Abstract

The thermal behavior of a thermophotovoltaic system composed of a metallo-dielectric spectrally selective radiator at high temperature and a GaSb photovoltaic cell in the far field is investigated. Using a coupled radiative, electrical and thermal model, we highlight that, without a large conductive-convective heat transfer coefficient applied to the cell, the rise in temperature of the photovoltaic cell induces dramatic efficiency losses. We then investigate solutions to mitigate thermal effects, such as radiative cooling or the decrease of the emissivity or the temperature of the radiator. Without extending the radiating area beyond that of the cell, gains by radiative cooling are marginal. However, for a given radiator temperature, decreasing its emissivity is beneficial to conversion efficiency and, in cases of limited conductive-convective cooling capacities, even leads to larger electrical power outputs. More importantly, for a realistic radiator structure made of tungsten and hafnium oxide, larger conversion efficiencies are reached with smaller radiator temperatures because thermal losses and thus needs for cooling are less.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems

Alok Ghanekar, Laura Lin, and Yi Zheng
Opt. Express 24(10) A868-A877 (2016)

Solar thermophotovoltaic system using nanostructures

Craig Ungaro, Stephen K. Gray, and Mool C. Gupta
Opt. Express 23(19) A1149-A1156 (2015)

Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures

Etienne Blandre, Makoto Shimizu, Asaka Kohiyama, Hiroo Yugami, Pierre-Olivier Chapuis, and Rodolphe Vaillon
Opt. Express 26(4) 4346-4357 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Bauer, Thermophotovoltaics, Basic Principles and Critical Aspects of System Design (Springer, 2011).
  2. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref]
  3. M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photonics Energy 5(1), 053099 (2015).
    [Crossref]
  4. C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149–A1156 (2015).
    [Crossref]
  5. D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
    [Crossref]
  6. A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
    [Crossref]
  7. Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
    [Crossref]
  8. J. G. Fleming, S. Y. Lin, I. E. Kady, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a largeinfrared bandgap,” Nature 417(6884), 52–55 (2002).
    [Crossref]
  9. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
    [Crossref]
  10. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
    [Crossref]
  11. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2d-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
    [Crossref]
  12. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008). PMID: 18781817.
    [Crossref]
  13. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [Crossref]
  14. C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
    [Crossref]
  15. E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111(8), 084316 (2012).
    [Crossref]
  16. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
    [Crossref]
  17. E. Blandre, P.-O. Chapuis, and R. Vaillon, “Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate,” Opt. Express 24(2), A374–A387 (2016).
    [Crossref]
  18. E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
    [Crossref]
  19. T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5(7), 2748–2754 (2018).
    [Crossref]
  20. P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
    [Crossref]
  21. P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
    [Crossref]
  22. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
    [Crossref]
  23. Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
    [Crossref]
  24. J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
    [Crossref]
  25. M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
    [Crossref]
  26. M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
    [Crossref]
  27. O. Dupré, R. Vaillon, and M. A. Green, Thermal behaviour of photovoltaic devices. Physics and engineering. (Springer, 2017).
  28. M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Convers. 26(2), 686–698 (2011).
    [Crossref]
  29. M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic powergenerators,” Sci. Rep. 5(1), 11626 (2015).
    [Crossref]
  30. J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm,” Energy Convers. Manage. 108, 429–438 (2016).
    [Crossref]
  31. S. M. Rytov and I. U. A. Kravtsov, Principles of Statistical Radiophysics: Elements of random fields. (Springer-Verlag, 1989).
  32. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
    [Crossref]
  33. M. Francoeur, M. P. Menguc, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002–2018 (2009).
    [Crossref]
  34. E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Rep. 7(1), 15860 (2017).
    [Crossref]
  35. M. A. Green, “Radiative efficiency of state-of-the-art photovoltaic cells,” Prog. Photovolt: Res. Appl. 20(4), 472–476 (2012).
    [Crossref]
  36. E. Palik, Handbook of Optical Constants of Solids 1rst edition (Academic Press, 1987).
  37. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
    [Crossref]
  38. B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
    [Crossref]
  39. Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404–A418 (2019).
    [Crossref]
  40. D. D. S. Meneses, M. Malki, and P. Echegut, “Optical and structural properties of calcium silicate glasses,” J. Non-Cryst. Solids 352(50-51), 5301–5308 (2006).
    [Crossref]
  41. Solar Spectral Irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed Oct. 13 2016).
  42. IR Transmission Spectra: Gemini Observatory. https://www.gemini.edu/sciops/telescopes-and-sites/observing-conditionconstraints/ir-transmission-spectra (accessed Oct. 13 2016).
  43. R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
    [Crossref]
  44. R. Vaillon, J.-P. Pérez, C. Lucchesi, D. Cakiroglu, P.-O. Chapuis, T. Taliercio, and E. Tournié, “Micron-sized liquid nitrogen-cooled indium antimonide photovoltaic cell for near-field thermophotovoltaics,” Opt. Express 27(4), A11–A24 (2019).
    [Crossref]

