Abstract

Confinement in fiber traps with two optical fibers facing one another relies on balancing the optical forces originating from the interaction of a scattering micro-object with the light beams delivered through the fibers. Here we demonstrate a novel type of dual fiber trap that involves the use of nanobore fibers, having a nano-channel located in the center of their fiber cores. This nano-element leads to a profound redistribution of the optical intensity and to considerably higher field gradients, yielding a trapping potential with greatly improved tuning properties compared to standard step-index fiber types. We evaluate the trap performance as a function of the fiber separation and find substantially higher stiffness for the nanobore fiber trap, especially in the range of short inter-fiber separations, while intermediate distances exhibit axial stiffness below that of the standard fiber. The results are in agreement with theoretical predictions and reveal that the exploitation of nanobore fibers allows for combinations of transverse and axial stiffness that cannot be accessed with common step-index fibers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mass-manufacturable polymer microfluidic device for dual fiber optical trapping

Diane De Coster, Heidi Ottevaere, Michael Vervaeke, Jürgen Van Erps, Manly Callewaert, Pieter Wuytens, Stephen H. Simpson, Simon Hanna, Wim De Malsche, and Hugo Thienpont
Opt. Express 23(24) 30991-31009 (2015)

Trapping forces in a multiple-beam fiber-optic trap

Erkin Sidick, Scott D. Collins, and André Knoesen
Appl. Opt. 36(25) 6423-6433 (1997)

Optimal condition for optical trapping of large particles: tuning the laser power and numerical aperture of the objective

Hossein Gorjizadeh Alinezhad and S. Nader S. Reihani
J. Opt. Soc. Am. B 36(11) 3053-3059 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. Nobel Media AB, “Arthur Ashkin – Nobel Lecture,” https://www.nobelprize.org/prizes/physics/2018/ashkin/lecture .
  3. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a-fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
    [Crossref]
  4. A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref]
  5. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref]
  6. T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6(11), 831–835 (2009).
    [Crossref]
  7. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
    [Crossref]
  8. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
    [Crossref]
  9. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
    [Crossref]
  10. A. Ashkin and J. P. Gordon, “Cooling and trapping of atoms by resonance radiation pressure,” Opt. Lett. 4(6), 161–163 (1979).
    [Crossref]
  11. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental Observation of Optically Trapped Atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
    [Crossref]
  12. J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
    [Crossref]
  13. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref]
  14. M. E. Solmaz, R. Biswas, S. Sankhagowit, J. R. Thompson, C. A. Mejia, N. Malmstadt, and M. L. Povinelli, “Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap,” Biomed. Opt. Express 3(10), 2419–2427 (2012).
    [Crossref]
  15. P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7(1), 10974 (2016).
    [Crossref]
  16. C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
    [Crossref]
  17. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006).
    [Crossref]
  18. H. Schneidewind, M. Zeisberger, M. Plidschun, S. Weidlich, and M. A. Schmidt, “Photonic Candle – focusing light using nano-bore optical fibers,” Opt. Express 26(24), 31706–31716 (2018).
    [Crossref]
  19. A. Kuchmizhak, S. Gurbatov, A. Nepomniaschii, O. Vitrik, and Y. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014).
    [Crossref]
  20. A. Koshelev, G. Calafiore, C. Piña-Hernandez, F. I. Allen, S. Dhuey, S. Sassolini, E. Wong, P. Lum, K. Munechika, and S. Cabrini, “High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications,” Opt. Lett. 41(15), 3423–3426 (2016).
    [Crossref]
  21. M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
    [Crossref]
  22. W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
    [Crossref]
  23. J. J. Stamnes, Waves in Focal Regions (Taylor & Francis Group, 1986).
  24. J. P. Barton, D. R. Alexander, and S. H. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
    [Crossref]
  25. R. A. Horn, “The Hadamard Product,” in Matrix Theory and Applications, C. R. Johnson, ed. (American Mathematical Society, 1990), pp. 87–170.
  26. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
    [Crossref]
  27. D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
    [Crossref]
  28. S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
    [Crossref]
  29. Thorlabs Inc., “Single Mode Fiber,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=949 .
  30. K. Schaarschmidt, S. Weidlich, D. Reul, and M. A. Schmidt, “Bending losses and modal properties of nano-bore optical fibers,” Opt. Lett. 43(17), 4192–4195 (2018).
    [Crossref]
  31. M. Balci and H. Foroosh, “Subpixel estimation of shifts directly in the fourier domain,” IEEE Trans. on Image Process. 15(7), 1965–1972 (2006).
    [Crossref]
  32. I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
    [Crossref]
  33. W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating and optical trap in the presence of motion blur,” Opt. Express 14(25), 12517–12531 (2006).
    [Crossref]
  34. B. M. Lansdorp and O. A. Saleh, “Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments,” Rev. Sci. Instrum. 83(2), 025115 (2012).
    [Crossref]
  35. K. Berg-Sórensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
    [Crossref]
  36. S. F. Nórrelykke and H. Flyvberg, “Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers,” Rev. Sci. Instrum. 81(7), 075103 (2010).
    [Crossref]
  37. P. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms,” IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967).
    [Crossref]
  38. A. van der Horst and N. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18(8), 7670–7677 (2010).
    [Crossref]
  39. M. Plidschun, S. Weidlich, M. Šiler, K. Weber, T. Čižmár, and M. A. Schmidt, “Analyzed trajectories of bead in dual fiber trap and fit results,” figshare (2019). [retrieved 8 October 2019] https://doi.org/10.6084/m9.figshare.11139881 .

