C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High throughput photonic time stretch optical coherence tomography with data compression,” IEEE Photonics J. 9(4), 1–15 (2017).

[Crossref]

M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi, “Weighted l1 minimization for sparse recovery with prior information,” IEEE International Symposium on Inf. Theory, ISIT 2009, iaw023 (2017).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]

D. Xu, Y. Huang, and J. U. Kang, “Volumetric (3D) compressive sensing spectral domain optical coherence tomography,” Biomed. Opt. Express 5(11), 3921–3934 (2014).

[Crossref]

J. Xu, C. Zhang, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).

[Crossref]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalal, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20(18), 19612–19617 (2012).

[Crossref]

D. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Opt. Express 3(12), 3067–3086 (2012).

[Crossref]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).

[Crossref]

X. Liu and J. U. Kang, “Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography,” Opt. Express 18(21), 22010–22019 (2010).

[Crossref]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” FNT in Machine Learning 3(1), 1–122 (2010).

[Crossref]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).

[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. U. S. A. 106(45), 18914–18919 (2009).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. on Imag. Sci. 2(1), 183–202 (2009).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).

[Crossref]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).

[Crossref]

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. of Sel. Topics in Signal Process. 1(4), 586–597 (2007).

[Crossref]

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–124 (2007).

[Crossref]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007).

[Crossref]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).

[Crossref]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).

[Crossref]

E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005).

[Crossref]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).

[Crossref]

P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale Model. Simul. 4(4), 1168–1200 (2005).

[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[Crossref]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).

[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).

[Crossref]

M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi, “Weighted l1 minimization for sparse recovery with prior information,” IEEE International Symposium on Inf. Theory, ISIT 2009, iaw023 (2017).

[Crossref]

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High throughput photonic time stretch optical coherence tomography with data compression,” IEEE Photonics J. 9(4), 1–15 (2017).

[Crossref]

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–124 (2007).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. on Imag. Sci. 2(1), 183–202 (2009).

[Crossref]

A. B. Wu, E. Lebed, M. V. Sarunic, and M. F. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Biomed. Eng. 60(2), 470–478 (2013).

[Crossref]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express 2(9), 2690–2697 (2011).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “72 MHz A-scan optical coherence tomography using continuous high-rate photonically-enabled compressed sensing (CHiRP-CS),” In CLEO: Science and Innovations (Optical Society of America, 2016) paper SM2I-1.

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, S. Chin, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In CLEO: Science and Innovations (Optical Society of America, 2015) paper STh4F-2.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” FNT in Machine Learning 3(1), 1–122 (2010).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).

[Crossref]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

[Crossref]

E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, S. Chin, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In CLEO: Science and Innovations (Optical Society of America, 2015) paper STh4F-2.

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “72 MHz A-scan optical coherence tomography using continuous high-rate photonically-enabled compressed sensing (CHiRP-CS),” In CLEO: Science and Innovations (Optical Society of America, 2016) paper SM2I-1.

D. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Opt. Express 3(12), 3067–3086 (2012).

[Crossref]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” FNT in Machine Learning 3(1), 1–122 (2010).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, S. Chin, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In CLEO: Science and Innovations (Optical Society of America, 2015) paper STh4F-2.

P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale Model. Simul. 4(4), 1168–1200 (2005).

[Crossref]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. U. S. A. 106(45), 18914–18919 (2009).

[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).

[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).

[Crossref]

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical coherence tomography of ocular diseases (Slack, 2004).

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” FNT in Machine Learning 3(1), 1–122 (2010).

[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).

[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[Crossref]

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. of Sel. Topics in Signal Process. 1(4), 586–597 (2007).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, S. Chin, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In CLEO: Science and Innovations (Optical Society of America, 2015) paper STh4F-2.

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “72 MHz A-scan optical coherence tomography using continuous high-rate photonically-enabled compressed sensing (CHiRP-CS),” In CLEO: Science and Innovations (Optical Society of America, 2016) paper SM2I-1.