2019 (4)

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404–A418 (2019).
[Crossref]

R. Vaillon, J.-P. Pérez, C. Lucchesi, D. Cakiroglu, P.-O. Chapuis, T. Taliercio, and E. Tournié, “Micron-sized liquid nitrogen-cooled indium antimonide photovoltaic cell for near-field thermophotovoltaics,” Opt. Express 27(4), A11–A24 (2019).
[Crossref]

2018 (5)

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref]

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5(7), 2748–2754 (2018).
[Crossref]

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

2017 (3)

E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Rep. 7(1), 15860 (2017).
[Crossref]

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
[Crossref]

2016 (6)

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate,” Opt. Express 24(2), A374–A387 (2016).
[Crossref]

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm,” Energy Convers. Manage. 108, 429–438 (2016).
[Crossref]

2015 (4)

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic powergenerators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149–A1156 (2015).
[Crossref]

2014 (2)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

2013 (1)

2012 (3)

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

M. A. Green, “Radiative efficiency of state-of-the-art photovoltaic cells,” Prog. Photovolt: Res. Appl. 20(4), 472–476 (2012).
[Crossref]

2011 (1)

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Convers. 26(2), 686–698 (2011).
[Crossref]

2009 (2)

M. Francoeur, M. P. Menguc, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002–2018 (2009).
[Crossref]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref]

2008 (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008). PMID: 18781817.
[Crossref]

2006 (2)

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2d-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[Crossref]

D. D. S. Meneses, M. Malki, and P. Echegut, “Optical and structural properties of calcium silicate glasses,” J. Non-Cryst. Solids 352(50-51), 5301–5308 (2006).
[Crossref]

2005 (1)

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

2004 (1)

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

2002 (1)

J. G. Fleming, S. Y. Lin, I. E. Kady, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a largeinfrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref]

1971 (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Agrawal, M.

Anoma, M. A.

Ao, X.

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

Arnold, C.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Atwater, H.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Bardou, N.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Bauer, T.

T. Bauer, Thermophotovoltaics, Basic Principles and Critical Aspects of System Design (Springer, 2011).

Bermel, P.

Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404–A418 (2019).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Bernardi, M. P.

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm,” Energy Convers. Manage. 108, 429–438 (2016).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic powergenerators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref]

Bhatia, B.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Bierman, D. M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Blandre, E.

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Rep. 7(1), 15860 (2017).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate,” Opt. Express 24(2), A374–A387 (2016).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic powergenerators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref]

Bozhevolnyi, S. I.

Burger, T.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5(7), 2748–2754 (2018).
[Crossref]

Cakiroglu, D.

Cal, R. B.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

Calaf, M.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

Celanovic, I.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Chan, D. L. C.

Chan, W. R.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref]

Chapuis, P. O.

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic powergenerators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref]

Chapuis, P.-O.

Chen, G.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

Chirumamilla, M.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
[Crossref]

Collin, S.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Datas, A.

A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
[Crossref]

DeSutter, J.

