Abstract

Among five nucleobases, adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U), uracil is a key distinctive constituent existing only in ribonucleic acid (RNA). RNA shares the common A, G, and C with deoxyribonucleic acid (DNA) made of A-T, G-C hydrogen bonding. We explored a new attempt to combine uracil (U) with DNA, successfully realizing U-doped DNA thin solid films for the first time. Impacts of uracil on optical properties of the films were thoroughly investigated. The method was based on optimal spin-coating of an aqueous solution of DNA and uracil over silicon or silica substrates. Optical absorption of both aqueous solution and U-doped DNA thin solid films was characterized in a wide spectral range covering UV-visible-IR. Immobilization of uracil within DNA thin solid films was experimentally confirmed by FTIR spectroscopy studies. By using an ellipsometer, we measured the refractive indices of the films and discovered that U-doping was a very effective means to control optical dispersion DNA thin solid film. We further investigated thermo-optic behavior to find impacts of U-doping in DNA films. Detailed thin film processes and optical characterizations are discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films

Hayoung Jeong, Paulson Bjorn, Seongjin Hong, Seunguk Cheon, and Kyunghwan Oh
Photon. Res. 6(9) 918-924 (2018)

Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films

Woohyun Jung, Hwiseok Jun, Seongjin Hong, Bjorn Paulson, Yoon Sung Nam, and Kyunghwan Oh
Opt. Mater. Express 7(11) 3796-3808 (2017)

Selective mode excitation in dye-doped DNA polyvinyl alcohol thin film

Nithyaja Balan, Misha Hari, and Vadakkedathu P. N. Nampoori
Appl. Opt. 48(19) 3521-3525 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
    [Crossref]
  2. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
    [Crossref]
  3. A. J. Steckl, “DNA–a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
    [Crossref]
  4. A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
    [Crossref]
  5. Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent Dye Doped DNA Surfactant Complex Films,” Adv. Mater. 12(17), 1281–1283 (2000).
    [Crossref]
  6. Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, and N. Ogata, “Light amplification in dye-doped DNA-surfactant complex films,” in Linear, Nonlinear, and Power-Limiting Organics, (International Society for Optics and Photonics, 2000), 369–376.
  7. J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
    [Crossref]
  8. Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
    [Crossref]
  9. R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
    [Crossref]
  10. E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98(10), 103304 (2011).
    [Crossref]
  11. B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
    [Crossref]
  12. A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
    [Crossref]
  13. S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42(10), 1943–1945 (2017).
    [Crossref]
  14. X. Liu, H. Diao, and N. Nishi, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37(12), 2745–2757 (2008).
    [Crossref]
  15. Y.-W. Kwon, D. H. Choi, and J.-I. Jin, “Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs,” Polym. J. 44(12), 1191–1208 (2012).
    [Crossref]
  16. J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
    [Crossref]
  17. P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
    [Crossref]
  18. A. Samoc, M. Samoc, J. G. Grote, A. Miniewicz, and B. Luther-Davies, “Optical properties of deoxyribonucleic acid (DNA) polymer host,” in Optical materials in defence systems technology III, (International Society for Optics and Photonics, 2006), 640106.
  19. V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
    [Crossref]
  20. W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7(11), 3796–3808 (2017).
    [Crossref]
  21. B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
    [Crossref]
  22. H. Jeong, P. Bjorn, S. Hong, S. Cheon, and K. Oh, “Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films,” Photonics Res. 6(9), 918–924 (2018).
    [Crossref]
  23. R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
    [Crossref]
  24. A. Bell, L. Hecht, and L. Barron, “Vibrational Raman optical activity of DNA and RNA,” J. Am. Chem. Soc. 120(23), 5820–5821 (1998).
    [Crossref]
  25. F. Crick and J. Watson, “A structure for deoxyribose nucleic acid,” Nature 171(4340), 3–4 (1953).
    [Crossref]
  26. J. Donohue and K. N. Trueblood, “Base pairing in DNA,” J. Mol. Biol. 2(6), 363–371 (1960).
    [Crossref]
  27. P. Forterre, “The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells,” Biochimie 87(9-10), 793–803 (2005).
    [Crossref]
  28. A. Poole, D. Penny, and B.-M. Sjöberg, “Confounded cytosine! Tinkering and the evolution of DNA,” Nat. Rev. Mol. Cell Biol. 2(2), 147–151 (2001).
    [Crossref]
  29. M. Tanaka and S. Nagakura, “Electronic structures and spectra of adenine and thymine,” Theor. Chim. Acta 6(4), 320–332 (1966).
    [Crossref]
  30. M. M. Stimson and M. A. Reuter, “The Ultraviolet Absorption Spectra of Cytosine and Isocytosine1, 2,” J. Am. Chem. Soc. 67(12), 2191–2193 (1945).
    [Crossref]
  31. T. Gustavsson, N. Sarkar, Á Bányász, D. Markovitsi, and R. Improta, “Solvent Effects on the Steady state Absorption and Fluorescence Spectra of Uracil, Thymine and 5 Fluorouracil,” Photochem. Photobiol. 83(3), 595–599 (2007).
    [Crossref]
  32. A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105(1), 236–245 (2007).
    [Crossref]
  33. M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
    [Crossref]
  34. O. Y. Ali, N. M. Randell, and T. D. Fridgen, “Primary Fragmentation Pathways of Gas Phase [M (Uracil− H)(Uracil)]+ Complexes (M = Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, and Pb): Loss of Uracil versus HNCO,” ChemPhysChem 13(6), 1507–1513 (2012).
    [Crossref]
  35. T. B. Johnson and I. Matsuo, “RESEARCHES ON PYRIMIDINES. LXXXVII. ALKYLATION OF 5-AMINO-URACIL,” J. Am. Chem. Soc. 41(5), 782–789 (1919).
    [Crossref]
  36. T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
    [Crossref]
  37. J. Prestegard and S. I. Chan, “Solvent effects on nucleotide conformation. I. A proton magnetic resonance study of the effect of electrolytes on uracil nucleotides and nucleosides in aqueous solution,” J. Am. Chem. Soc. 91(11), 2843–2852 (1969).
    [Crossref]
  38. D. Coupland and A. Peel, “Maleic hydrazide as an antimetabolite of uracil,” Planta 103(3), 249–253 (1972).
    [Crossref]
  39. F. X. Schmid, “Biological macromolecules: UV visible spectrophotometry,” e LS (2001)
  40. Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
    [Crossref]
  41. T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
    [Crossref]
  42. J. Ploeser and H. S. Loring, “The ultraviolet absorption spectra of the pyrimidine ribonucleosides and ribonucleotides,” J. biol. Chem. 178(1), 431–437 (1949).
  43. T. Sano, S. Kikuchi, T. Kubo, H. Takagi, K. Hosoya, and K. Kaya, “New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin,” Toxicon 51(4), 717–719 (2008).
    [Crossref]
  44. M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
    [Crossref]
  45. I. Ichinose, J. Huang, and Y.-H. Luo, “Electrostatic trapping of double-stranded DNA by using cadmium hydroxide nanostrands,” Nano Lett. 5(1), 97–100 (2005).
    [Crossref]
  46. B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
    [Crossref]
  47. C. V. Hoang, M. Oyama, O. Saito, M. Aono, and T. Nagao, “Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy,” Sci. Rep. 3(1), 1175 (2013).
    [Crossref]
  48. G. Tyagi, S. Pradhan, T. Srivastava, and R. Mehrotra, “Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential,” Biochim. Biophys. Acta, Gen. Subj. 1840(1), 350–356 (2014).
    [Crossref]
  49. S. Nafisi, A. A. Saboury, N. Keramat, J.-F. Neault, and H.-A. Tajmir-Riahi, “Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue,” J. Mol. Struct. 827(1-3), 35–43 (2007).
    [Crossref]
  50. S. T. Saito, G. Silva, C. Pungartnik, and M. Brendel, “Study of DNA–emodin interaction by FTIR and UV–vis spectroscopy,” J. Photochem. Photobiol., B 111, 59–63 (2012).
    [Crossref]
  51. K. Serec, S. D. Babić, R. Podgornik, and S. Tomić, “Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study,” Nucleic Acids Res. 44(17), 8456–8464 (2016).
    [Crossref]
  52. B. Gnapareddy, S. R. Dugasani, J. Son, and S. H. Park, “Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films,” R. Soc. Open Sci. 5(2), 171179 (2018).
    [Crossref]
  53. C. D. Kanakis, P. A. Tarantilis, H.-A. Tajmir-Riahi, and M. G. Polissiou, “Interaction of tRNA with safranal, crocetin, and dimethylcrocetin,” J. Biomol. Struct. Dyn. 24(6), 537–545 (2007).
    [Crossref]
  54. H. Tajmir-Riahi, C. N’Soukpoe-Kossi, and D. Joly, “Structural analysis of protein–DNA and protein–RNA interactions by FTIR, UV-visible and CD spectroscopic methods,” J. Spectrosc. 23(2), 81–101 (2009).
    [Crossref]
  55. F. J. Warren, M. J. Gidley, and B. M. Flanagan, “Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study,” Carbohydr. Polym. 139, 35–42 (2016).
    [Crossref]
  56. P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
    [Crossref]
  57. E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
    [Crossref]
  58. J. D. Jackson, “Classical electrodynamics,” (AAPT, 1999).
  59. F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.
  60. Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
    [Crossref]
  61. N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA Trans. 39(2), 169–173 (2000).
    [Crossref]
  62. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47(14), 4893–4896 (2006).
    [Crossref]