2018 (3)

2017 (1)

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref]

2016 (2)

2015 (1)

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

2014 (2)

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschii, O. Vitrik, and Y. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014).
[Crossref]

2012 (3)

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref]

B. M. Lansdorp and O. A. Saleh, “Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments,” Rev. Sci. Instrum. 83(2), 025115 (2012).
[Crossref]

M. E. Solmaz, R. Biswas, S. Sankhagowit, J. R. Thompson, C. A. Mejia, N. Malmstadt, and M. L. Povinelli, “Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap,” Biomed. Opt. Express 3(10), 2419–2427 (2012).
[Crossref]

2010 (2)

S. F. Nórrelykke and H. Flyvberg, “Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers,” Rev. Sci. Instrum. 81(7), 075103 (2010).
[Crossref]

A. van der Horst and N. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18(8), 7670–7677 (2010).
[Crossref]

2009 (1)

T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6(11), 831–835 (2009).
[Crossref]

2007 (1)

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

2006 (4)

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006).
[Crossref]

W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating and optical trap in the presence of motion blur,” Opt. Express 14(25), 12517–12531 (2006).
[Crossref]

M. Balci and H. Foroosh, “Subpixel estimation of shifts directly in the fourier domain,” IEEE Trans. on Image Process. 15(7), 1965–1972 (2006).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

2005 (1)

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

2004 (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]

K. Berg-Sórensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]

1997 (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[Crossref]

1993 (3)

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a-fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[Crossref]

1989 (1)

J. P. Barton, D. R. Alexander, and S. H. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

1986 (1)

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental Observation of Optically Trapped Atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref]

1979 (1)

1970 (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

1967 (1)

P. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms,” IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967).
[Crossref]

Abbondanzieri, E. A.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. H. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

Allen, F. I.

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental Observation of Optically Trapped Atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref]

A. Ashkin and J. P. Gordon, “Cooling and trapping of atoms by resonance radiation pressure,” Opt. Lett. 4(6), 161–163 (1979).
[Crossref]

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Balci, M.

M. Balci and H. Foroosh, “Subpixel estimation of shifts directly in the fourier domain,” IEEE Trans. on Image Process. 15(7), 1965–1972 (2006).
[Crossref]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. H. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

Berg-Sórensen, K.

K. Berg-Sórensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Berns, M. W.

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[Crossref]

Beugnon, J.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Biswas, R.