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm,” Energy Convers. Manage. 108, 429–438 (2016).
[Crossref]

Ding, F.

do Rosário, J. J.

Drevillon, J.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

Dupré, O.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic powergenerators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, Thermal behaviour of photovoltaic devices. Physics and engineering. (Springer, 2017).

Dyachenko, P. N.

Dyanchenko, P. N.

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Echegut, P.

D. D. S. Meneses, M. Malki, and P. Echegut, “Optical and structural properties of calcium silicate glasses,” J. Non-Cryst. Solids 352(50-51), 5301–5308 (2006).
[Crossref]

Eich, M.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref]

Fan, D.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5(7), 2748–2754 (2018).
[Crossref]

Fan, S.

Fleming, J. G.

J. G. Fleming, S. Y. Lin, I. E. Kady, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a largeinfrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref]

Forrest, S. R.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5(7), 2748–2754 (2018).
[Crossref]

Francoeur, M.

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm,” Energy Convers. Manage. 108, 429–438 (2016).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic powergenerators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref]

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Convers. 26(2), 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Menguc, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002–2018 (2009).
[Crossref]

Ganapati, V.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Garin, M.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Graf, M.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

Gray, S. K.

Green, M. A.

M. A. Green, “Radiative efficiency of state-of-the-art photovoltaic cells,” Prog. Photovolt: Res. Appl. 20(4), 472–476 (2012).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, Thermal behaviour of photovoltaic devices. Physics and engineering. (Springer, 2017).

Greffet, J.-J.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Gupta, M. C.

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008). PMID: 18781817.
[Crossref]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. E. Kady, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a largeinfrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref]

Holzrichter, J.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Hu, M.

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

Jacob, Z.

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Jalas, D.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

Joannopoulos, J. D.

Joulain, K.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

Jung, S. M.

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

Kady, I. E.

J. G. Fleming, S. Y. Lin, I. E. Kady, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a largeinfrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref]

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Kim, J. H.

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

Knopp, K.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

Kohiyama, A.

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

Kravtsov, I. U. A.

S. M. Rytov and I. U. A. Kravtsov, Principles of Statistical Radiophysics: Elements of random fields. (Springer-Verlag, 1989).

Krekeler, T.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Krishnamurthy, G. V.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

Kristensen, P. K.

Lang, S.

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Lee, K.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5(7), 2748–2754 (2018).
[Crossref]

Leib, E. W.

Lenert, A.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5(7), 2748–2754 (2018).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. E. Kady, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a largeinfrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref]

Lucchesi, C.

Malki, M.

D. D. S. Meneses, M. Malki, and P. Echegut, “Optical and structural properties of calcium silicate glasses,” J. Non-Cryst. Solids 352(50-51), 5301–5308 (2006).
[Crossref]

Marquier, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Martí, A.

A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
[Crossref]

Meneses, D. D. S.

D. D. S. Meneses, M. Malki, and P. Echegut, “Optical and structural properties of calcium silicate glasses,” J. Non-Cryst. Solids 352(50-51), 5301–5308 (2006).
[Crossref]

Menguc, M. P.

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Convers. 26(2), 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Menguc, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002–2018 (2009).
[Crossref]

Molesky, S.

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008). PMID: 18781817.
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

Nefzaoui, E.

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008). PMID: 18781817.
[Crossref]

Omair, Z.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids 1rst edition (Academic Press, 1987).

Pardo, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Pazos-Outón, L. M.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Pedersen, K.

Pei, G.

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

Pelouard, J.-L.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Pérez, J.-P.

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Peterson, P. F.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Petrov, A. Y.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref]

Peumans, P.

Pincon, O.

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Raman, A.

Rinnerbauer, V.

Ritter, M.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Roberts, A. S.

Rytov, S. M.

S. M. Rytov and I. U. A. Kravtsov, Principles of Statistical Radiophysics: Elements of random fields. (Springer-Verlag, 1989).

Sakr, E.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Schneider, G. A.

Scranton, G.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Senkevich, J. J.

Sergeant, N. P.