2018 (3)

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

H. Jeong, P. Bjorn, S. Hong, S. Cheon, and K. Oh, “Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films,” Photonics Res. 6(9), 918–924 (2018).
[Crossref]

B. Gnapareddy, S. R. Dugasani, J. Son, and S. H. Park, “Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films,” R. Soc. Open Sci. 5(2), 171179 (2018).
[Crossref]

2017 (4)

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42(10), 1943–1945 (2017).
[Crossref]

V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
[Crossref]

W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7(11), 3796–3808 (2017).
[Crossref]

2016 (2)

K. Serec, S. D. Babić, R. Podgornik, and S. Tomić, “Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study,” Nucleic Acids Res. 44(17), 8456–8464 (2016).
[Crossref]

F. J. Warren, M. J. Gidley, and B. M. Flanagan, “Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study,” Carbohydr. Polym. 139, 35–42 (2016).
[Crossref]

2015 (2)

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

2014 (1)

G. Tyagi, S. Pradhan, T. Srivastava, and R. Mehrotra, “Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential,” Biochim. Biophys. Acta, Gen. Subj. 1840(1), 350–356 (2014).
[Crossref]

2013 (2)

C. V. Hoang, M. Oyama, O. Saito, M. Aono, and T. Nagao, “Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy,” Sci. Rep. 3(1), 1175 (2013).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

2012 (4)

Y.-W. Kwon, D. H. Choi, and J.-I. Jin, “Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs,” Polym. J. 44(12), 1191–1208 (2012).
[Crossref]

O. Y. Ali, N. M. Randell, and T. D. Fridgen, “Primary Fragmentation Pathways of Gas Phase [M (Uracil− H)(Uracil)]+ Complexes (M = Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, and Pb): Loss of Uracil versus HNCO,” ChemPhysChem 13(6), 1507–1513 (2012).
[Crossref]

S. T. Saito, G. Silva, C. Pungartnik, and M. Brendel, “Study of DNA–emodin interaction by FTIR and UV–vis spectroscopy,” J. Photochem. Photobiol., B 111, 59–63 (2012).
[Crossref]

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
[Crossref]

2011 (2)

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98(10), 103304 (2011).
[Crossref]

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

2010 (1)

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

2009 (3)

H. Tajmir-Riahi, C. N’Soukpoe-Kossi, and D. Joly, “Structural analysis of protein–DNA and protein–RNA interactions by FTIR, UV-visible and CD spectroscopic methods,” J. Spectrosc. 23(2), 81–101 (2009).
[Crossref]

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

2008 (4)

X. Liu, H. Diao, and N. Nishi, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37(12), 2745–2757 (2008).
[Crossref]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

T. Sano, S. Kikuchi, T. Kubo, H. Takagi, K. Hosoya, and K. Kaya, “New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin,” Toxicon 51(4), 717–719 (2008).
[Crossref]

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
[Crossref]

2007 (6)

S. Nafisi, A. A. Saboury, N. Keramat, J.-F. Neault, and H.-A. Tajmir-Riahi, “Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue,” J. Mol. Struct. 827(1-3), 35–43 (2007).
[Crossref]

C. D. Kanakis, P. A. Tarantilis, H.-A. Tajmir-Riahi, and M. G. Polissiou, “Interaction of tRNA with safranal, crocetin, and dimethylcrocetin,” J. Biomol. Struct. Dyn. 24(6), 537–545 (2007).
[Crossref]

A. J. Steckl, “DNA–a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[Crossref]

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

T. Gustavsson, N. Sarkar, Á Bányász, D. Markovitsi, and R. Improta, “Solvent Effects on the Steady state Absorption and Fluorescence Spectra of Uracil, Thymine and 5 Fluorouracil,” Photochem. Photobiol. 83(3), 595–599 (2007).
[Crossref]

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105(1), 236–245 (2007).
[Crossref]

2006 (5)

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
[Crossref]

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47(14), 4893–4896 (2006).
[Crossref]

2005 (3)

I. Ichinose, J. Huang, and Y.-H. Luo, “Electrostatic trapping of double-stranded DNA by using cadmium hydroxide nanostrands,” Nano Lett. 5(1), 97–100 (2005).
[Crossref]

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

P. Forterre, “The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells,” Biochimie 87(9-10), 793–803 (2005).
[Crossref]

2003 (1)

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref]

2001 (1)

A. Poole, D. Penny, and B.-M. Sjöberg, “Confounded cytosine! Tinkering and the evolution of DNA,” Nat. Rev. Mol. Cell Biol. 2(2), 147–151 (2001).
[Crossref]

2000 (2)

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent Dye Doped DNA Surfactant Complex Films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA Trans. 39(2), 169–173 (2000).
[Crossref]

1999 (1)

T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
[Crossref]

1998 (1)

A. Bell, L. Hecht, and L. Barron, “Vibrational Raman optical activity of DNA and RNA,” J. Am. Chem. Soc. 120(23), 5820–5821 (1998).
[Crossref]

1972 (1)

D. Coupland and A. Peel, “Maleic hydrazide as an antimetabolite of uracil,” Planta 103(3), 249–253 (1972).
[Crossref]

1969 (1)

J. Prestegard and S. I. Chan, “Solvent effects on nucleotide conformation. I. A proton magnetic resonance study of the effect of electrolytes on uracil nucleotides and nucleosides in aqueous solution,” J. Am. Chem. Soc. 91(11), 2843–2852 (1969).
[Crossref]

1966 (1)

M. Tanaka and S. Nagakura, “Electronic structures and spectra of adenine and thymine,” Theor. Chim. Acta 6(4), 320–332 (1966).
[Crossref]

1965 (1)

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

1960 (1)

J. Donohue and K. N. Trueblood, “Base pairing in DNA,” J. Mol. Biol. 2(6), 363–371 (1960).
[Crossref]

1953 (1)

F. Crick and J. Watson, “A structure for deoxyribose nucleic acid,” Nature 171(4340), 3–4 (1953).
[Crossref]

1949 (1)

J. Ploeser and H. S. Loring, “The ultraviolet absorption spectra of the pyrimidine ribonucleosides and ribonucleotides,” J. biol. Chem. 178(1), 431–437 (1949).

