Abstract

In this work, we present the first demonstration of a quasi-continuous-wave diode-pumped metastable xenon laser at atmospheric pressures. Lasing in metastable noble gas species has received increased attention in the last few years as a possible high-power laser source. This demonstration shows that metastable xenon has a sufficiently broad absorption spectrum to be pumped with a broad-bandwidth diode laser. This implies that a high-power metastable xenon gas laser should be achievable using high-power pump diodes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of diode pumped metastable rare gas lasers

Zining Yang, Guangqi Yu, Hongyan Wang, Qisheng Lu, and Xiaojun Xu
Opt. Express 23(11) 13823-13832 (2015)

Time-dependent simulations of a CW pumped, pulsed DC discharge Ar metastable laser system

Pengfei Sun, Duluo Zuo, Pavel A. Mikheyev, Jiande Han, and Michael C. Heaven
Opt. Express 27(16) 22289-22301 (2019)

Modeling of scaling of a diode longitudinally pumped metastable rare gas with a master oscillator power amplifier

Hanyuan Chen, Sichen Long, Xiahui Tang, Xiangxi Wu, Wei Wang, and Yingxiong Qin
Opt. Express 27(9) 12504-12516 (2019)

References

  • View by:
  • |
  • |
  • |

  1. V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
    [Crossref]
  2. H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
    [Crossref]
  3. H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
    [Crossref]
  4. M. Larionov, H. Hugel, K. Contag, A. Giesen, and C. Stewen, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
    [Crossref]
  5. T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
    [Crossref]
  6. E. T. Gerry, “Gasdynamic lasers,” IEEE Spectrum 7(11), 51–58 (1970).
    [Crossref]
  7. A. J. Demaria, “Review of CW High-Power CO2 Lasers,” Proc. IEEE61(6), 731–748 (1973).
  8. A. D. Colley, H. J. Baker, and D. R. Hall, “Planar waveguide, 1 kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61(2), 136–138 (1992).
    [Crossref]
  9. K. A. Truesdell, C. A. Helms, and G. D. Hager, “History of chemical oxygen-iodine laser (COIL) development in the USA,” Proc. SPIE 2502, 217–237 (1995).
    [Crossref]
  10. Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
    [Crossref]
  11. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
    [Crossref]
  12. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  13. N. G. Basov and A. N. Oraevskii, “Attainment of negative temperatures by heating and cooling of a system,” Sov. Phys. JETP 17(5), 1171–1172 (1963).
  14. T. O. Poehler and R. E. Walker, “CHEMICAL LASERS,” APL Tech. Dig. pp. 2–10 (1972).
  15. J. Hecht, “Half a Century of Laser Weapons,” Opt. Photonics News 20(2), 14–21 (2009).
    [Crossref]
  16. J. Zweiback and W. F. Krupke, “Diode Pumped Alkali Laser,” Opt. Express 18(2), 1444–1449 (2010).
    [Crossref]
  17. W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  18. B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  19. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Potassium Diode Pumped Alkali Laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
    [Crossref]
  20. J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
    [Crossref]
  21. A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D: Appl. Phys. 46(37), 375202 (2013).
    [Crossref]
  22. J. Han, L. Glebov, G. Venus, and M. C. Heaven, “Demonstration of a diode-pumped metastable Ar laser,” Opt. Lett. 38(24), 5458–5461 (2013).
    [Crossref]
  23. W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 9729, 97290B (2016).
    [Crossref]
  24. J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
    [Crossref]
  25. W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
    [Crossref]
  26. Z. Yang, G. Yu, H. Wang, Q. Lu, and X. Xu, “Modeling of diode pumped metastable rare gas lasers,” Opt. Express 23(11), 13823–13832 (2015).
    [Crossref]
  27. P. A. Mikheyev, “Optically pumped rare-gas lasers,” Quantum Electron. 45(8), 704–708 (2015).
    [Crossref]
  28. J. Han, M. C. Heaven, P. J. Moran, G. A. Pitz, E. M. Guild, C. R. Sanderson, and B. Hokr, “Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W,” Opt. Lett. 42(22), 4627–4630 (2017).
    [Crossref]
  29. J. Gao, Y. He, P. Sun, Z. Zhang, X. Wang, and D. Zuo, “Simulations for transversely diode-pumped metastable rare gas lasers,” J. Opt. Soc. Am. B 34(4), 814–823 (2017).
    [Crossref]
  30. B. Eshel and G. P. Perram, “Five-level argon–helium discharge model for characterization of a diode-pumped rare-gas laser,” J. Opt. Soc. Am. B 35(1), 164–173 (2018).
    [Crossref]
  31. R. Chevalier and G. Rivoire, “Laser Action in Singly Ionized Krypton and Xenon,” Proc. IEEE 52(7), 843–844 (1964).
    [Crossref]
  32. P. O. Clark, “Investigation of the operating characteristics of the 3.5 µm xenon laser,” IEEE J. Quantum Electron. 1(3), 109–113 (1965).
    [Crossref]
  33. H. Basov, V. Danilychev, Y. Popov, and D. Khodkevich, “Laser Operating in the Vacuum Region of the Spectrum by Excitation of Liquid Xenon with an Electron Beam,” JETP Lett.12, (1970).
