Abstract

In the temperature monitoring field, the Raman Distributed Temperature Sensor (R-DTS) is required with a temperature accuracy better than 1 °C over a long distance. This paper proposes and experimentally demonstrates an R-DTS system based on the difference sensitive-temperature compensation to optimize the temperature accuracy with the enhanced temperature sensitivity of backscattered spontaneous Raman scattering. While operating in the experiment, the distributed temperature measurement and theory analysis use the dual-demodulation, self-demodulation and double-end configuration principles for R-DTS are demonstrated. The experimental results show that the temperature accuracy is 12.54 °C, 8.53 °C and 15.00 °C along the 10.8 km under the standard R-DTS systems, respectively. Further, we analyze and recalibrate the intensity of the Raman scattering signal in theory, and substitute the sensitive-temperature factor (M(L)) into the Raman scattering signal. Finally, a novel temperature demodulation method with difference sensitive-temperature compensation is applied to the dual-demodulation, self-demodulation, and double-end configuration R-DTS systems. After compensation, the temperature accuracy can be optimized to 0.38 °C, 0.36 °C and 0.56 °C at the same position. It proves that the proposed method can make the temperature accuracy better than 1 °C for these three demodulation systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature accuracy and resolution improvement for a Raman distributed fiber-optics sensor by using the Rayleigh noise suppression method

Baoqiang Yan, Jian Li, Mingjiang Zhang, Yang Xu, Tao Yu, Jianzhong Zhang, Lijun Qiao, and Tao Wang
Appl. Opt. 59(1) 22-27 (2020)

Attenuation calibration method based on sensitivity correction in a Raman distributed temperature system

Jianchun Xia, Li Xia, Zhao Yang, and Panli Huang
Appl. Opt. 59(2) 300-305 (2020)

Few-mode fiber based Raman distributed temperature sensing

Meng Wang, Hao Wu, Ming Tang, Zhiyong Zhao, Yunli Dang, Can Zhao, Ruolin Liao, Wen Chen, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(5) 4907-4916 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
    [Crossref]
  2. “Technology Focus: Optical-fiber sensors,” Nat. Photonics2(3), 143–148 (2008).
  3. M. Wang, H. Wu, M. Tangg, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode fiber based Raman distributed temperature sensing,” Opt. Express 25(5), 4907–4916 (2017).
    [Crossref]
  4. J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, B. Q. Jin, Y. Wang, and D. Wang, “Long-Range Raman Distributed Fiber Temperature Sensor with Early Warning Model for Fire Detection and Prevention,” IEEE Sensors J. 19(10), 3711–3717 (2019).
    [Crossref]
  5. J. D. Zhang, T. Zhu, H. Zhou, S. H. Huang, M. Liu, and W. Huang, “High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses,” Opt. Express 24(24), 27482–27493 (2016).
    [Crossref]
  6. A. P. Engelhardt, J. S. Kolb, and F. Roemer, “Temperature-dependent investigation of carrier transport, injection, and densities in AlGaAs-based multi-quantum-well active layers for vertical-cavity surface-emitting lasers,” Opt. Eng. 54(1), 016107 (2015).
    [Crossref]
  7. L. Ren, T. Jiang, and Z. G. Jia, “Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology,” Measurement 122, 57–65 (2018).
    [Crossref]
  8. D. Hwang, D. J. Yoon, I. B. Kwon, D. C. Seo, and Y. Chung, “Novel auto-correctin method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering,” Opt. Express 18(10), 9747–9754 (2010).
    [Crossref]
  9. Y. Chen, M. Lin, W. Tong, W. J. Tong, and Z. Y. He, “Long-range Raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber,” Opt. Express 26(16), 20562–20571 (2018).
    [Crossref]
  10. J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, L. J. Qiao, and T. Wang, “Auto-correction method for improving temperature stability in a long-range Raman fiber temperature sensor,” Appl. Opt. 58(1), 37–42 (2019).
    [Crossref]
  11. K. P. Hilgersom, N. C. van de Giesen, P. G. B. de Louw, and M. Zijlema, “Three-dimensional dense distributed temperature sensing for measuring layered thermohaline systems,” Water Resour. Res. 52(8), 6656–6670 (2016).
    [Crossref]
  12. B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
    [Crossref]
  13. M. Sun, Y. Q. Tang, Y. Shuang, J. Li, M. W. Sigist, and F. Z. Dong, “Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System,” Sensors 16(6), 829 (2016).
    [Crossref]
  14. B. Torres, “Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test,” Opt. Eng. 50(12), 124404 (2011).
    [Crossref]
  15. T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Frequency-domain fluorescence based fiber optic fire alarm system,” Rev. Sci. Instrum. 72(4), 2191–2196 (2001).
    [Crossref]
  16. M. K. Saxena, S. D. V. S. J. Raju, R. Arya, S. V. G. Ravindranath, S. Kher, and S. M. Oaka, “Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals,” Measurement 47(1), 345–355 (2014).
    [Crossref]
  17. G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010).
    [Crossref]
  18. M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
    [Crossref]
  19. J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
    [Crossref]
  20. Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
    [Crossref]
  21. J. Li, Y. Xu, M. J. Zhang, J. Z. Zhang, L. J. Qiao, and T. Wang, “Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion,” Chin. Opt. Lett. 17(7), 070602 (2019).
    [Crossref]
  22. M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
    [Crossref]
  23. P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fiber optic distributed temperature sensors,” Opt. Commun. 144(1-3), 17–23 (1997).
    [Crossref]
  24. A. L. Chakraborty, R. K. Sharma, M. K. Saxena, and S. Kher, “Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor,” Opt. Commun. 274(2), 396–402 (2007).
    [Crossref]
  25. J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
    [Crossref]
  26. Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
    [Crossref]
  27. M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, and G. Bolognini, “High-Performance Raman-Based Distributed Fiber-Optic Sensing Under a Loop Scheme Using Anti-Stokes Light Only,” IEEE Photon. Technol. Lett. 23(9), 534–536 (2011).
    [Crossref]
  28. M. A. Soto, A. Signori, T. Nannipieri, S. Faralli, G. Bolognini, and F. D. Pasquale, “Impact of Loss Variations on Double-Ended Distributed Temperature Sensors Based on Raman Anti-Stokes Signal Only,” J. Lightwave Technol. 30(8), 1215–1222 (2012).
    [Crossref]