Bjorkholm, J. E.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental Observation of Optically Trapped Atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref]

Block, S. M.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

Browaeys, A.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental Observation of Optically Trapped Atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref]

Cabrini, S.

Calafiore, G.

Chemla, Y. R.

T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6(11), 831–835 (2009).
[Crossref]

Chu, S.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental Observation of Optically Trapped Atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref]

Chubiz, L. M.

T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6(11), 831–835 (2009).
[Crossref]

Cižmár, T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

M. Plidschun, S. Weidlich, M. Šiler, K. Weber, T. Čižmár, and M. A. Schmidt, “Analyzed trajectories of bead in dual fiber trap and fit results,” figshare (2019). [retrieved 8 October 2019] https://doi.org/10.6084/m9.figshare.11139881 .

Constable, A.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]

Cuschieri, A.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Dholakia, K.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006).
[Crossref]

Dhuey, S.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

Evensen, L.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7(1), 10974 (2016).
[Crossref]

Faez, S.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

Fenaroli, F.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7(1), 10974 (2016).
[Crossref]

Flyvberg, H.

S. F. Nórrelykke and H. Flyvberg, “Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers,” Rev. Sci. Instrum. 81(7), 075103 (2010).
[Crossref]

K. Berg-Sórensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Forde, N.

Foroosh, H.

M. Balci and H. Foroosh, “Subpixel estimation of shifts directly in the fourier domain,” IEEE Trans. on Image Process. 15(7), 1965–1972 (2006).
[Crossref]

Gaëtan, A.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Garcés-Chávez, V.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for Raman microspectroscopy of single cells,” Opt. Express 14(12), 5779–5791 (2006).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

Garmann, R. F.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[Crossref]

Golding, I.

T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6(11), 831–835 (2009).
[Crossref]

Gordon, J. P.

Grangier, P.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Greenleaf, W. J.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

Grier, D. G.

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref]

Griffiths, G.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7(1), 10974 (2016).
[Crossref]

Guck, J.

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]

Gurbatov, S.

Halvorsen, K.

Herrington, C. S.

Horn, R. A.

R. A. Horn, “The Hadamard Product,” in Matrix Theory and Applications, C. R. Johnson, ed. (American Mathematical Society, 1990), pp. 87–170.

Ho-Thanh, M.-T.

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref]

Jess, P. R. T.

Jiang, X.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Johansen, P. L.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7(1), 10974 (2016).
[Crossref]

Jones, M. P. A.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]

Kim, J.

Koshelev, A.

Koster, G.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7(1), 10974 (2016).
[Crossref]

Kreysing, M.

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

Kuchmizhak, A.

Kulchin, Y.

Lahini, Y.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

Lance, A. M.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Landick, R.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[Crossref]

Lansdorp, B. M.

B. M. Lansdorp and O. A. Saleh, “Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments,” Rev. Sci. Instrum. 83(2), 025115 (2012).
[Crossref]

Leite, I. T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Liu, Y.

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref]

Lum, P.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]

Malmstadt, N.

Manoharan, V. N.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

Marion, H.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Martín-Badosa, E.

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

Mazilu, M.

Mears, P. J.

T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6(11), 831–835 (2009).
[Crossref]

Mejia, C. A.

Mervis, J.

Messin, G.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Min, T. L.

T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6(11), 831–835 (2009).
[Crossref]

Miroshnychenko, Y.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]

Munechika, K.

Nepomniaschii, A.

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]

Nórrelykke, S. F.

S. F. Nórrelykke and H. Flyvberg, “Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers,” Rev. Sci. Instrum. 81(7), 075103 (2010).
[Crossref]

Orrit, M.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

Ott, D.

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

Otto, O.

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

Paterson, L.

Piña-Hernandez, C.

Plidschun, M.

H. Schneidewind, M. Zeisberger, M. Plidschun, S. Weidlich, and M. A. Schmidt, “Photonic Candle – focusing light using nano-bore optical fibers,” Opt. Express 26(24), 31706–31716 (2018).
[Crossref]

M. Plidschun, S. Weidlich, M. Šiler, K. Weber, T. Čižmár, and M. A. Schmidt, “Analyzed trajectories of bead in dual fiber trap and fit results,” figshare (2019). [retrieved 8 October 2019] https://doi.org/10.6084/m9.figshare.11139881 .