1945 (1)

M. M. Stimson and M. A. Reuter, “The Ultraviolet Absorption Spectra of Cytosine and Isocytosine1, 2,” J. Am. Chem. Soc. 67(12), 2191–2193 (1945).
[Crossref]

1919 (1)

T. B. Johnson and I. Matsuo, “RESEARCHES ON PYRIMIDINES. LXXXVII. ALKYLATION OF 5-AMINO-URACIL,” J. Am. Chem. Soc. 41(5), 782–789 (1919).
[Crossref]

Aga, R. S.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98(10), 103304 (2011).
[Crossref]

Ali, O. Y.

O. Y. Ali, N. M. Randell, and T. D. Fridgen, “Primary Fragmentation Pathways of Gas Phase [M (Uracil− H)(Uracil)]+ Complexes (M = Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, and Pb): Loss of Uracil versus HNCO,” ChemPhysChem 13(6), 1507–1513 (2012).
[Crossref]

Aoki, T.

T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
[Crossref]

Aono, M.

C. V. Hoang, M. Oyama, O. Saito, M. Aono, and T. Nagao, “Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy,” Sci. Rep. 3(1), 1175 (2013).
[Crossref]

Apgar, J.

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

Arasu, V.

V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
[Crossref]

Babic, S. D.

K. Serec, S. D. Babić, R. Podgornik, and S. Tomić, “Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study,” Nucleic Acids Res. 44(17), 8456–8464 (2016).
[Crossref]

Bányász, Á

T. Gustavsson, N. Sarkar, Á Bányász, D. Markovitsi, and R. Improta, “Solvent Effects on the Steady state Absorption and Fluorescence Spectra of Uracil, Thymine and 5 Fluorouracil,” Photochem. Photobiol. 83(3), 595–599 (2007).
[Crossref]

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

Barone, V.

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

Barron, L.

A. Bell, L. Hecht, and L. Barron, “Vibrational Raman optical activity of DNA and RNA,” J. Am. Chem. Soc. 120(23), 5820–5821 (1998).
[Crossref]

Bartsch, C. M.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98(10), 103304 (2011).
[Crossref]

Bauer, S.

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

Bäuerle, D.

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

Bayliss, S.

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

Bell, A.

A. Bell, L. Hecht, and L. Barron, “Vibrational Raman optical activity of DNA and RNA,” J. Am. Chem. Soc. 120(23), 5820–5821 (1998).
[Crossref]

Bjorn, P.

H. Jeong, P. Bjorn, S. Hong, S. Cheon, and K. Oh, “Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films,” Photonics Res. 6(9), 918–924 (2018).
[Crossref]

Brendel, M.

S. T. Saito, G. Silva, C. Pungartnik, and M. Brendel, “Study of DNA–emodin interaction by FTIR and UV–vis spectroscopy,” J. Photochem. Photobiol., B 111, 59–63 (2012).
[Crossref]

Campbell, A.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

Chan, S. I.

J. Prestegard and S. I. Chan, “Solvent effects on nucleotide conformation. I. A proton magnetic resonance study of the effect of electrolytes on uracil nucleotides and nucleosides in aqueous solution,” J. Am. Chem. Soc. 91(11), 2843–2852 (1969).
[Crossref]

Check, M.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

Cheon, S.

H. Jeong, P. Bjorn, S. Hong, S. Cheon, and K. Oh, “Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films,” Photonics Res. 6(9), 918–924 (2018).
[Crossref]

Choi, D. H.

Y.-W. Kwon, D. H. Choi, and J.-I. Jin, “Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs,” Polym. J. 44(12), 1191–1208 (2012).
[Crossref]

Choi, D.-H.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

Civiš, S.

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

Coupland, D.

D. Coupland and A. Peel, “Maleic hydrazide as an antimetabolite of uracil,” Planta 103(3), 249–253 (1972).
[Crossref]

Crick, F.

F. Crick and J. Watson, “A structure for deoxyribose nucleic acid,” Nature 171(4340), 3–4 (1953).
[Crossref]

Dai, L.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

Diao, H.

X. Liu, H. Diao, and N. Nishi, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37(12), 2745–2757 (2008).
[Crossref]

Diggs, D. E.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Donohue, J.

J. Donohue and K. N. Trueblood, “Base pairing in DNA,” J. Mol. Biol. 2(6), 363–371 (1960).
[Crossref]

Dugasani, S. R.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

B. Gnapareddy, S. R. Dugasani, J. Son, and S. H. Park, “Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films,” R. Soc. Open Sci. 5(2), 171179 (2018).
[Crossref]

V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

Everett, G. A.

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

Ferus, M.

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

Flanagan, B. M.

F. J. Warren, M. J. Gidley, and B. M. Flanagan, “Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study,” Carbohydr. Polym. 139, 35–42 (2016).
[Crossref]

Forterre, P.

P. Forterre, “The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells,” Biochimie 87(9-10), 793–803 (2005).
[Crossref]

Fridgen, T. D.

O. Y. Ali, N. M. Randell, and T. D. Fridgen, “Primary Fragmentation Pathways of Gas Phase [M (Uracil− H)(Uracil)]+ Complexes (M = Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, and Pb): Loss of Uracil versus HNCO,” ChemPhysChem 13(6), 1507–1513 (2012).
[Crossref]

Frisch, M. J.

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

Ghosal, R.

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

Gidley, M. J.

F. J. Warren, M. J. Gidley, and B. M. Flanagan, “Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study,” Carbohydr. Polym. 139, 35–42 (2016).
[Crossref]

Gnapareddy, B.

B. Gnapareddy, S. R. Dugasani, J. Son, and S. H. Park, “Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films,” R. Soc. Open Sci. 5(2), 171179 (2018).
[Crossref]

V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

Godfrey, R.

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

Gomez, E.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

Grote, J.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

Grote, J. G.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98(10), 103304 (2011).
[Crossref]

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105(1), 236–245 (2007).
[Crossref]

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
[Crossref]

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

A. Samoc, M. Samoc, J. G. Grote, A. Miniewicz, and B. Luther-Davies, “Optical properties of deoxyribonucleic acid (DNA) polymer host,” in Optical materials in defence systems technology III, (International Society for Optics and Photonics, 2006), 640106.

Gustavsson, T.