  34. S. E. Schwarz, T. A. Detemple, and R. Targ, “High-pressure pulsed xenon laser,” Appl. Phys. Lett. 17(7), 305–306 (1970).
    [Crossref]
  35. R. Targ and M. W. Sasnett, “Xenon-helium laser at high pressure and high repetition rate,” Appl. Phys. Lett. 19(12), 537–539 (1971).
    [Crossref]
  36. R. Targ and M. W. Sasnett, “High-Repetition-Rate Xenon Laser With Transverse Excitation,” IEEE J. Quantum Electron. 8(2), 166–169 (1972).
    [Crossref]
  37. L. W. Casperson and A. Yariv, “Gain and Dispersion Focusing in a High Gain Laser,” Appl. Opt. 11(2), 462 (1972).
    [Crossref]
  38. E. Gallego Lluesma, A. A. Tagliaferri, C. A. Massone, M. Garavaglia, and M. Gallardo, “Ionic assignment of unidentified xenon laser lines*,” J. Opt. Soc. Am. 63(3), 362–364 (1973).
    [Crossref]
  39. J. B. Gerardo and A. W. Johnson, “High-Pressure xenon laser at 1730 Å,” IEEE J. Quantum Electron. 9(7), 748–755 (1973).
    [Crossref]
  40. S. C. Wallace, R. T. Hodgson, and R. W. Dreyfus, “Short-pulse excitation of a xenon molecular dissociation laser at 172.9 nm by relativistic electrons,” Appl. Phys. Lett. 23(12), 672–674 (1973).
    [Crossref]
  41. S. C. Wallace and R. W. Dreyfus, “Continuously tunable xenon laser at 1720 Å,” Appl. Phys. Lett. 25(9), 498–500 (1974).
    [Crossref]
  42. H. H. Helmick, J. L. Fuller, and R. T. Schneider, “Direct nuclear pumping of a helium-xenon laser,” Appl. Phys. Lett. 26(6), 327–328 (1975).
    [Crossref]
  43. W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Recombination lasers in expanding CO2 laser-produced plasmas of argon, krypton, and xenon,” Appl. Phys. Lett. 31(5), 334–337 (1977).
    [Crossref]
  44. W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Ultra-high-gain laser-produced plasma laser in xenon using periodic pumping,” Appl. Phys. Lett. 34(3), 213–215 (1979).
    [Crossref]
  45. S. A. Lawton, J. B. Richards, L. A. Newman, L. Specht, and T. A. DeTemple, “The high-pressure neutral infrared xenon laser,” J. Appl. Phys. 50(6), 3888–3898 (1979).
    [Crossref]
  46. F. S. Collier, P. Labastie, M. Maillet, and M. Michon, “High-Efficiency Infrared Xenon Laser Excited by a UV Preionized Discharge,” IEEE J. Quantum Electron. 19(6), 1129–1133 (1983).
    [Crossref]
  47. P. J. M. Peters, M. Qi-Chu, and W. J. Witteman, “Near infrared lasing transitions in Ar, Kr, and Xe atoms pumped by a coaxial e-beam,” Appl. Phys. B: Photophys. Laser Chem. 47(2), 187–190 (1988).
    [Crossref]
  48. J. E. Tucker, B. L. Wexler, B. J. Feldman, and T. McClelland, “High-Pressure Infrared Xenon Laser with X-Ray Preionization,” IEEE Photonics Technol. Lett. 1(8), 193–195 (1989).
    [Crossref]
  49. M. Ohwa, T. J. Moratz, and M. J. Kushner, “Excitation mechanisms of the electron-beam-pumped atomic xenon (5d?6p) laser in Ar/Xe mixtures,” J. Appl. Phys. 66(11), 5131–5145 (1989).
    [Crossref]
  50. L. N. Litzenberger, D. W. Trainor, and M. W. McGeoch, “A 650 J e-Beam-Pumped Atomic Xenon Laser,” IEEE J. Quantum Electron. 26(9), 1668–1675 (1990).
    [Crossref]
  51. E. L. Patterson, G. E. Samlin, P. J. Brannon, and M. J. Hurst, “A Study of an Electron-Beam Excited Atomic Xenon Laser at High Energy Loading,” IEEE J. Quantum Electron. 26(9), 1661–1667 (1990).
    [Crossref]
  52. W. J. Alford, G. N. Hays, M. Ohwa, and M. J. Kushner, “The effects of He addition on the performance of the fission-fragment excited Ar/Xe atomic xenon laser,” J. Appl. Phys. 69(4), 1843–1848 (1991).
    [Crossref]
  53. D. H. Stedman and D. W. Setser, “Chemical Applications Of Metastable Rare Gas Atoms,” in Progress in Reaction Kinetics, Vol. 6, K. R. Jennings and R. B. Cundall, eds. (Pergamon Press, New York, 1972), chap. 5, pp. 193–235, 1st ed.
  54. F. Brandi, I. Velchev, W. Hogervorst, and W. Ubachs, “Vacuum-ultraviolet spectroscopy of Xe: Hyperfine splittings, isotope shifts, and isotope-dependent ionization energies,” Phys. Rev. A: At., Mol., Opt. Phys. 64(3), 032505 (2001).
    [Crossref]
  55. J. T. Verdeyen, Laser Electronics (Prentice Hall, New Jersey, 1995), 3rd ed.
  56. A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D: Appl. Phys. 51(4), 045201 (2018).
    [Crossref]
  57. G. T. Hickman, J. D. Franson, and T. B. Pittman, “Optically enhanced production of metastable xenon,” Opt. Lett. 41(18), 4372–4374 (2016).
    [Crossref]
  58. L. C. Steinhauer and H. G. Ahlstrom, “Thermal and electromagnetic forces induced by the interaction of laser radiation with a plasma,” Phys. Fluids 13(4), 1103–1105 (1970).
    [Crossref]
  59. J. N. Hayes, “Thermal Blooming of Laser Beams in Fluids,” Appl. Opt. 11(2), 455–461 (1972).
    [Crossref]
  60. J. W. Shearer and J. L. Eddleman, “Laser light forces and self-focusing in fully ionized plasmas,” Phys. Fluids 16(10), 1753–1761 (1973).
    [Crossref]
  61. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21(9), 1663–1669 (1982).
    [Crossref]