Shimizu, M.

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

Shin, M. W.

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

Soljacic, M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2d-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[Crossref]

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008). PMID: 18781817.
[Crossref]

Steiner, M. A.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Stormer, M.

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Störmer, M.

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref]

Sun, Y.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Taliercio, T.

Tournié, E.

Ungaro, C.

Vaillon, R.

R. Vaillon, J.-P. Pérez, C. Lucchesi, D. Cakiroglu, P.-O. Chapuis, T. Taliercio, and E. Tournié, “Micron-sized liquid nitrogen-cooled indium antimonide photovoltaic cell for near-field thermophotovoltaics,” Opt. Express 27(4), A11–A24 (2019).
[Crossref]

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Rep. 7(1), 15860 (2017).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate,” Opt. Express 24(2), A374–A387 (2016).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic powergenerators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref]

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Convers. 26(2), 686–698 (2011).
[Crossref]

M. Francoeur, M. P. Menguc, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002–2018 (2009).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, Thermal behaviour of photovoltaic devices. Physics and engineering. (Springer, 2017).

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Vossmeyer, T.

Wang, D.

Wang, E. N.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Wang, K. X.

Wang, Z.

Weller, H.

Xiao, T. P.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Yablonovitch, E.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Yeng, Y. X.

Yugami, H.

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

Zhao, B.

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

Zhou, Z.

Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404–A418 (2019).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Zhu, L.

ACS Photonics (1)

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5(7), 2748–2754 (2018).
[Crossref]

Energy Convers. Manage. (1)

J. DeSutter, M. P. Bernardi, and M. Francoeur, “Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm,” Energy Convers. Manage. 108, 429–438 (2016).
[Crossref]

IEEE Trans. Energy Convers. (1)

M. Francoeur, R. Vaillon, and M. P. Menguc, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Convers. 26(2), 686–698 (2011).
[Crossref]

J. Appl. Phys. (1)

E. Nefzaoui, J. Drevillon, and K. Joulain, “Selective emitters design and optimization for thermophotovoltaic applications,” J. Appl. Phys. 111(8), 084316 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

D. D. S. Meneses, M. Malki, and P. Echegut, “Optical and structural properties of calcium silicate glasses,” J. Non-Cryst. Solids 352(50-51), 5301–5308 (2006).
[Crossref]

J. Photonics Energy (1)

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photonics Energy 5(1), 053099 (2015).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

M. Francoeur, M. P. Menguc, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transfer 110(18), 2002–2018 (2009).
[Crossref]

Nano Lett. (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008). PMID: 18781817.
[Crossref]

Nanophotonics (1)

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Nat. Commun. (1)

P. N. Dyanchenko, S. Molesky, A. Y. Petrov, M. Stormer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref]

Nat. Energy (1)

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanovic, M. Soljacic, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Nature (1)

J. G. Fleming, S. Y. Lin, I. E. Kady, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a largeinfrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref]

Opt. Express (9)

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2d-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[Crossref]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149–A1156 (2015).
[Crossref]

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref]

E. Blandre, P.-O. Chapuis, and R. Vaillon, “Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate,” Opt. Express 24(2), A374–A387 (2016).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346–4357 (2018).
[Crossref]

R. Vaillon, J.-P. Pérez, C. Lucchesi, D. Cakiroglu, P.-O. Chapuis, T. Taliercio, and E. Tournié, “Micron-sized liquid nitrogen-cooled indium antimonide photovoltaic cell for near-field thermophotovoltaics,” Opt. Express 27(4), A11–A24 (2019).
[Crossref]

Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404–A418 (2019).
[Crossref]

Opt. Mater. (1)

J. H. Kim, S. M. Jung, and M. W. Shin, “High-temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system,” Opt. Mater. 72, 45–51 (2017).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (4)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J.-L. Pelouard, and J.-J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86(3), 035316 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Prog. Photovolt: Res. Appl. (1)

M. A. Green, “Radiative efficiency of state-of-the-art photovoltaic cells,” Prog. Photovolt: Res. Appl. 20(4), 472–476 (2012).
[Crossref]