T. Gustavsson, N. Sarkar, Á Bányász, D. Markovitsi, and R. Improta, “Solvent Effects on the Steady state Absorption and Fluorescence Spectra of Uracil, Thymine and 5 Fluorouracil,” Photochem. Photobiol. 83(3), 595–599 (2007).
[Crossref]

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

Gwak, J.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Ha, T.

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

Hagen, J. A.

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Halas, N. J.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref]

Han, J. K.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
[Crossref]

Hebda, E.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
[Crossref]

Hecht, L.

A. Bell, L. Hecht, and L. Barron, “Vibrational Raman optical activity of DNA and RNA,” J. Am. Chem. Soc. 120(23), 5820–5821 (1998).
[Crossref]

Heckman, E.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Heckman, E. M.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98(10), 103304 (2011).
[Crossref]

Hirayama, N.

N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA Trans. 39(2), 169–173 (2000).
[Crossref]

Hoang, C. V.

C. V. Hoang, M. Oyama, O. Saito, M. Aono, and T. Nagao, “Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy,” Sci. Rep. 3(1), 1175 (2013).
[Crossref]

Holley, R. W.

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

Hong, S.

Hopkins, F. K.

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Horinouchi, S.

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent Dye Doped DNA Surfactant Complex Films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, and N. Ogata, “Light amplification in dye-doped DNA-surfactant complex films,” in Linear, Nonlinear, and Power-Limiting Organics, (International Society for Optics and Photonics, 2000), 369–376.

Hosoya, K.

T. Sano, S. Kikuchi, T. Kubo, H. Takagi, K. Hosoya, and K. Kaya, “New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin,” Toxicon 51(4), 717–719 (2008).
[Crossref]

Huang, J.

I. Ichinose, J. Huang, and Y.-H. Luo, “Electrostatic trapping of double-stranded DNA by using cadmium hydroxide nanostrands,” Nano Lett. 5(1), 97–100 (2005).
[Crossref]

Hwang, T.

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

Ichinose, I.

I. Ichinose, J. Huang, and Y.-H. Luo, “Electrostatic trapping of double-stranded DNA by using cadmium hydroxide nanostrands,” Nano Lett. 5(1), 97–100 (2005).
[Crossref]

Improta, R.

T. Gustavsson, N. Sarkar, Á Bányász, D. Markovitsi, and R. Improta, “Solvent Effects on the Steady state Absorption and Fluorescence Spectra of Uracil, Thymine and 5 Fluorouracil,” Photochem. Photobiol. 83(3), 595–599 (2007).
[Crossref]

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

Jackson, J. D.

J. D. Jackson, “Classical electrodynamics,” (AAPT, 1999).

Jancia, M.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
[Crossref]

Jeon, S.

V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
[Crossref]

Jeong, H.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

H. Jeong, P. Bjorn, S. Hong, S. Cheon, and K. Oh, “Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films,” Photonics Res. 6(9), 918–924 (2018).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Jeong, J.-H.

V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
[Crossref]

Jin, J.-I.

Y.-W. Kwon, D. H. Choi, and J.-I. Jin, “Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs,” Polym. J. 44(12), 1191–1208 (2012).
[Crossref]

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

Johnson, T. B.

T. B. Johnson and I. Matsuo, “RESEARCHES ON PYRIMIDINES. LXXXVII. ALKYLATION OF 5-AMINO-URACIL,” J. Am. Chem. Soc. 41(5), 782–789 (1919).
[Crossref]

Joly, D.

H. Tajmir-Riahi, C. N’Soukpoe-Kossi, and D. Joly, “Structural analysis of protein–DNA and protein–RNA interactions by FTIR, UV-visible and CD spectroscopic methods,” J. Spectrosc. 23(2), 81–101 (2009).
[Crossref]

Joo, B.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

Joshirao, P.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

Joyce, D.

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

Jun, H.

Jung, W.

Kajzar, F.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
[Crossref]

Kanakis, C. D.

C. D. Kanakis, P. A. Tarantilis, H.-A. Tajmir-Riahi, and M. G. Polissiou, “Interaction of tRNA with safranal, crocetin, and dimethylcrocetin,” J. Biomol. Struct. Dyn. 24(6), 537–545 (2007).
[Crossref]

Kaplan, D. L.

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

Kassani, S. H.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Kawabe, Y.

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent Dye Doped DNA Surfactant Complex Films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, and N. Ogata, “Light amplification in dye-doped DNA-surfactant complex films,” in Linear, Nonlinear, and Power-Limiting Organics, (International Society for Optics and Photonics, 2000), 369–376.

Kaya, K.

T. Sano, S. Kikuchi, T. Kubo, H. Takagi, K. Hosoya, and K. Kaya, “New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin,” Toxicon 51(4), 717–719 (2008).
[Crossref]

Keramat, N.

S. Nafisi, A. A. Saboury, N. Keramat, J.-F. Neault, and H.-A. Tajmir-Riahi, “Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue,” J. Mol. Struct. 827(1-3), 35–43 (2007).
[Crossref]

Khazaeinezhad, R.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Kikuchi, A.

T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
[Crossref]

Kikuchi, S.

T. Sano, S. Kikuchi, T. Kubo, H. Takagi, K. Hosoya, and K. Kaya, “New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin,” Toxicon 51(4), 717–719 (2008).
[Crossref]

Kim, B.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

Kim, J. A.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

Kim, J. H.

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

Kim, S.

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

Kim, T.

S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42(10), 1943–1945 (2017).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

Kloer, P.

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

Ko, Y. S.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
[Crossref]

Kong, B.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

Koyama, T.

Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, and N. Ogata, “Light amplification in dye-doped DNA-surfactant complex films,” in Linear, Nonlinear, and Power-Limiting Organics, (International Society for Optics and Photonics, 2000), 369–376.

Kubelík, P.

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

Kubo, T.

T. Sano, S. Kikuchi, T. Kubo, H. Takagi, K. Hosoya, and K. Kaya, “New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin,” Toxicon 51(4), 717–719 (2008).
[Crossref]

Kulkarni, A.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

Kwon, Y. K.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
[Crossref]

Kwon, Y.-W.

Y.-W. Kwon, D. H. Choi, and J.-I. Jin, “Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs,” Polym. J. 44(12), 1191–1208 (2012).
[Crossref]

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

Lazzarotto, E.

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

Lee, C. H.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

Lee, E.-H.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
[Crossref]

Lee, H.-S.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
[Crossref]

Lee, H.-Y.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

Lee, J. M.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
[Crossref]

Lewis, K. E.

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

Lewis, P. D.

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

Li, W.

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47(14), 4893–4896 (2006).
[Crossref]

Liu, X.

X. Liu, H. Diao, and N. Nishi, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37(12), 2745–2757 (2008).
[Crossref]

Lloyd, A. J.

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

Loring, H. S.

J. Ploeser and H. S. Loring, “The ultraviolet absorption spectra of the pyrimidine ribonucleosides and ribonucleotides,” J. biol. Chem. 178(1), 431–437 (1949).

Luo, Y.-H.

I. Ichinose, J. Huang, and Y.-H. Luo, “Electrostatic trapping of double-stranded DNA by using cadmium hydroxide nanostrands,” Nano Lett. 5(1), 97–100 (2005).
[Crossref]

Luther-Davies, B.