2019 (3)

2018 (3)

L. Ren, T. Jiang, and Z. G. Jia, “Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology,” Measurement 122, 57–65 (2018).
[Crossref]

Y. Chen, M. Lin, W. Tong, W. J. Tong, and Z. Y. He, “Long-range Raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber,” Opt. Express 26(16), 20562–20571 (2018).
[Crossref]

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

2017 (1)

2016 (5)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref]

J. D. Zhang, T. Zhu, H. Zhou, S. H. Huang, M. Liu, and W. Huang, “High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses,” Opt. Express 24(24), 27482–27493 (2016).
[Crossref]

K. P. Hilgersom, N. C. van de Giesen, P. G. B. de Louw, and M. Zijlema, “Three-dimensional dense distributed temperature sensing for measuring layered thermohaline systems,” Water Resour. Res. 52(8), 6656–6670 (2016).
[Crossref]

M. Sun, Y. Q. Tang, Y. Shuang, J. Li, M. W. Sigist, and F. Z. Dong, “Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System,” Sensors 16(6), 829 (2016).
[Crossref]

M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
[Crossref]

2015 (2)

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

A. P. Engelhardt, J. S. Kolb, and F. Roemer, “Temperature-dependent investigation of carrier transport, injection, and densities in AlGaAs-based multi-quantum-well active layers for vertical-cavity surface-emitting lasers,” Opt. Eng. 54(1), 016107 (2015).
[Crossref]

2014 (1)

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, S. V. G. Ravindranath, S. Kher, and S. M. Oaka, “Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals,” Measurement 47(1), 345–355 (2014).
[Crossref]

2013 (2)

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

2012 (1)

2011 (3)

M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, and G. Bolognini, “High-Performance Raman-Based Distributed Fiber-Optic Sensing Under a Loop Scheme Using Anti-Stokes Light Only,” IEEE Photon. Technol. Lett. 23(9), 534–536 (2011).
[Crossref]