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007).

[Crossref]

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical coherence tomography of ocular diseases (Slack, 2004).

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High throughput photonic time stretch optical coherence tomography with data compression,” IEEE Photonics J. 9(4), 1–15 (2017).

[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).

[Crossref]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).

[Crossref]

M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi, “Weighted l1 minimization for sparse recovery with prior information,” IEEE International Symposium on Inf. Theory, ISIT 2009, iaw023 (2017).

[Crossref]

D. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Opt. Express 3(12), 3067–3086 (2012).

[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[Crossref]

D. Xu, Y. Huang, and J. U. Kang, “Volumetric (3D) compressive sensing spectral domain optical coherence tomography,” Biomed. Opt. Express 5(11), 3921–3934 (2014).

[Crossref]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).

[Crossref]

X. Liu and J. U. Kang, “Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography,” Opt. Express 18(21), 22010–22019 (2010).

[Crossref]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).

[Crossref]

M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi, “Weighted l1 minimization for sparse recovery with prior information,” IEEE International Symposium on Inf. Theory, ISIT 2009, iaw023 (2017).

[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[Crossref]

A. B. Wu, E. Lebed, M. V. Sarunic, and M. F. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Biomed. Eng. 60(2), 470–478 (2013).

[Crossref]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express 2(9), 2690–2697 (2011).

[Crossref]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).

[Crossref]

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High throughput photonic time stretch optical coherence tomography with data compression,” IEEE Photonics J. 9(4), 1–15 (2017).

[Crossref]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. U. S. A. 106(45), 18914–18919 (2009).

[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, S. Chin, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In CLEO: Science and Innovations (Optical Society of America, 2015) paper STh4F-2.

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High throughput photonic time stretch optical coherence tomography with data compression,” IEEE Photonics J. 9(4), 1–15 (2017).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. U. S. A. 106(45), 18914–18919 (2009).

[Crossref]

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. of Sel. Topics in Signal Process. 1(4), 586–597 (2007).

[Crossref]

D. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Opt. Express 3(12), 3067–3086 (2012).

[Crossref]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” FNT in Machine Learning 3(1), 1–122 (2010).

[Crossref]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).

[Crossref]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” FNT in Machine Learning 3(1), 1–122 (2010).

[Crossref]

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical coherence tomography of ocular diseases (Slack, 2004).

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

[Crossref]

A. B. Wu, E. Lebed, M. V. Sarunic, and M. F. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Biomed. Eng. 60(2), 470–478 (2013).

[Crossref]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express 2(9), 2690–2697 (2011).

[Crossref]

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical coherence tomography of ocular diseases (Slack, 2004).

D. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Opt. Express 3(12), 3067–3086 (2012).

[Crossref]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “72 MHz A-scan optical coherence tomography using continuous high-rate photonically-enabled compressed sensing (CHiRP-CS),” In CLEO: Science and Innovations (Optical Society of America, 2016) paper SM2I-1.

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, S. Chin, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In CLEO: Science and Innovations (Optical Society of America, 2015) paper STh4F-2.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

[Crossref]

E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. on Imag. Sci. 2(1), 183–202 (2009).

[Crossref]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, S. Chin, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In CLEO: Science and Innovations (Optical Society of America, 2015) paper STh4F-2.

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “72 MHz A-scan optical coherence tomography using continuous high-rate photonically-enabled compressed sensing (CHiRP-CS),” In CLEO: Science and Innovations (Optical Society of America, 2016) paper SM2I-1.

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “72 MHz A-scan optical coherence tomography using continuous high-rate photonically-enabled compressed sensing (CHiRP-CS),” In CLEO: Science and Innovations (Optical Society of America, 2016) paper SM2I-1.

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, S. Chin, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In CLEO: Science and Innovations (Optical Society of America, 2015) paper STh4F-2.