A. Samoc, M. Samoc, J. G. Grote, A. Miniewicz, and B. Luther-Davies, “Optical properties of deoxyribonucleic acid (DNA) polymer host,” in Optical materials in defence systems technology III, (International Society for Optics and Photonics, 2006), 640106.

Madison, J. T.

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

Manchanda, V.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

Markovitsi, D.

T. Gustavsson, N. Sarkar, Á Bányász, D. Markovitsi, and R. Improta, “Solvent Effects on the Steady state Absorption and Fluorescence Spectra of Uracil, Thymine and 5 Fluorouracil,” Photochem. Photobiol. 83(3), 595–599 (2007).
[Crossref]

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

Marquisee, M.

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

Matsuo, I.

T. B. Johnson and I. Matsuo, “RESEARCHES ON PYRIMIDINES. LXXXVII. ALKYLATION OF 5-AMINO-URACIL,” J. Am. Chem. Soc. 41(5), 782–789 (1919).
[Crossref]

Mehrotra, R.

G. Tyagi, S. Pradhan, T. Srivastava, and R. Mehrotra, “Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential,” Biochim. Biophys. Acta, Gen. Subj. 1840(1), 350–356 (2014).
[Crossref]

Merrill, S. H.

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

Michalcíková, R.

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

Miniewicz, A.

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105(1), 236–245 (2007).
[Crossref]

A. Samoc, M. Samoc, J. G. Grote, A. Miniewicz, and B. Luther-Davies, “Optical properties of deoxyribonucleic acid (DNA) polymer host,” in Optical materials in defence systems technology III, (International Society for Optics and Photonics, 2006), 640106.

Mur, L. A.

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

N’Soukpoe-Kossi, C.

H. Tajmir-Riahi, C. N’Soukpoe-Kossi, and D. Joly, “Structural analysis of protein–DNA and protein–RNA interactions by FTIR, UV-visible and CD spectroscopic methods,” J. Spectrosc. 23(2), 81–101 (2009).
[Crossref]

Nafisi, S.

S. Nafisi, A. A. Saboury, N. Keramat, J.-F. Neault, and H.-A. Tajmir-Riahi, “Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue,” J. Mol. Struct. 827(1-3), 35–43 (2007).
[Crossref]

Nagakura, S.

M. Tanaka and S. Nagakura, “Electronic structures and spectra of adenine and thymine,” Theor. Chim. Acta 6(4), 320–332 (1966).
[Crossref]

Nagao, T.

C. V. Hoang, M. Oyama, O. Saito, M. Aono, and T. Nagao, “Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy,” Sci. Rep. 3(1), 1175 (2013).
[Crossref]

Naik, R.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

Nakamura, K.

T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
[Crossref]

Nam, Y. S.

Nazari, T.

Neault, J.-F.

S. Nafisi, A. A. Saboury, N. Keramat, J.-F. Neault, and H.-A. Tajmir-Riahi, “Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue,” J. Mol. Struct. 827(1-3), 35–43 (2007).
[Crossref]

Nelson, R. L.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Nesvorný, D.

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

Nishi, N.

X. Liu, H. Diao, and N. Nishi, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37(12), 2745–2757 (2008).
[Crossref]

Niziol, J.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
[Crossref]

Ogata, N.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent Dye Doped DNA Surfactant Complex Films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
[Crossref]

Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, and N. Ogata, “Light amplification in dye-doped DNA-surfactant complex films,” in Linear, Nonlinear, and Power-Limiting Organics, (International Society for Optics and Photonics, 2000), 369–376.

Oh, J. H.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
[Crossref]

Oh, K.

H. Jeong, P. Bjorn, S. Hong, S. Cheon, and K. Oh, “Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films,” Photonics Res. 6(9), 918–924 (2018).
[Crossref]

W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7(11), 3796–3808 (2017).
[Crossref]

S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42(10), 1943–1945 (2017).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

Okano, T.

T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
[Crossref]

Omenetto, F. G.

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

Oppelt, K.

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

Ouchen, F.

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

Oyama, M.

C. V. Hoang, M. Oyama, O. Saito, M. Aono, and T. Nagao, “Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy,” Sci. Rep. 3(1), 1175 (2013).
[Crossref]

Park, S.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

Park, S. H.

B. Gnapareddy, S. R. Dugasani, J. Son, and S. H. Park, “Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films,” R. Soc. Open Sci. 5(2), 171179 (2018).
[Crossref]

V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

Paulson, B.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7(11), 3796–3808 (2017).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

Peel, A.

D. Coupland and A. Peel, “Maleic hydrazide as an antimetabolite of uracil,” Planta 103(3), 249–253 (1972).
[Crossref]

Penny, D.

A. Poole, D. Penny, and B.-M. Sjöberg, “Confounded cytosine! Tinkering and the evolution of DNA,” Nat. Rev. Mol. Cell Biol. 2(2), 147–151 (2001).
[Crossref]

Penswick, J. R.

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

Pielichowski, J.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
[Crossref]

Piglmayer-Brezina, H.

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

Ploeser, J.

J. Ploeser and H. S. Loring, “The ultraviolet absorption spectra of the pyrimidine ribonucleosides and ribonucleotides,” J. biol. Chem. 178(1), 431–437 (1949).

Podgornik, R.

K. Serec, S. D. Babić, R. Podgornik, and S. Tomić, “Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study,” Nucleic Acids Res. 44(17), 8456–8464 (2016).
[Crossref]

Polissiou, M. G.

C. D. Kanakis, P. A. Tarantilis, H.-A. Tajmir-Riahi, and M. G. Polissiou, “Interaction of tRNA with safranal, crocetin, and dimethylcrocetin,” J. Biomol. Struct. Dyn. 24(6), 537–545 (2007).
[Crossref]

Poole, A.

A. Poole, D. Penny, and B.-M. Sjöberg, “Confounded cytosine! Tinkering and the evolution of DNA,” Nat. Rev. Mol. Cell Biol. 2(2), 147–151 (2001).
[Crossref]

Pradhan, S.

G. Tyagi, S. Pradhan, T. Srivastava, and R. Mehrotra, “Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential,” Biochim. Biophys. Acta, Gen. Subj. 1840(1), 350–356 (2014).
[Crossref]

Prestegard, J.

J. Prestegard and S. I. Chan, “Solvent effects on nucleotide conformation. I. A proton magnetic resonance study of the effect of electrolytes on uracil nucleotides and nucleosides in aqueous solution,” J. Am. Chem. Soc. 91(11), 2843–2852 (1969).
[Crossref]

Pungartnik, C.

S. T. Saito, G. Silva, C. Pungartnik, and M. Brendel, “Study of DNA–emodin interaction by FTIR and UV–vis spectroscopy,” J. Photochem. Photobiol., B 111, 59–63 (2012).
[Crossref]

Quan, C.

Randell, N. M.

O. Y. Ali, N. M. Randell, and T. D. Fridgen, “Primary Fragmentation Pathways of Gas Phase [M (Uracil− H)(Uracil)]+ Complexes (M = Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, and Pb): Loss of Uracil versus HNCO,” ChemPhysChem 13(6), 1507–1513 (2012).
[Crossref]

Rau, I.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
[Crossref]

Reuter, M. A.