B. Torres, “Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test,” Opt. Eng. 50(12), 124404 (2011).
[Crossref]

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]

2010 (2)

2007 (1)

A. L. Chakraborty, R. K. Sharma, M. K. Saxena, and S. Kher, “Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor,” Opt. Commun. 274(2), 396–402 (2007).
[Crossref]

2006 (1)

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

2001 (1)

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Frequency-domain fluorescence based fiber optic fire alarm system,” Rev. Sci. Instrum. 72(4), 2191–2196 (2001).
[Crossref]

1997 (1)

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fiber optic distributed temperature sensors,” Opt. Commun. 144(1-3), 17–23 (1997).
[Crossref]

Arya, R.

M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
[Crossref]

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, S. V. G. Ravindranath, S. Kher, and S. M. Oaka, “Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals,” Measurement 47(1), 345–355 (2014).
[Crossref]

Baronti, F.

Bolognini, G.

Chakraborty, A. L.

A. L. Chakraborty, R. K. Sharma, M. K. Saxena, and S. Kher, “Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor,” Opt. Commun. 274(2), 396–402 (2007).
[Crossref]

Chang, J.

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

Chen, W.

Chen, Y.

Cho, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Chung, Y.

Dang, Y.

de Louw, P. G. B.

K. P. Hilgersom, N. C. van de Giesen, P. G. B. de Louw, and M. Zijlema, “Three-dimensional dense distributed temperature sensing for measuring layered thermohaline systems,” Water Resour. Res. 52(8), 6656–6670 (2016).
[Crossref]

Dong, F. Z.

M. Sun, Y. Q. Tang, Y. Shuang, J. Li, M. W. Sigist, and F. Z. Dong, “Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System,” Sensors 16(6), 829 (2016).
[Crossref]

Engelhardt, A. P.

A. P. Engelhardt, J. S. Kolb, and F. Roemer, “Temperature-dependent investigation of carrier transport, injection, and densities in AlGaAs-based multi-quantum-well active layers for vertical-cavity surface-emitting lasers,” Opt. Eng. 54(1), 016107 (2015).
[Crossref]

Faralli, S.

M. A. Soto, A. Signori, T. Nannipieri, S. Faralli, G. Bolognini, and F. D. Pasquale, “Impact of Loss Variations on Double-Ended Distributed Temperature Sensors Based on Raman Anti-Stokes Signal Only,” J. Lightwave Technol. 30(8), 1215–1222 (2012).
[Crossref]

M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, and G. Bolognini, “High-Performance Raman-Based Distributed Fiber-Optic Sensing Under a Loop Scheme Using Anti-Stokes Light Only,” IEEE Photon. Technol. Lett. 23(9), 534–536 (2011).
[Crossref]

Fu, S.

Grattan, K. T. V.

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Frequency-domain fluorescence based fiber optic fire alarm system,” Rev. Sci. Instrum. 72(4), 2191–2196 (2001).
[Crossref]

He, Z. Y.

Hilgersom, K. P.

K. P. Hilgersom, N. C. van de Giesen, P. G. B. de Louw, and M. Zijlema, “Three-dimensional dense distributed temperature sensing for measuring layered thermohaline systems,” Water Resour. Res. 52(8), 6656–6670 (2016).
[Crossref]

Huang, S. H.

Huang, W.

Hwang, D.

Jia, C. W.

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

Jia, Z. G.

L. Ren, T. Jiang, and Z. G. Jia, “Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology,” Measurement 122, 57–65 (2018).
[Crossref]

Jiang, S.

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

Jiang, T.

L. Ren, T. Jiang, and Z. G. Jia, “Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology,” Measurement 122, 57–65 (2018).
[Crossref]

Jin, B. Q.

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, B. Q. Jin, Y. Wang, and D. Wang, “Long-Range Raman Distributed Fiber Temperature Sensor with Early Warning Model for Fire Detection and Prevention,” IEEE Sensors J. 19(10), 3711–3717 (2019).
[Crossref]

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

Kher, S.