Povinelli, M. L.

Prentiss, M.

Rao, C. V.

T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6(11), 831–835 (2009).
[Crossref]

Reul, D.

Riches, A.

Ruffner, D. B.

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref]

Russell, P. S. J.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Saleh, O. A.

B. M. Lansdorp and O. A. Saleh, “Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments,” Rev. Sci. Instrum. 83(2), 025115 (2012).
[Crossref]

Sankhagowit, S.

Sassolini, S.

Schaarschmidt, K.

Schaub, S. H.

J. P. Barton, D. R. Alexander, and S. H. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

Schmidberger, M. J.

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

Schmidt, M. A.

H. Schneidewind, M. Zeisberger, M. Plidschun, S. Weidlich, and M. A. Schmidt, “Photonic Candle – focusing light using nano-bore optical fibers,” Opt. Express 26(24), 31706–31716 (2018).
[Crossref]

K. Schaarschmidt, S. Weidlich, D. Reul, and M. A. Schmidt, “Bending losses and modal properties of nano-bore optical fibers,” Opt. Lett. 43(17), 4192–4195 (2018).
[Crossref]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

M. Plidschun, S. Weidlich, M. Šiler, K. Weber, T. Čižmár, and M. A. Schmidt, “Analyzed trajectories of bead in dual fiber trap and fit results,” figshare (2019). [retrieved 8 October 2019] https://doi.org/10.6084/m9.figshare.11139881 .

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

Schneidewind, H.

Schürmann, M.

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

Šerý, M.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

Shaevitz, J. W.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

Sibbett, W.

Šiler, M.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

M. Plidschun, S. Weidlich, M. Šiler, K. Weber, T. Čižmár, and M. A. Schmidt, “Analyzed trajectories of bead in dual fiber trap and fit results,” figshare (2019). [retrieved 8 October 2019] https://doi.org/10.6084/m9.figshare.11139881 .

Smith, D.

Solmaz, M. E.

Sonek, G. J.

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[Crossref]

Sortais, Y. R. P.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Stamnes, J. J.

J. J. Stamnes, Waves in Focal Regions (Taylor & Francis Group, 1986).

Svoboda, K.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

Thompson, J. R.

Ti, C.

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref]

Tuchendler, C.

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Turtaev, S.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

van der Horst, A.

Vitrik, O.

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[Crossref]

Weber, K.

M. Plidschun, S. Weidlich, M. Šiler, K. Weber, T. Čižmár, and M. A. Schmidt, “Analyzed trajectories of bead in dual fiber trap and fit results,” figshare (2019). [retrieved 8 October 2019] https://doi.org/10.6084/m9.figshare.11139881 .

Weidlich, S.

H. Schneidewind, M. Zeisberger, M. Plidschun, S. Weidlich, and M. A. Schmidt, “Photonic Candle – focusing light using nano-bore optical fibers,” Opt. Express 26(24), 31706–31716 (2018).
[Crossref]

K. Schaarschmidt, S. Weidlich, D. Reul, and M. A. Schmidt, “Bending losses and modal properties of nano-bore optical fibers,” Opt. Lett. 43(17), 4192–4195 (2018).
[Crossref]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

M. Plidschun, S. Weidlich, M. Šiler, K. Weber, T. Čižmár, and M. A. Schmidt, “Analyzed trajectories of bead in dual fiber trap and fit results,” figshare (2019). [retrieved 8 October 2019] https://doi.org/10.6084/m9.figshare.11139881 .

Welch, P.

P. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms,” IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967).
[Crossref]

Wen, Q.

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref]

Whyte, G.

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

Wondraczek, K.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

Wong, E.

Wong, W. P.

Wright, W. H.

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[Crossref]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[Crossref]

Zarinetchi, F.

Zeisberger, M.