M. M. Stimson and M. A. Reuter, “The Ultraviolet Absorption Spectra of Cytosine and Isocytosine1, 2,” J. Am. Chem. Soc. 67(12), 2191–2193 (1945).
[Crossref]

Rossbach, A. T.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98(10), 103304 (2011).
[Crossref]

Rotermund, F.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Saboury, A. A.

S. Nafisi, A. A. Saboury, N. Keramat, J.-F. Neault, and H.-A. Tajmir-Riahi, “Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue,” J. Mol. Struct. 827(1-3), 35–43 (2007).
[Crossref]

Saito, O.

C. V. Hoang, M. Oyama, O. Saito, M. Aono, and T. Nagao, “Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy,” Sci. Rep. 3(1), 1175 (2013).
[Crossref]

Saito, S. T.

S. T. Saito, G. Silva, C. Pungartnik, and M. Brendel, “Study of DNA–emodin interaction by FTIR and UV–vis spectroscopy,” J. Photochem. Photobiol., B 111, 59–63 (2012).
[Crossref]

Sakurai, Y.

T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
[Crossref]

Samoc, A.

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105(1), 236–245 (2007).
[Crossref]

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
[Crossref]

A. Samoc, M. Samoc, J. G. Grote, A. Miniewicz, and B. Luther-Davies, “Optical properties of deoxyribonucleic acid (DNA) polymer host,” in Optical materials in defence systems technology III, (International Society for Optics and Photonics, 2006), 640106.

Samoc, M.

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105(1), 236–245 (2007).
[Crossref]

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
[Crossref]

A. Samoc, M. Samoc, J. G. Grote, A. Miniewicz, and B. Luther-Davies, “Optical properties of deoxyribonucleic acid (DNA) polymer host,” in Optical materials in defence systems technology III, (International Society for Optics and Photonics, 2006), 640106.

Sano, T.

T. Sano, S. Kikuchi, T. Kubo, H. Takagi, K. Hosoya, and K. Kaya, “New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin,” Toxicon 51(4), 717–719 (2008).
[Crossref]

Sano, Y.

N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA Trans. 39(2), 169–173 (2000).
[Crossref]

Sanui, K.

T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
[Crossref]

Sariciftci, N. S.

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

Sarkar, N.

T. Gustavsson, N. Sarkar, Á Bányász, D. Markovitsi, and R. Improta, “Solvent Effects on the Steady state Absorption and Fluorescence Spectra of Uracil, Thymine and 5 Fluorouracil,” Photochem. Photobiol. 83(3), 595–599 (2007).
[Crossref]

Scalmani, G.

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

Schmid, F. X.

F. X. Schmid, “Biological macromolecules: UV visible spectrophotometry,” e LS (2001)

Schwödiauer, R.

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

Serec, K.

K. Serec, S. D. Babić, R. Podgornik, and S. Tomić, “Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study,” Nucleic Acids Res. 44(17), 8456–8464 (2016).
[Crossref]

Shestivská, V.

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

Shin, I.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

Silva, G.

S. T. Saito, G. Silva, C. Pungartnik, and M. Brendel, “Study of DNA–emodin interaction by FTIR and UV–vis spectroscopy,” J. Photochem. Photobiol., B 111, 59–63 (2012).
[Crossref]

Singh, B.

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

Singh, T. B.

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

Sjöberg, B.-M.

A. Poole, D. Penny, and B.-M. Sjöberg, “Confounded cytosine! Tinkering and the evolution of DNA,” Nat. Rev. Mol. Cell Biol. 2(2), 147–151 (2001).
[Crossref]

Son, J.

B. Gnapareddy, S. R. Dugasani, J. Son, and S. H. Park, “Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films,” R. Soc. Open Sci. 5(2), 171179 (2018).
[Crossref]

V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
[Crossref]

Song, S.

Spaeth, H.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

Šponer, J.

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

Šponer, J. E.

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

Srivastava, T.

G. Tyagi, S. Pradhan, T. Srivastava, and R. Mehrotra, “Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential,” Biochim. Biophys. Acta, Gen. Subj. 1840(1), 350–356 (2014).
[Crossref]

Stadler, P.

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

Steckl, A.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

Steckl, A. J.

A. J. Steckl, “DNA–a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[Crossref]

Stimson, M. M.

M. M. Stimson and M. A. Reuter, “The Ultraviolet Absorption Spectra of Cytosine and Isocytosine1, 2,” J. Am. Chem. Soc. 67(12), 2191–2193 (1945).
[Crossref]

Stone, M. O.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Subramanyam, G.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47(14), 4893–4896 (2006).
[Crossref]

Sun, Q.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

Tajmir-Riahi, H.

H. Tajmir-Riahi, C. N’Soukpoe-Kossi, and D. Joly, “Structural analysis of protein–DNA and protein–RNA interactions by FTIR, UV-visible and CD spectroscopic methods,” J. Spectrosc. 23(2), 81–101 (2009).
[Crossref]

Tajmir-Riahi, H.-A.

C. D. Kanakis, P. A. Tarantilis, H.-A. Tajmir-Riahi, and M. G. Polissiou, “Interaction of tRNA with safranal, crocetin, and dimethylcrocetin,” J. Biomol. Struct. Dyn. 24(6), 537–545 (2007).
[Crossref]

S. Nafisi, A. A. Saboury, N. Keramat, J.-F. Neault, and H.-A. Tajmir-Riahi, “Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue,” J. Mol. Struct. 827(1-3), 35–43 (2007).
[Crossref]

Takagi, H.

T. Sano, S. Kikuchi, T. Kubo, H. Takagi, K. Hosoya, and K. Kaya, “New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin,” Toxicon 51(4), 717–719 (2008).
[Crossref]

Tanaka, M.

M. Tanaka and S. Nagakura, “Electronic structures and spectra of adenine and thymine,” Theor. Chim. Acta 6(4), 320–332 (1966).
[Crossref]

Tane, A.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
[Crossref]

Tarantilis, P. A.

C. D. Kanakis, P. A. Tarantilis, H.-A. Tajmir-Riahi, and M. G. Polissiou, “Interaction of tRNA with safranal, crocetin, and dimethylcrocetin,” J. Biomol. Struct. Dyn. 24(6), 537–545 (2007).
[Crossref]

Telek, B. A.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98(10), 103304 (2011).
[Crossref]

Tomic, S.

K. Serec, S. D. Babić, R. Podgornik, and S. Tomić, “Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study,” Nucleic Acids Res. 44(17), 8456–8464 (2016).
[Crossref]

Trueblood, K. N.

J. Donohue and K. N. Trueblood, “Base pairing in DNA,” J. Mol. Biol. 2(6), 363–371 (1960).
[Crossref]

Tyagi, G.

G. Tyagi, S. Pradhan, T. Srivastava, and R. Mehrotra, “Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential,” Biochim. Biophys. Acta, Gen. Subj. 1840(1), 350–356 (2014).
[Crossref]

Venkat, N.

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

Vyas, C.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

Wang, L.

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent Dye Doped DNA Surfactant Complex Films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, and N. Ogata, “Light amplification in dye-doped DNA-surfactant complex films,” in Linear, Nonlinear, and Power-Limiting Organics, (International Society for Optics and Photonics, 2000), 369–376.

Wang, Y.

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

Warren, F. J.

F. J. Warren, M. J. Gidley, and B. M. Flanagan, “Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study,” Carbohydr. Polym. 139, 35–42 (2016).
[Crossref]

Watson, J.