M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
[Crossref]

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, S. V. G. Ravindranath, S. Kher, and S. M. Oaka, “Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals,” Measurement 47(1), 345–355 (2014).
[Crossref]

A. L. Chakraborty, R. K. Sharma, M. K. Saxena, and S. Kher, “Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor,” Opt. Commun. 274(2), 396–402 (2007).
[Crossref]

Kim, P.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Kolb, J. S.

A. P. Engelhardt, J. S. Kolb, and F. Roemer, “Temperature-dependent investigation of carrier transport, injection, and densities in AlGaAs-based multi-quantum-well active layers for vertical-cavity surface-emitting lasers,” Opt. Eng. 54(1), 016107 (2015).
[Crossref]

Kwon, I. B.

Lazzeri, A.

Lee, D.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Li, J.

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, B. Q. Jin, Y. Wang, and D. Wang, “Long-Range Raman Distributed Fiber Temperature Sensor with Early Warning Model for Fire Detection and Prevention,” IEEE Sensors J. 19(10), 3711–3717 (2019).
[Crossref]

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, L. J. Qiao, and T. Wang, “Auto-correction method for improving temperature stability in a long-range Raman fiber temperature sensor,” Appl. Opt. 58(1), 37–42 (2019).
[Crossref]

J. Li, Y. Xu, M. J. Zhang, J. Z. Zhang, L. J. Qiao, and T. Wang, “Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion,” Chin. Opt. Lett. 17(7), 070602 (2019).
[Crossref]

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

M. Sun, Y. Q. Tang, Y. Shuang, J. Li, M. W. Sigist, and F. Z. Dong, “Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System,” Sensors 16(6), 829 (2016).
[Crossref]

Li, Y.

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

Li, Y. T.

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

Lian Z, J.

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Liao, R.

Lin, M.

Liu, D.

Liu, M.

Liu, X. H.

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

Liu, X. Z.

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Liu, Y. N.

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

Liu, Z.

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Luo, S.

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

Lv, G. P.

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

Nannipieri, T.

Newson, T. P.

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fiber optic distributed temperature sensors,” Opt. Commun. 144(1-3), 17–23 (1997).
[Crossref]

Oak, S. M.

M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
[Crossref]

Oaka, S. M.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, S. V. G. Ravindranath, S. Kher, and S. M. Oaka, “Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals,” Measurement 47(1), 345–355 (2014).
[Crossref]

Pachor, R. B.

M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
[Crossref]

Park, J.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Park, N.

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

Pasquale, F. D.

Pavindranath, S.

M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
[Crossref]

Qiao, L. J.

Raju, S. D. V. S. J.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, S. V. G. Ravindranath, S. Kher, and S. M. Oaka, “Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals,” Measurement 47(1), 345–355 (2014).
[Crossref]

Raju, S. J.

M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
[Crossref]

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref]

Ravindranath, S. V. G.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, S. V. G. Ravindranath, S. Kher, and S. M. Oaka, “Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals,” Measurement 47(1), 345–355 (2014).
[Crossref]

Ren, L.

L. Ren, T. Jiang, and Z. G. Jia, “Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology,” Measurement 122, 57–65 (2018).
[Crossref]

Roemer, F.

A. P. Engelhardt, J. S. Kolb, and F. Roemer, “Temperature-dependent investigation of carrier transport, injection, and densities in AlGaAs-based multi-quantum-well active layers for vertical-cavity surface-emitting lasers,” Opt. Eng. 54(1), 016107 (2015).
[Crossref]

Roncella, R.

Saxena, M. K.

M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
[Crossref]

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, S. V. G. Ravindranath, S. Kher, and S. M. Oaka, “Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals,” Measurement 47(1), 345–355 (2014).
[Crossref]

A. L. Chakraborty, R. K. Sharma, M. K. Saxena, and S. Kher, “Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor,” Opt. Commun. 274(2), 396–402 (2007).
[Crossref]

Seo, D. C.

Sharma, R. K.

A. L. Chakraborty, R. K. Sharma, M. K. Saxena, and S. Kher, “Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor,” Opt. Commun. 274(2), 396–402 (2007).
[Crossref]

Shuang, Y.

M. Sun, Y. Q. Tang, Y. Shuang, J. Li, M. W. Sigist, and F. Z. Dong, “Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System,” Sensors 16(6), 829 (2016).
[Crossref]

Shum, P. P.