2018 (2)

B. Eshel and G. P. Perram, “Five-level argon–helium discharge model for characterization of a diode-pumped rare-gas laser,” J. Opt. Soc. Am. B 35(1), 164–173 (2018).
[Crossref]

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D: Appl. Phys. 51(4), 045201 (2018).
[Crossref]

2017 (2)

2016 (2)

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 9729, 97290B (2016).
[Crossref]

G. T. Hickman, J. D. Franson, and T. B. Pittman, “Optically enhanced production of metastable xenon,” Opt. Lett. 41(18), 4372–4374 (2016).
[Crossref]

2015 (5)

2014 (2)

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

2013 (4)

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D: Appl. Phys. 46(37), 375202 (2013).
[Crossref]

J. Han, L. Glebov, G. Venus, and M. C. Heaven, “Demonstration of a diode-pumped metastable Ar laser,” Opt. Lett. 38(24), 5458–5461 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

2012 (3)

J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

2010 (1)

2009 (1)

J. Hecht, “Half a Century of Laser Weapons,” Opt. Photonics News 20(2), 14–21 (2009).
[Crossref]

2007 (2)

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[Crossref]

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

2004 (1)

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

2001 (1)

F. Brandi, I. Velchev, W. Hogervorst, and W. Ubachs, “Vacuum-ultraviolet spectroscopy of Xe: Hyperfine splittings, isotope shifts, and isotope-dependent ionization energies,” Phys. Rev. A: At., Mol., Opt. Phys. 64(3), 032505 (2001).
[Crossref]

2000 (1)

M. Larionov, H. Hugel, K. Contag, A. Giesen, and C. Stewen, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

1995 (1)

K. A. Truesdell, C. A. Helms, and G. D. Hager, “History of chemical oxygen-iodine laser (COIL) development in the USA,” Proc. SPIE 2502, 217–237 (1995).
[Crossref]

1992 (1)

A. D. Colley, H. J. Baker, and D. R. Hall, “Planar waveguide, 1 kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61(2), 136–138 (1992).
[Crossref]

1991 (1)

W. J. Alford, G. N. Hays, M. Ohwa, and M. J. Kushner, “The effects of He addition on the performance of the fission-fragment excited Ar/Xe atomic xenon laser,” J. Appl. Phys. 69(4), 1843–1848 (1991).
[Crossref]

1990 (2)

L. N. Litzenberger, D. W. Trainor, and M. W. McGeoch, “A 650 J e-Beam-Pumped Atomic Xenon Laser,” IEEE J. Quantum Electron. 26(9), 1668–1675 (1990).
[Crossref]

E. L. Patterson, G. E. Samlin, P. J. Brannon, and M. J. Hurst, “A Study of an Electron-Beam Excited Atomic Xenon Laser at High Energy Loading,” IEEE J. Quantum Electron. 26(9), 1661–1667 (1990).
[Crossref]

1989 (2)

J. E. Tucker, B. L. Wexler, B. J. