhi, D.

D. Madhi, M. Ornigotti, and A. Aiello, “Cylindrically polarized Bessel–Gauss beams,” J. Opt. 17(2), 025603 (2015).
[Crossref]

Mateos, J.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Meilhan, J.

F. Simoens and J. Meilhan, “Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers,” Philos. Trans. R. Soc., A 372(2012), 20130111 (2014).
[Crossref]

Minkevicius, L.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 1 (2019).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Fibonacci terahertz imaging by silicon diffractive optics,” Opt. Lett. 43(12), 2795–2798 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

Müller, A. S.

A. Semenov, O. Cojocari, H. W. Hübers, F. Song, A. Klushin, and A. S. Müller, “Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Nouvel, P.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Nylk, J.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Oda, N.

N. Oda, “Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
[Crossref]

Ornigotti, M.

D. Madhi, M. Ornigotti, and A. Aiello, “Cylindrically polarized Bessel–Gauss beams,” J. Opt. 17(2), 025603 (2015).
[Crossref]

Osipov, K.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

Penot, A.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Petrov, N. V.

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8(1), 1390 (2018).
[Crossref]

Pfeiffer, U. R.

P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, “Terahertz Imaging and Sensing Applications With Silicon-Based Technologies,” IEEE Trans. Terahertz Sci. Technol. 9(1), 1–19 (2019).
[Crossref]

Pralgauskaite, S.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

Raciukaitis, G.

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Fibonacci terahertz imaging by silicon diffractive optics,” Opt. Lett. 43(12), 2795–2798 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

Ramer, A.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

Reklaitis, A.

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

Reno, J. L.

A. Albo, Y. V. Flores, Q. Hu, and J. L. Reno, “Split-well direct-phonon terahertz quantum cascade lasers,” Appl. Phys. Lett. 114(19), 191102 (2019).
[Crossref]

Röben, B.

B. Röben, X. Lü, K. Biermann, L. Schrottke, and H. T. Grahn, “Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines,” J. Appl. Phys. 125(15), 151613 (2019).
[Crossref]

Rohrbach, A.

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632–638 (2012).
[Crossref]

Roskos, H. G.

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

Sakowicz, M.

Sangaré, P.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Scalari, G.

L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, and J. Faist, “Thermoelectrically cooled THz quantum cascade laser operating up to 210 K,” Appl. Phys. Lett. 115(1), 010601 (2019).
[Crossref]

Schrottke, L.

B. Röben, X. Lü, K. Biermann, L. Schrottke, and H. T. Grahn, “Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines,” J. Appl. Phys. 125(15), 151613 (2019).
[Crossref]

Schuster, F.

Seliuta, D.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 1 (2019).
[Crossref]

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

Semenov, A.

A. Semenov, O. Cojocari, H. W. Hübers, F. Song, A. Klushin, and A. S. Müller, “Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Semenova, V. A.

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8(1), 1390 (2018).
[Crossref]

Sešek, A.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Siemion, A.

A. Siemion, “Terahertz Diffractive Optics—Smart Control over Radiation,” J. Infrared, Millimeter, Terahertz Waves 40(5), 477–499 (2019).
[Crossref]

Simoens, F.

F. Simoens and J. Meilhan, “Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers,” Philos. Trans. R. Soc., A 372(2012), 20130111 (2014).
[Crossref]

Skotnicki, T.

Šniaukas, R.

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

Song, B.

X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
[Crossref]

Song, F.

A. Semenov, O. Cojocari, H. W. Hübers, F. Song, A. Klushin, and A. S. Müller, “Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

Sun, M. J.

M. J. Sun and J. M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: A brief review,” Sensors 19(3), 732 (2019).
[Crossref]

Švigelj, A.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Tamošiunaite, M.

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

Tamošiunas, V.

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

Teppe, F.

Torres, J.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Trontelj, J.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Turunen, J.

Urbanowicz, A.

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

Valušis, G.

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 1 (2019).
[Crossref]

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S. Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Fibonacci terahertz imaging by silicon diffractive optics,” Opt. Lett. 43(12), 2795–2798 (2018).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

Varani, L.

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Vasara, A.

Venckevicius, R.

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

Vettenburg, T.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Videlier, H.

Voisiat, B.

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V. Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis, “Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon,” Opt. Lett. 42(10), 1875–1878 (2017).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Wacker, A.

L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, and J. Faist, “Thermoelectrically cooled THz quantum cascade laser operating up to 210 K,” Appl. Phys. Lett. 115(1), 010601 (2019).
[Crossref]

Wahaia, F.

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Wang, N.

X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
[Crossref]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, “Minimum Mean Square Error (Wiener) Filtering,” in Digital Image Processing (Prentice Hall, 2007), chap. 5.8, pp. 374–379.

Wu, T.

X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
[Crossref]

Yang, D.

X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
[Crossref]

Yang, X.

X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
[Crossref]

Yu, Y.

Zhang, J. M.

M. J. Sun and J. M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: A brief review,” Sensors 19(3), 732 (2019).
[Crossref]

Zhang, L.

X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
[Crossref]

Appl. Phys. Lett. (3)

L. Bosco, M. Franckié, G. Scalari, M. Beck, A. Wacker, and J. Faist, “Thermoelectrically cooled THz quantum cascade laser operating up to 210 K,” Appl. Phys. Lett. 115(1), 010601 (2019).
[Crossref]

A. Albo, Y. V. Flores, Q. Hu, and J. L. Reno, “Split-well direct-phonon terahertz quantum cascade lasers,” Appl. Phys. Lett. 114(19), 191102 (2019).
[Crossref]

L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99(13), 131101 (2011).
[Crossref]

C. R. Phys. (1)

N. Oda, “Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11(7-8), 496–509 (2010).
[Crossref]

IEEE Electron Device Lett. (2)

A. Semenov, O. Cojocari, H. W. Hübers, F. Song, A. Klushin, and A. S. Müller, “Application of zero-bias quasi-optical schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett. 31(7), 674–676 (2010).
[Crossref]

K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H. G. Roskos, “Broadband Terahertz Power Detectors Based on 90-nm Silicon CMOS Transistors with Flat Responsivity Up to 2.2 THz,” IEEE Electron Device Lett. 39(9), 1413–1416 (2018).
[Crossref]

IEEE Sens. J. (1)

I. Kašalynas, R. Venckevičius, and G. Valušis, “Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature,” IEEE Sens. J. 13(1), 50–54 (2013).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (3)

M. Tamošiūnaitė, S. Indrišiūnas, V. Tamošiūnas, L. Minkevičius, A. Urbanowicz, G. Račiukaitis, I. Kašalynas, and G. Valušis, “Focusing of Terahertz Radiation With Laser-Ablated Antireflective Structures,” IEEE Trans. Terahertz Sci. Technol. 8(5), 541–548 (2018).
[Crossref]

P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, “Terahertz Imaging and Sensing Applications With Silicon-Based Technologies,” IEEE Trans. Terahertz Sci. Technol. 9(1), 1–19 (2019).
[Crossref]

M. Bauer, A. Ramer, S. A. Chevtchenko, K. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, “A High-sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-tie Antenna,” IEEE Trans. Terahertz Sci. Technol. 9(4), 430–444 (2019).
[Crossref]

J. Appl. Phys. (1)

B. Röben, X. Lü, K. Biermann, L. Schrottke, and H. T. Grahn, “Terahertz quantum-cascade lasers for high-resolution spectroscopy of sharp absorption lines,” J. Appl. Phys. 125(15), 151613 (2019).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

A. Siemion, “Terahertz Diffractive Optics—Smart Control over Radiation,” J. Infrared, Millimeter, Terahertz Waves 40(5), 477–499 (2019).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

J. Opt. (1)

D. Madhi, M. Ornigotti, and A. Aiello, “Cylindrically polarized Bessel–Gauss beams,” J. Opt. 17(2), 025603 (2015).
[Crossref]

J. Opt. Soc. Am. A (2)

Lith. J. Phys. (1)

L. Minkevičius, S. Indrišiūnas, R. Šniaukas, G. Račiukaitis, V. Janonis, V. Tamošiūnas, I. Kašalynas, and G. Valušis, “Compact diffractive optics for THz imaging,” Lith. J. Phys. 58(1), 99–107 (2018).
[Crossref]

Nat. Commun. (1)

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3(1), 632–638 (2012).
[Crossref]

Nat. Methods (1)

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref]

Opt. Eng. (1)

D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas, and G. Valušis, “Terahertz homodyne spectroscopic imaging of concealed low-absorbing objects,” Opt. Eng. 58(02), 1 (2019).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Philos. Trans. R. Soc., A (1)

F. Simoens and J. Meilhan, “Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers,” Philos. Trans. R. Soc., A 372(2012), 20130111 (2014).
[Crossref]

Proc. SPIE (1)

G. Valušis, R. Venckevičius, L. Minkevicius, A. Reklaitis, V. Tamošiūnas, I. Kašalynas, B. Voisiat, D. Seliuta, G. Račiukaitis, and D. Jokubauskis, “Compact solutions for spectroscopic solid-state-based terahertz imaging systems,” Proc. SPIE 10383, 103830S (2017).
[Crossref]