Sigist, M. W.

M. Sun, Y. Q. Tang, Y. Shuang, J. Li, M. W. Sigist, and F. Z. Dong, “Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System,” Sensors 16(6), 829 (2016).
[Crossref]

Signori, A.

Signorini, A.

M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, and G. Bolognini, “High-Performance Raman-Based Distributed Fiber-Optic Sensing Under a Loop Scheme Using Anti-Stokes Light Only,” IEEE Photon. Technol. Lett. 23(9), 534–536 (2011).
[Crossref]

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref]

Soto, M. A.

Souza, K. D.

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fiber optic distributed temperature sensors,” Opt. Commun. 144(1-3), 17–23 (1997).
[Crossref]

Sun, B.

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

Sun, B. N.

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

Sun, M.

M. Sun, Y. Q. Tang, Y. Shuang, J. Li, M. W. Sigist, and F. Z. Dong, “Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System,” Sensors 16(6), 829 (2016).
[Crossref]

Sun, T.

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Frequency-domain fluorescence based fiber optic fire alarm system,” Rev. Sci. Instrum. 72(4), 2191–2196 (2001).
[Crossref]

Tang, Y. Q.

M. Sun, Y. Q. Tang, Y. Shuang, J. Li, M. W. Sigist, and F. Z. Dong, “Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System,” Sensors 16(6), 829 (2016).
[Crossref]

Tangg, M.

Thévenaz, L.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref]

Tong, W.

Tong, W. J.

Torres, B.

B. Torres, “Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test,” Opt. Eng. 50(12), 124404 (2011).
[Crossref]

van de Giesen, N. C.

K. P. Hilgersom, N. C. van de Giesen, P. G. B. de Louw, and M. Zijlema, “Three-dimensional dense distributed temperature sensing for measuring layered thermohaline systems,” Water Resour. Res. 52(8), 6656–6670 (2016).
[Crossref]

Wait, P. C.

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fiber optic distributed temperature sensors,” Opt. Commun. 144(1-3), 17–23 (1997).
[Crossref]

Wang, D.

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, B. Q. Jin, Y. Wang, and D. Wang, “Long-Range Raman Distributed Fiber Temperature Sensor with Early Warning Model for Fire Detection and Prevention,” IEEE Sensors J. 19(10), 3711–3717 (2019).
[Crossref]

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

Wang, L.

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Wang, M.

Wang, T.

Wang, W. J.

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Wang, Y.

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, B. Q. Jin, Y. Wang, and D. Wang, “Long-Range Raman Distributed Fiber Temperature Sensor with Early Warning Model for Fire Detection and Prevention,” IEEE Sensors J. 19(10), 3711–3717 (2019).
[Crossref]

Wang, Z. L.

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

Wei, W.

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Wu, H.

Xu, Y.

Yan, B. Q.

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, B. Q. Jin, Y. Wang, and D. Wang, “Long-Range Raman Distributed Fiber Temperature Sensor with Early Warning Model for Fire Detection and Prevention,” IEEE Sensors J. 19(10), 3711–3717 (2019).
[Crossref]

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, L. J. Qiao, and T. Wang, “Auto-correction method for improving temperature stability in a long-range Raman fiber temperature sensor,” Appl. Opt. 58(1), 37–42 (2019).
[Crossref]

Yan, Q.

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

Yang, C.

Yoon, D. J.

Zhang, J. D.

Zhang, J. Z.

Zhang, M. J.

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, B. Q. Jin, Y. Wang, and D. Wang, “Long-Range Raman Distributed Fiber Temperature Sensor with Early Warning Model for Fire Detection and Prevention,” IEEE Sensors J. 19(10), 3711–3717 (2019).
[Crossref]

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, L. J. Qiao, and T. Wang, “Auto-correction method for improving temperature stability in a long-range Raman fiber temperature sensor,” Appl. Opt. 58(1), 37–42 (2019).
[Crossref]

J. Li, Y. Xu, M. J. Zhang, J. Z. Zhang, L. J. Qiao, and T. Wang, “Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion,” Chin. Opt. Lett. 17(7), 070602 (2019).
[Crossref]

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

Zhang, S.