H. Schneidewind, M. Zeisberger, M. Plidschun, S. Weidlich, and M. A. Schmidt, “Photonic Candle – focusing light using nano-bore optical fibers,” Opt. Express 26(24), 31706–31716 (2018).
[Crossref]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

Zemánek, P.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

ACS Nano (1)

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63(6), 715–717 (1993).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (2)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[Crossref]

IEEE Trans. Audio Electroacoust. (1)

P. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms,” IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967).
[Crossref]

IEEE Trans. on Image Process. (1)

M. Balci and H. Foroosh, “Subpixel estimation of shifts directly in the fourier domain,” IEEE Trans. on Image Process. 15(7), 1965–1972 (2006).
[Crossref]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. H. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[Crossref]

Nat. Commun. (2)

M. Kreysing, D. Ott, M. J. Schmidberger, O. Otto, M. Schürmann, E. Martín-Badosa, G. Whyte, and J. Guck, “Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cell,” Nat. Commun. 5(1), 5481 (2014).
[Crossref]

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7(1), 10974 (2016).
[Crossref]

Nat. Methods (1)

T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6(11), 831–835 (2009).
[Crossref]

Nat. Photonics (1)

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. S. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Nat. Phys. (1)

J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3(10), 696–699 (2007).
[Crossref]

Nature (2)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (1)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006).
[Crossref]

Phys. Rev. Lett. (3)

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental Observation of Optically Trapped Atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref]

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Rev. Sci. Instrum. (4)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]

B. M. Lansdorp and O. A. Saleh, “Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments,” Rev. Sci. Instrum. 83(2), 025115 (2012).
[Crossref]

K. Berg-Sórensen and H. Flyvberg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

S. F. Nórrelykke and H. Flyvberg, “Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers,” Rev. Sci. Instrum. 81(7), 075103 (2010).
[Crossref]

Sci. Rep. (1)

C. Ti, M.-T. Ho-Thanh, Q. Wen, and Y. Liu, “Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System,” Sci. Rep. 7(1), 13168 (2017).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

Other (5)

Nobel Media AB, “Arthur Ashkin – Nobel Lecture,” https://www.nobelprize.org/prizes/physics/2018/ashkin/lecture .

R. A. Horn, “The Hadamard Product,” in Matrix Theory and Applications, C. R. Johnson, ed. (American Mathematical Society, 1990), pp. 87–170.

J. J. Stamnes, Waves in Focal Regions (Taylor & Francis Group, 1986).

Thorlabs Inc., “Single Mode Fiber,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=949 .

M. Plidschun, S. Weidlich, M. Šiler, K. Weber, T. Čižmár, and M. A. Schmidt, “Analyzed trajectories of bead in dual fiber trap and fit results,” figshare (2019). [retrieved 8 October 2019] https://doi.org/10.6084/m9.figshare.11139881 .

Supplementary Material (3)