Sci. Rep. (1)

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. Rep. 8(1), 1390 (2018).
[Crossref]

Semicond. Sci. Technol. (1)

J. Torres, P. Nouvel, A. Penot, L. Varani, P. Sangaré, B. Grimbert, M. Faucher, G. Ducournau, C. Gaquière, I. I niguez-de-la Torre, J. Mateos, and T. Gonzalez, “Nonlinear nanochannels for room temperature terahertz heterodyne detection,” Semicond. Sci. Technol. 28(12), 125024 (2013).
[Crossref]

Sensors (2)

M. J. Sun and J. M. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: A brief review,” Sensors 19(3), 732 (2019).
[Crossref]

I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, and J. Trontelj, “Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues,” Sensors 16(4), 432 (2016).
[Crossref]

Signal Process. (1)

X. Yang, T. Wu, L. Zhang, D. Yang, N. Wang, B. Song, and X. Gao, “CNN with spatio-temporal information for fast suspicious object detection and recognition in THz security images,” Signal Process. 160, 202–214 (2019).
[Crossref]

Other (2)

R. C. Gonzalez and R. E. Woods, “Minimum Mean Square Error (Wiener) Filtering,” in Digital Image Processing (Prentice Hall, 2007), chap. 5.8, pp. 374–379.

K. Iizuka, “Fresnel-Kirchhoff’s Approximate Formula,” in Engineering Optics, (Springer, 2008), chap. 3.3, pp. 60–62, 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Bessel zone plate design and its cross-section of the central part with marked dimensions in microns of four phase quantization levels. (b) The photo of thin silicon-based Bessel diffractive element for the 0.6 THz. (c) 3D reconstruction of the zoomed area in the center part displays ablated and polished silicon surface, h indicates the places where groove depth was measured using $Hirox$ digital microscope.
Fig. 2.
Fig. 2. (a) Normalized THz radiation power distribution simulation using 3D FDTD method in $xz$ plane. (b) and (c) – Measured distribution of the THz radiation in $xy$ plane and in $xz$ plane, respectively, at 0.6 THz frequency focused by the Bessel zone plate. Insets in (b) and (c) show performances of the multi-phase Fresnel zone plates with 4 phase quantization levels (MPFL) for comparison in the same scale. (d) and (e) – Experimentally evaluated distribution (black line) of THz signal amplitude along $z$ axis and $x$ axis, respectively, compared with the results of the simulations using 3D FDTD method (orange lines) and MPFL focusing (green lines). Collimated radiation profile at 0.6 THz is also depicted for comparison.
Fig. 3.
Fig. 3. (a) Experimental demonstration of the Bessel focusing performance using resolution target imaging at 0.6 THz radiation along the beam propagation path. The cross sections of resolution target position along optical path represent the resolution alternation in the focal plane direction. The distance between cross sections was set to 1 mm. 2D images consist of 390 $\times$ 116 pixels. Pixel size: 150 µm $\times$ 300 µm. (b) Photo of the resolution target with indications of the apertures period in mm scale. (c) Enhanced contrast image of resolution target at 0.6 THz after the deconvolution procedure, where blue line represents the cross-section of each period of stripes (data lines shifted down for convenience of illustration). (d) Dependence of signal to noise ratios on z coordinate evaluated for apertures of 1 mm, 2 mm and 2.5 mm period. (e) Dependence of imaging resolution on aperture period, where the target position in $z$ direction is fixed at $z = -4$ mm. Enhanced image resolution after deconvolution procedure is shown additionally for comparison.
Fig. 4.
Fig. 4. (a) Part of Bessel imaging setup displaying object under test placed between two silicon BZP. (b) and (c) – Stacks of 1 to 4 identical targets were imaged using Bessel zone plates and conventional MPFL, respectively, aiming to evaluate THz imaging performance of thick objects. (d) Beam profiles at y=17 mm (position is marked as dashed black line in (b) and (c) of obtained images using BZL. (e) MPFL beam are shown for comparison.
Fig. 5.
Fig. 5. Bessel beam illustration
Fig. 6.
Fig. 6. Results of Bessel THz imaging after deconvolution using different noise parameters $1/a$.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t ( ρ ) = exp ( i k ρ ρ )
t ( ρ ) = exp ( i k ρ N ρ sin θ λ N ρ sin θ λ 1 N ) .
k ρ 0 sin θ = 2 π ,
H w ( x , k z ) = H ( x , k z ) | H ( x , k z ) | 2 + S N R 2 ( k z )
u ( x , y , z ) = 1 λ i g ( x 0 , y 0 ) e i k r r d x 0 d y 0

Metrics