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

Zhang, S. S.

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Zhang, Z. Y.

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Frequency-domain fluorescence based fiber optic fire alarm system,” Rev. Sci. Instrum. 72(4), 2191–2196 (2001).
[Crossref]

Zhang B, J. Z.

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

Zhao, C.

Zhao, Z.

Zhou, H.

Zhou, S.

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

Zhu, T.

Zijlema, M.

K. P. Hilgersom, N. C. van de Giesen, P. G. B. de Louw, and M. Zijlema, “Three-dimensional dense distributed temperature sensing for measuring layered thermohaline systems,” Water Resour. Res. 52(8), 6656–6670 (2016).
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (2)

J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. D. Pasquale, and N. Park, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photon. Technol. Lett. 18(17), 1879–1881 (2006).
[Crossref]

M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, and G. Bolognini, “High-Performance Raman-Based Distributed Fiber-Optic Sensing Under a Loop Scheme Using Anti-Stokes Light Only,” IEEE Photon. Technol. Lett. 23(9), 534–536 (2011).
[Crossref]

IEEE Sens. J. (2)

M. K. Saxena, S. J. Raju, R. Arya, R. B. Pachor, S. Pavindranath, S. Kher, and S. M. Oak, “Empirical Mode Decomposition-Based Detection of Bend-Induced Error and Its Correction in a Raman Optical Fiber Distributed Temperature Sensor,” IEEE Sens. J. 16(5), 1243–1252 (2016).
[Crossref]

Z. L. Wang, J. Chang, S. Zhang, S. Luo, C. W. Jia, S. Jiang, B. Sun, Y. N. Liu, and G. P. Lv, “An Improved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima,” IEEE Sens. J. 15(2), 1061–1067 (2015).
[Crossref]

IEEE Sensors J. (1)

J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, B. Q. Jin, Y. Wang, and D. Wang, “Long-Range Raman Distributed Fiber Temperature Sensor with Early Warning Model for Fire Detection and Prevention,” IEEE Sensors J. 19(10), 3711–3717 (2019).
[Crossref]

J. Lightwave Technol. (1)

Measurement (2)

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, S. V. G. Ravindranath, S. Kher, and S. M. Oaka, “Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals,” Measurement 47(1), 345–355 (2014).
[Crossref]

L. Ren, T. Jiang, and Z. G. Jia, “Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology,” Measurement 122, 57–65 (2018).
[Crossref]

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7(1), 10870 (2016).
[Crossref]

Opt. Commun. (3)

B. N. Sun, J. Chang, J. Lian Z, L. Wang, G. P. Lv, X. Z. Liu, W. J. Wang, S. Zhou, W. Wei, S. Jiang, Y. N. Liu, S. Luo, X. H. Liu, Z. Liu, and S. S. Zhang, “Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact,” Opt. Commun. 306, 117–120 (2013).
[Crossref]

P. C. Wait, K. D. Souza, and T. P. Newson, “A theoretical comparison of spontaneous Raman and Brillouin based fiber optic distributed temperature sensors,” Opt. Commun. 144(1-3), 17–23 (1997).
[Crossref]

A. L. Chakraborty, R. K. Sharma, M. K. Saxena, and S. Kher, “Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor,” Opt. Commun. 274(2), 396–402 (2007).
[Crossref]

Opt. Eng. (2)

B. Torres, “Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test,” Opt. Eng. 50(12), 124404 (2011).
[Crossref]

A. P. Engelhardt, J. S. Kolb, and F. Roemer, “Temperature-dependent investigation of carrier transport, injection, and densities in AlGaAs-based multi-quantum-well active layers for vertical-cavity surface-emitting lasers,” Opt. Eng. 54(1), 016107 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

Z. L. Wang, S. S. Zhang, J. Chang, G. P. Lv, W. J. Wang, S. Jiang, X. Z. Liu, X. H. Liu, S. Luo, B. N. Sun, and Y. N. Liu, “Attenuation auto-correction method in Raman distributed temperature measurement system,” Opt. Quantum Electron. 45(10), 1087–1094 (2013).
[Crossref]