P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale Model. Simul. 4(4), 1168–1200 (2005).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).

[Crossref]

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High throughput photonic time stretch optical coherence tomography with data compression,” IEEE Photonics J. 9(4), 1–15 (2017).

[Crossref]

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High throughput photonic time stretch optical coherence tomography with data compression,” IEEE Photonics J. 9(4), 1–15 (2017).

[Crossref]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).

[Crossref]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).

[Crossref]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).

[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. of Sel. Topics in Signal Process. 1(4), 586–597 (2007).

[Crossref]

A. B. Wu, E. Lebed, M. V. Sarunic, and M. F. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Biomed. Eng. 60(2), 470–478 (2013).

[Crossref]

M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi, “Weighted l1 minimization for sparse recovery with prior information,” IEEE International Symposium on Inf. Theory, ISIT 2009, iaw023 (2017).

[Crossref]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Biomed. Opt. Express 2(9), 2690–2697 (2011).

[Crossref]

D. Xu, Y. Huang, and J. U. Kang, “Volumetric (3D) compressive sensing spectral domain optical coherence tomography,” Biomed. Opt. Express 5(11), 3921–3934 (2014).

[Crossref]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” FNT in Machine Learning 3(1), 1–122 (2010).

[Crossref]

M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi, “Weighted l1 minimization for sparse recovery with prior information,” IEEE International Symposium on Inf. Theory, ISIT 2009, iaw023 (2017).

[Crossref]

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. of Sel. Topics in Signal Process. 1(4), 586–597 (2007).

[Crossref]

C. K. Mididoddi, F. Bai, G. Wang, J. Liu, S. Gibson, and C. Wang, “High throughput photonic time stretch optical coherence tomography with data compression,” IEEE Photonics J. 9(4), 1–15 (2017).

[Crossref]

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–124 (2007).

[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).

[Crossref]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).

[Crossref]

A. B. Wu, E. Lebed, M. V. Sarunic, and M. F. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Biomed. Eng. 60(2), 470–478 (2013).

[Crossref]

E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005).

[Crossref]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).

[Crossref]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15(2), 021311 (2010).

[Crossref]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38(15), 2519–2535 (2005).

[Crossref]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007).

[Crossref]

P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale Model. Simul. 4(4), 1168–1200 (2005).

[Crossref]

D. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Opt. Express 3(12), 3067–3086 (2012).

[Crossref]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).

[Crossref]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).

[Crossref]

S. H. Yun, G. J. Tearney, J. F. De Boer, and B. E. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,” Opt. Express 12(23), 5614–5624 (2004).

[Crossref]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).

[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).

[Crossref]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18(11), 11772–11784 (2010).

[Crossref]

X. Liu and J. U. Kang, “Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography,” Opt. Express 18(21), 22010–22019 (2010).

[Crossref]

K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalal, “High-throughput optical coherence tomography at 800 nm,” Opt. Express 20(18), 19612–19617 (2012).

[Crossref]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38(22), 4892–4895 (2013).

[Crossref]

J. Xu, C. Zhang, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).

[Crossref]

B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses,” Opt. Lett. 40(13), 3045–3048 (2015).

[Crossref]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007).

[Crossref]

D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl. Acad. Sci. U. S. A. 106(45), 18914–18919 (2009).

[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. on Imag. Sci. 2(1), 183–202 (2009).

[Crossref]

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. P. McKenna, T. R. Clark, T. D. Tran, S. Chin, and M. A. Foster, “Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals,” In CLEO: Science and Innovations (Optical Society of America, 2015) paper STh4F-2.

J. R. Stroud, B. T. Bosworth, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “72 MHz A-scan optical coherence tomography using continuous high-rate photonically-enabled compressed sensing (CHiRP-CS),” In CLEO: Science and Innovations (Optical Society of America, 2016) paper SM2I-1.

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical coherence tomography of ocular diseases (Slack, 2004).