NameDescription
» Dataset 1       Analyzed trajectories of bead in dual fiber trap and fit results,
» Visualization 1       Sample video with reduced frame rate of a 2µm silica bead trapped with two nanobore fibers at d=20µm separation.
» Visualization 2       Compressed sample video of trapped microbead between two single mode fibers set to 20µm inter-fiber distance.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The dual nanobore fiber optical trap. (a) Sketch of the trap consisting of two oppositely facing nanobore fibers. The colored distribution between the fibers resembles the intensity profile that results from overlapping both focus spots, leading to a maximum in the center of the trap. The gray object in the center is a 2 µm silica bead (fiber outer diameter not to scale). (b) Scanning electron micrograph (SEM) image of the cross-section of the used fiber (dark grey: silica, light grey: GeO$_2$-doped silica, black: air). (c) Intensity profile of the guided mode inside the nanobore fiber. (d) Selection of simulated circular cross-sections of the intensity profiles at different distances from the fiber end face ($z=3$ µm: center minimum increased to unity, $z=7$ µm: focus spot, $z=16$ µm: diverging Gaussian beam).
Fig. 2.
Fig. 2. Comparison of simulated intensity profiles as well as their differences inside the dual fiber trap, emerging from the overlap of output beams at a separation of $d=20$ µm ((a) NBF, (b) SMF, $\lambda =635\,\mathrm{nm}$, medium between the fibers: water). Optical trapping is possible where the intensity difference vanishes (blue), i.e., forces are balanced. The insets show the evolution of intensity distributions along the radial direction of the left fiber at different locations inside the trap (indicated by the arrows).
Fig. 3.
Fig. 3. Simulated optical trap stiffness $\boldsymbol {\kappa }(d,2R)$ at the equilibrium point $\boldsymbol {x}_0=(0,\;d/2)$ as a function of fiber separation $d$ and particle diameter $2R$ ((a) NBF, $\kappa _\perp$; (b) SMF, $\kappa _\perp$; (c) NBF, $\kappa _{||}$; (d) SMF, $\kappa _{||}$). The color scale represents actual stiffness values given in pN/µm$\cdot$mW$^{-1}$.
Fig. 4.
Fig. 4. Setup and experimental procedure used to analyze the properties of the dual fiber trap. (a) Sketch of the experimental setup consisting of a trapping laser, two fiber samples, liquid chamber and an imaging section with Köhler illumination including a fast camera. (b) Representative microscope image example of a 2 µm silica bead trapped with two NBFs at $d=30$ µm. Clearly visible is the water-filled bore (see Visualization 1 and Visualization 2 for sample videos). (c) Example of the tracked particle displacement ($d=10$ µm) plotted as a 2D histogram. The color scale is the bead’s density of occurrence at one specific spatial point over the entire trajectory length. Curves are projections of the data points on their respective axes, showing the corresponding one-dimensional distributions.
Fig. 5.
Fig. 5. Evaluation and fitting of measured and post-processed data, shown for the example of $d=10$ µm. (a) Power spectrum $|\tilde {X}_{d,\perp }(f)|^2$ in transverse direction calculated from a tracked trajectory $x_{d,\perp }(t)$ for the NBF. Visible is a $1/f^2$-falloff at high frequencies as a result of free diffusion and a plateau for low frequencies due to bead confinement in the optical trap. Their respective tangents’ intersection yields the corner frequency $f_{\textrm {c}}$. The magenta curve refers to a close to Lorentzian shape maximum likelihood estimate (MLE, for details see main text). (b) Optical trap stiffness $\boldsymbol {\kappa }_{\textrm {trap}}(P_{\textrm {out}})$ as a function of output power $P_{\textrm {out}}$ ($d=10$ µm) (cyan: NBF, magenta: SMF; solid (dashed) lines: $\kappa _\perp$ ($\kappa _{||}$). Normalized power stiffness $\langle \boldsymbol {\kappa }_{\textrm {trap}}/P_{\textrm {out}}\rangle$ is obtained by linear fitting the data points (see Dataset 1 [39] for underlying data).
Fig. 6.
Fig. 6. Comparison of the power-normalized stiffness as a function of fiber separation for both types of fiber traps (cyan: NBF, magenta: SMF). The two left-handed columns refer to the two data processing methods ((a) power spectrum method, (b) equipartition theorem, while (c) shows the corresponding simulations). The top row refers to transverse stiffness $\kappa _\perp$, the bottom to axial stiffness $\kappa _{||}$. Error bars in (a) and (b) indicate tolerances obtained by the fits (see Dataset 1 [39]) for underlying data).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F ( x 0 + Δ x ) = F ( x 0 ) F T 1 { e 2 π i k Δ x } ,
min Δ x ( | F ( x 0 + Δ x ) F ( x 0 Δ x ) | 2 ) .
ρ trap ( x d ( t ) ) e x p ( κ x d 2 ( t ) 2 k B T ) .
P i ( f ) = | X ~ d , i ( f ) | 2 D / ( 2 π 2 ) f c 2 + f 2 ,
χ i 2 = j ( P i , j ( exp ) P i , j ( fit ) + ln P i , j ( fit ) ) .

Metrics