Photonic Sens. (1)

J. Li, Y. T. Li, M. J. Zhang, Y. Li, J. Z. Zhang B, Q. Yan, D. Wang, and B. Q. Jin, “Performance improvement of Raman distributed temperature system by using noise suppression,” Photonic Sens. 8(2), 103–113 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Frequency-domain fluorescence based fiber optic fire alarm system,” Rev. Sci. Instrum. 72(4), 2191–2196 (2001).
[Crossref]

Sensors (1)

M. Sun, Y. Q. Tang, Y. Shuang, J. Li, M. W. Sigist, and F. Z. Dong, “Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System,” Sensors 16(6), 829 (2016).
[Crossref]

Water Resour. Res. (1)

K. P. Hilgersom, N. C. van de Giesen, P. G. B. de Louw, and M. Zijlema, “Three-dimensional dense distributed temperature sensing for measuring layered thermohaline systems,” Water Resour. Res. 52(8), 6656–6670 (2016).
[Crossref]

Other (1)

“Technology Focus: Optical-fiber sensors,” Nat. Photonics2(3), 143–148 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. The experimental setup based on dual-demodulation principle. APD: avalanche photodiode; Amp: amplifier; DAC: high-speed data acquisition card.
Fig. 2.
Fig. 2. The temperature measurement results of overall distribution based on dual-demodulation principle under the (a) 42.64 °C, (b) 52.64 °C, (c) 61.97°C, (d) 71.95 °C, (e) 81.33 °C and (f) 90.60 °C. The temperature demodulation results at the position of (g) 1.5 km, (h) 9.6 km, and (i) 10.8 km.
Fig. 3.
Fig. 3. The experimental results of temperature measurement accuracy at the (a1) 1.5 km, (a2) 5.6 km and (a3) 10.8 km before calibration. The experimental results of temperature measurement accuracy at (b1) 1.5 km, (b2) 5.6 km and (b3) 10.8 km after calibration.
Fig. 4.
Fig. 4. The experimental setup based on self-demodulation principle. APD: avalanche photodiode; Amp: amplifier; DAC: high-speed data acquisition card.
Fig. 5.
Fig. 5. The temperature measurement result of overall distribution based on self-demodulation under the (a) 42.64 °C, (b) 52.64 °C, (c) 61.97°C, (d) 71.95 °C, (e) 81.33 °C and (f) 90.60 °C. The temperature measurement result at the position of (g) 1.5 km, (h) 9.6 km, and (i) 10.8 km.
Fig. 6.
Fig. 6. The experimental results of temperature accuracy based on self-demodulation at (a1) 1.5 km, (a2) 5.6 km and (a3)10.8 km before calibration. The experimental results of temperature measurement accuracy at (b1) 1.5 km, (b2) 5.6 km and (b3)10.8 km after calibration.
Fig. 7.
Fig. 7. The experimental setup based on the double-ended principle. APD: avalanche photodiode; Amp: amplifier; DAC: high-speed data acquisition card.
Fig. 8.
Fig. 8. The temperature measurement result of overall distribution based on double-ended demodulation under the (a) 42.64 °C, (b) 52.64 °C, (c) 61.97°C, (d) 71.95 °C, (e) 81.33 °C and (f) 90.60 °C. The temperature measurement results at the position of (g) 1.5 km, (h) 9.6 km, and (i) 10.8 km.
Fig. 9.
Fig. 9. The experimental results of temperature measurement accuracy based on double-ended demodulation at (a1) 1.5 km, (a2) 5.6 km and (a3)10.8 km before calibration. The experimental results of temperature measurement accuracy at (b1) 1.5 km, (b2) 5.6 km and (b3) 10.8 km after calibration.