Sci. Rep. (4)

E. Blandre, P.-O. Chapuis, and R. Vaillon, “High-injection effects in near-field thermophotovoltaic devices,” Sci. Rep. 7(1), 15860 (2017).
[Crossref]

M. Chirumamilla, G. V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Metamaterial emitter for thermophotovoltaics stable up to 1400 C,” Sci. Rep. 9(1), 7241 (2019).
[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P. O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic powergenerators,” Sci. Rep. 5(1), 11626 (2015).
[Crossref]

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163 (2018).
[Crossref]

Sol. Energy (1)

B. Zhao, M. Hu, X. Ao, and G. Pei, “Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module,” Sol. Energy 176, 248–255 (2018).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
[Crossref]

Other (6)

T. Bauer, Thermophotovoltaics, Basic Principles and Critical Aspects of System Design (Springer, 2011).

O. Dupré, R. Vaillon, and M. A. Green, Thermal behaviour of photovoltaic devices. Physics and engineering. (Springer, 2017).

Solar Spectral Irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed Oct. 13 2016).

IR Transmission Spectra: Gemini Observatory. https://www.gemini.edu/sciops/telescopes-and-sites/observing-conditionconstraints/ir-transmission-spectra (accessed Oct. 13 2016).

E. Palik, Handbook of Optical Constants of Solids 1rst edition (Academic Press, 1987).

S. M. Rytov and I. U. A. Kravtsov, Principles of Statistical Radiophysics: Elements of random fields. (Springer-Verlag, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a): Schematic representation of the TPV system under study. (b): Spectral hemispherical emissivity of the W-HfO$_2$ radiator and of the PV device.
Fig. 2.
Fig. 2. (a): Loss in efficiency due to thermal losses $\eta (T_c)/\eta (300 \textrm {K})$ as a function of the temperature of the PV device. On the linear part, a temperature coefficient of $0.34\;\%.\textrm {K}^{-1}$ is calculated. (b): J-V and P-V characteristics of the PV cell for different operating cell temperatures $T_c$. The arrows indicate to which y-axis the curves correspond.
Fig. 3.
Fig. 3. (a): Normalized solar irradiation spectrum, normalized blackbody emission spectrum at $300$ K, spectral emissivity of the radiative cooler and transmittance of earth atmosphere in the infrared. (b): Efficiency and operating temperature of the PV cell as a function of the conductive-convective heat transfer coefficient. The cases with and without radiative cooling are depicted.
Fig. 4.
Fig. 4. Performances of the TPV system for a fictitious selective radiator at $1500$ K with different emissivities for photon energies above the bandgap as a function of the heat transfer coefficient. (a): Efficiency. (b): Maximum power output. (c): Efficiency gain with radiative cooling as a function of the conductive-convective heat transfer coefficient.
Fig. 5.
Fig. 5. (a): Efficiency of the TPV system as a fonction of radiator temperature $T_{\textrm {rad}}$ for different values of $h_c$. (b): Input power $Q_{\textrm {in}}$ (black curve) and electrical power of the PV cell $Q_{\textrm {elec}}$ (colored curves) as a function of the radiator temperature $T_{\textrm {rad}}$.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G ( z ) = κ IB j ω ( q abs j Δ z ) ,
D e , h d 2 Δ n , p ( z ) d z 2 Δ n , p τ e , h + G ( z ) = 0 ,
W dp = [ 2 ε s e V 0 ( 1 N a + 1 N d ) ] 1 / 2 ,
Δ n , p = n 0 , p 0 exp ( e V k b T c ) .
J = J s c J dark ( V )
Q heat = Q abs Q elec .
Q c = h c ( T c T ) .
Q rad = cos ( θ ) d Ω cos 0 I BB ( T c , λ ) ε ( λ , θ ) d λ d Ω cos ( θ ) 0 I BB ( T ATM , λ ) ε ATM ( λ , θ ) ε ( λ , θ ) d λ 0 I sun ( λ ) d λ .

Metrics