F. Crick and J. Watson, “A structure for deoxyribose nucleic acid,” Nature 171(4340), 3–4 (1953).
[Crossref]

West, J. L.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref]

Williams, A.

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

Wills, J.

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

Yaney, P.

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

Yaney, P. P.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Yeom, D.-I.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

You, H.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

Zamir, A.

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

Zetts, J. S.

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47(14), 4893–4896 (2006).
[Crossref]

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47(14), 4893–4896 (2006).
[Crossref]

ACS Nano (1)

Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “highly efficient quantum-dot light-emitting diodes with DNA− CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009).
[Crossref]

Adv. Mater. (1)

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified Spontaneous Emission from Fluorescent Dye Doped DNA Surfactant Complex Films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref]

Appl. Phys. Lett. (2)

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88(17), 171109 (2006).
[Crossref]

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98(10), 103304 (2011).
[Crossref]

Biochim. Biophys. Acta, Gen. Subj. (1)

G. Tyagi, S. Pradhan, T. Srivastava, and R. Mehrotra, “Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential,” Biochim. Biophys. Acta, Gen. Subj. 1840(1), 350–356 (2014).
[Crossref]

Biochimie (1)

P. Forterre, “The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells,” Biochimie 87(9-10), 793–803 (2005).
[Crossref]

BMC Cancer (1)

P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, and L. A. Mur, “Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum,” BMC Cancer 10(1), 640 (2010).
[Crossref]

Carbohydr. Polym. (1)

F. J. Warren, M. J. Gidley, and B. M. Flanagan, “Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study,” Carbohydr. Polym. 139, 35–42 (2016).
[Crossref]

Chem. Phys. Lett. (1)

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
[Crossref]

Chem. Soc. Rev. (1)

X. Liu, H. Diao, and N. Nishi, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37(12), 2745–2757 (2008).
[Crossref]

ChemPhysChem (1)

O. Y. Ali, N. M. Randell, and T. D. Fridgen, “Primary Fragmentation Pathways of Gas Phase [M (Uracil− H)(Uracil)]+ Complexes (M = Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, and Pb): Loss of Uracil versus HNCO,” ChemPhysChem 13(6), 1507–1513 (2012).
[Crossref]

ISA Trans. (1)

N. Hirayama and Y. Sano, “Fiber Bragg grating temperature sensor for practical use,” ISA Trans. 39(2), 169–173 (2000).
[Crossref]

J. Am. Chem. Soc. (5)

T. B. Johnson and I. Matsuo, “RESEARCHES ON PYRIMIDINES. LXXXVII. ALKYLATION OF 5-AMINO-URACIL,” J. Am. Chem. Soc. 41(5), 782–789 (1919).
[Crossref]

J. Prestegard and S. I. Chan, “Solvent effects on nucleotide conformation. I. A proton magnetic resonance study of the effect of electrolytes on uracil nucleotides and nucleosides in aqueous solution,” J. Am. Chem. Soc. 91(11), 2843–2852 (1969).
[Crossref]

M. M. Stimson and M. A. Reuter, “The Ultraviolet Absorption Spectra of Cytosine and Isocytosine1, 2,” J. Am. Chem. Soc. 67(12), 2191–2193 (1945).
[Crossref]

A. Bell, L. Hecht, and L. Barron, “Vibrational Raman optical activity of DNA and RNA,” J. Am. Chem. Soc. 120(23), 5820–5821 (1998).
[Crossref]

T. Gustavsson, Á Bányász, E. Lazzarotto, D. Markovitsi, G. Scalmani, M. J. Frisch, V. Barone, and R. Improta, “Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives,” J. Am. Chem. Soc. 128(2), 607–619 (2006).
[Crossref]

J. Appl. Phys. (1)

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100(2), 024514 (2006).
[Crossref]

J. Appl. Polym. Sci. (1)

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105(1), 236–245 (2007).
[Crossref]

J. biol. Chem. (1)

J. Ploeser and H. S. Loring, “The ultraviolet absorption spectra of the pyrimidine ribonucleosides and ribonucleotides,” J. biol. Chem. 178(1), 431–437 (1949).

J. Biomol. Struct. Dyn. (1)

C. D. Kanakis, P. A. Tarantilis, H.-A. Tajmir-Riahi, and M. G. Polissiou, “Interaction of tRNA with safranal, crocetin, and dimethylcrocetin,” J. Biomol. Struct. Dyn. 24(6), 537–545 (2007).
[Crossref]

J. Mater. Chem. (2)

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H.-S. Lee, and E.-H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem. 18(5), 579–585 (2008).
[Crossref]

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

J. Mol. Biol. (1)

J. Donohue and K. N. Trueblood, “Base pairing in DNA,” J. Mol. Biol. 2(6), 363–371 (1960).
[Crossref]

J. Mol. Struct. (1)

S. Nafisi, A. A. Saboury, N. Keramat, J.-F. Neault, and H.-A. Tajmir-Riahi, “Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue,” J. Mol. Struct. 827(1-3), 35–43 (2007).
[Crossref]

J. Photochem. Photobiol., B (1)

S. T. Saito, G. Silva, C. Pungartnik, and M. Brendel, “Study of DNA–emodin interaction by FTIR and UV–vis spectroscopy,” J. Photochem. Photobiol., B 111, 59–63 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (1)

V. Arasu, S. R. Dugasani, J. Son, B. Gnapareddy, S. Jeon, J.-H. Jeong, and S. H. Park, “Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films,” J. Phys. D: Appl. Phys. 50(41), 415602 (2017).
[Crossref]

J. Spectrosc. (1)

H. Tajmir-Riahi, C. N’Soukpoe-Kossi, and D. Joly, “Structural analysis of protein–DNA and protein–RNA interactions by FTIR, UV-visible and CD spectroscopic methods,” J. Spectrosc. 23(2), 81–101 (2009).
[Crossref]

Mol. Cryst. Liq. Cryst. (2)

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556(1), 309–316 (2012).
[Crossref]

J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, and M. O. Stone, “DNA photonics [deoxyribonucleic acid],” Mol. Cryst. Liq. Cryst. 426(1), 3–17 (2005).
[Crossref]

Nano Lett. (1)

I. Ichinose, J. Huang, and Y.-H. Luo, “Electrostatic trapping of double-stranded DNA by using cadmium hydroxide nanostrands,” Nano Lett. 5(1), 97–100 (2005).
[Crossref]

Nat. Photonics (2)

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2(11), 641–643 (2008).
[Crossref]

A. J. Steckl, “DNA–a new material for photonics?” Nat. Photonics 1(1), 3–5 (2007).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

A. Poole, D. Penny, and B.-M. Sjöberg, “Confounded cytosine! Tinkering and the evolution of DNA,” Nat. Rev. Mol. Cell Biol. 2(2), 147–151 (2001).
[Crossref]

Nature (1)

F. Crick and J. Watson, “A structure for deoxyribose nucleic acid,” Nature 171(4340), 3–4 (1953).
[Crossref]

Nucleic Acids Res. (1)

K. Serec, S. D. Babić, R. Podgornik, and S. Tomić, “Effect of magnesium ions on the structure of DNA thin films: an infrared spectroscopy study,” Nucleic Acids Res. 44(17), 8456–8464 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Photonics News (1)

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photonics News 22(7), 34–39 (2011).
[Crossref]