Tables (6)

Tables Icon

Table 1. The data of M at the difference sensing distances

Tables Icon

Table 2. The temperature accuracy based on dual-demodulation

Tables Icon

Table 3. The data of M at the difference sensing distances

Tables Icon

Table 4. The temperature accuracy based on self-demodulation

Tables Icon

Table 5. The data of sensitive-temperature factor at the difference sensing distances

Tables Icon

Table 6. The temperature accuracy based on double-ended demodulation

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ϕ a ϕ s = K a K s ( υ a υ s ) 4 exp ( h Δ v k T ) exp [ 0 L ( α s ( L ) α a ( L ) ) d L ] .
ϕ a c ϕ s c = K a K s ( υ a υ s ) 4 exp ( h Δ v k T c ) exp [ 0 L c ( α s ( L ) α a ( L ) ) d L ] .
ϕ a ϕ s ϕ s c ϕ a c = exp [ h Δ v k ( 1 T 1 T 0 ) ] exp [ L c L ( α s ( L ) α a ( L ) ) d L ] .
ϕ a o ϕ s o ϕ s c o ϕ a c o = exp [ h Δ v k ( 1 T o 1 T c o ) ] exp [ L c L ( α s ( L ) α a ( L ) ) d L ] .
T = 1 ( 1 T c + 1 T o 1 T c o ) k h Δ v ln ( ϕ s c o ϕ a o ϕ a c ϕ s ϕ a c o ϕ s o ϕ s c ϕ a ) .
ϕ a ϕ s = K a K s ( υ a υ s ) 4 exp ( M ( L ) h Δ v k T ) exp [ 0 L ( α s ( L ) α a ( L ) ) d L ] .
T = M ( L ) ( M ( L c ) T c + M ( L ) T o M ( L c o ) T c o ) k h Δ ν ln ( ϕ s c o ϕ a o ϕ a c ϕ s ϕ a c o ϕ s o ϕ s c ϕ a ) .
M ( L )  =  ( ϕ a ϕ s o ϕ s ϕ a o ) / ( ϕ a ϕ s o ϕ s ϕ a o ) ( h Δ ν k T o h Δ ν k T ) ( h Δ ν k T o h Δ ν k T ) .
T  = ln { [ exp ( h Δ ν / h Δ ν k T o k T o ) 1 ] [ exp ( h Δ ν / h Δ ν k T c k T c ) 1 ] [ exp ( h Δ ν / h Δ ν k T c o k T c o ) 1 ] ( ϕ a ϕ a c o ϕ a o ϕ a c ) + 1 } 1 ( h Δ ν / h Δ ν k k )
ϕ a = K a υ a 4 exp ( M ( L ) h Δ v k T 1 ) 1 exp [ 0 L ( α a ( L ) + α o ( L ) ) d L ] .
R ( T ) = ϕ a ϕ a o = exp ( M ( L ) h Δ υ / h Δ υ k T 0 k T 0 1 ) exp ( M ( L ) h Δ υ / h Δ υ k T k T 1 ) .
T  = ln { [ exp ( M ( L ) h Δ ν k T o ) 1 ] [ exp ( M ( L c ) h Δ ν k T c ) 1 ] [ exp ( M ( L c o ) h Δ ν k T c o ) 1 ] ( ϕ a ϕ a c o ϕ a o ϕ a c ) + 1 } 1 ( M ( L ) h Δ ν k ) .
1 T  =  [ ln ( R L o o p ( T , L ) R L o o p ( T o , L o ) ) ( k h Δ v ) ] + 1 T o .
ϕ a B ϕ s B = K a K s ( υ a υ s ) 4 exp ( M ( L ) h Δ v k T ) exp [ 0 L ( α s ( L ) α a ( L ) ) d L ] .
ϕ a F ϕ s F = K a K s ( υ a υ s ) 4 exp ( M ( l L ) h Δ v k T ) exp [ L l ( α s ( L ) α a ( L ) ) d L ] .
R L o o p ( T , L ) = ϕ a B ϕ s B ϕ a F ϕ s F = K a K s ( υ a υ s ) 4 exp ( h Δ v k T ( M ( L ) + M ( l L ) ) ) exp [ 0 l ( α s ( L ) α a ( L ) ) d L ] .
1 T = M ( L ) + M ( l L ) { [ M ( L ) + M ( l L ) ] / [ M ( L ) + M ( l L ) ] T o T o } { l n [ R L o o p ( T , L ) / R L o o p ( T , L ) R L o o p ( T o , L ) R L o o p ( T o , L ) ] ( k / k h Δ ν h Δ ν ) } .

Metrics