Org. Electron. (1)

P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8(6), 648–654 (2007).
[Crossref]

Photochem. Photobiol. (1)

T. Gustavsson, N. Sarkar, Á Bányász, D. Markovitsi, and R. Improta, “Solvent Effects on the Steady state Absorption and Fluorescence Spectra of Uracil, Thymine and 5 Fluorouracil,” Photochem. Photobiol. 83(3), 595–599 (2007).
[Crossref]

Photonics Res. (1)

H. Jeong, P. Bjorn, S. Hong, S. Cheon, and K. Oh, “Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films,” Photonics Res. 6(9), 918–924 (2018).
[Crossref]

Planta (1)

D. Coupland and A. Peel, “Maleic hydrazide as an antimetabolite of uracil,” Planta 103(3), 249–253 (1972).
[Crossref]

Polym. J. (2)

T. Aoki, K. Nakamura, K. Sanui, A. Kikuchi, T. Okano, Y. Sakurai, and N. Ogata, “Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution,” Polym. J. 31(11_2), 1185–1188 (1999).
[Crossref]

Y.-W. Kwon, D. H. Choi, and J.-I. Jin, “Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs,” Polym. J. 44(12), 1191–1208 (2012).
[Crossref]

Polymer (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47(14), 4893–4896 (2006).
[Crossref]

Proc. Natl. Acad. Sci. (1)

M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, and S. Civiš, “High-energy chemistry of formamide: A unified mechanism of nucleobase formation,” Proc. Natl. Acad. Sci. 112(3), 657–662 (2015).
[Crossref]

R. Soc. Open Sci. (1)

B. Gnapareddy, S. R. Dugasani, J. Son, and S. H. Park, “Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films,” R. Soc. Open Sci. 5(2), 171179 (2018).
[Crossref]

Sci. Rep. (5)

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5(1), 12722 (2015).
[Crossref]

C. V. Hoang, M. Oyama, O. Saito, M. Aono, and T. Nagao, “Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy,” Sci. Rep. 3(1), 1175 (2013).
[Crossref]

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B 2 doping,” Sci. Rep. 8(1), 9358 (2018).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3(1), 2062 (2013).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Science (1)

R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S. H. Merrill, J. R. Penswick, and A. Zamir, “Structure of a ribonucleic acid,” Science 147(3664), 1462–1465 (1965).
[Crossref]

Theor. Chim. Acta (1)

M. Tanaka and S. Nagakura, “Electronic structures and spectra of adenine and thymine,” Theor. Chim. Acta 6(4), 320–332 (1966).
[Crossref]

Toxicon (1)

T. Sano, S. Kikuchi, T. Kubo, H. Takagi, K. Hosoya, and K. Kaya, “New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin,” Toxicon 51(4), 717–719 (2008).
[Crossref]

Other (5)

J. D. Jackson, “Classical electrodynamics,” (AAPT, 1999).

F. Ouchen, E. Gomez, D. Joyce, P. Yaney, S. Kim, A. Williams, A. Steckl, N. Venkat, and J. Grote, “Investigation of DNA nucleobases-thin films for potential application in electronics and photonics,” in Nanobiosystems: Processing, Characterization, and Applications VI, (International Society for Optics and Photonics, 2013), 88170C.

F. X. Schmid, “Biological macromolecules: UV visible spectrophotometry,” e LS (2001)

Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, and N. Ogata, “Light amplification in dye-doped DNA-surfactant complex films,” in Linear, Nonlinear, and Power-Limiting Organics, (International Society for Optics and Photonics, 2000), 369–376.

A. Samoc, M. Samoc, J. G. Grote, A. Miniewicz, and B. Luther-Davies, “Optical properties of deoxyribonucleic acid (DNA) polymer host,” in Optical materials in defence systems technology III, (International Society for Optics and Photonics, 2006), 640106.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of controlling the optical dispersion of pristine DNA thin film by uracil doping. (a) Four nucleobases consisting of DNA (Adenine, Cytosine, Guanine, Thymine) and four nucleobases consisting of RNA (Adenine, Cytosine, Guanine, Uracil). (b) A mixture of DNA and uracil in aqueous solution and thin film deposition by spin coating process. (c) Optical dispersion controlling of DNA thin film and solution by varying uracil concentration.
Fig. 2.
Fig. 2. DNA-uracil thin solid film fabrication processes. A. spin coating process: (a) DNA aqueous solution and uracil aqueous solution preparation. (b) mixing DNA with uracil aqueous solutions to make a homogeneous solution. (c) O2 plasma treatment on Si and silica substrates to make hydrophilic surfaces. (d) Dispensing aqueous solution precursor on the substrate. (e) spinning and solidification by water evaporation. (f) ∼50 nm film on Si and ∼110 nm film on silica substrates. B. drop-casting process: (g) dropping aqueous solution on a petri dish. (h) drying and solidification by water evaporation. (i) peeling off a freestanding film with the thickness of a few µm.
Fig. 3.
Fig. 3. (a) UV-visible-near IR absorption spectra of uracil aqueous solution without DNA for various uracil concentrations. (b) absorbance in the UV region.
Fig. 4.
Fig. 4. (a) UV-visible-near IR absorption spectra of DNA-uracil aqueous solutions with various uracil concentrations. (b) absorbance in the UV region.
Fig. 5.
Fig. 5. The absorbance of DNA-uracil aqueous solution and uracil aqueous solution without DNA at λ=258 nm as a function of the uracil concentration. The slope corresponds to the molar extinction coefficient of each solution.
Fig. 6.
Fig. 6. (a) UV-visible-near IR absorption spectra of DNA-uracil thin solid films with various uracil concentrations. (b) UV absorption spectra near the peak at λ=261 nm.
Fig. 7.
Fig. 7. Absorbance at the peak λ=261 nm in the U-doped DNA thin solid films as a function of the uracil concentration in the precursor solution.
Fig. 8.
Fig. 8. (a) FTIR absorption spectra of U-doped DNA freestanding solid films for various uracil concentrations in the aqueous precursor. (b) Spectra shift of the thymine vibration peak as a function of uracil concentration in the aqueous precursor.
Fig. 9.
Fig. 9. (a) The refractive indices of DNA thin solid film in the spectral range from 380 nm to 800 nm for various uracil concentration in the precursor solution. (b) The refractive indices of DNA thin solid film as a function of uracil concentration in the precursor solutions.
Fig. 10.
Fig. 10. Thermally-induced changes in the refractive index and the film thickness of U-doped DNA thin solid films (a) the refractive index at λ = 633 nm in the 1st temperature cycle. (b) the refractive index at λ = 633 nm in the 2nd cycle. (c) the refractive index at λ = 533 nm in the 1st temperature cycle. (d) the refractive index at λ = 533 nm in the 2nd cycle. (e) the film thickness in the 1st cycle, and (f) the film thickness in the 2nd cycle.

Tables (3)

Tables Icon

Table 1. The average thickness of DNA thin solid films made from precursor solutions before the optimization of spin-coating process. (DNA concentration = 0.37 wt%)

Tables Icon

Table 2. Refractive index difference between a pristine DNA film and a film doped with uracil 2.4 mM in the precursor solution.

Tables Icon

Table 3. Thermo-optic coefficient (10−4 °C−1 ) of U-doped DNA thin solid film for various U-concentrations in the precursor solutions.

Metrics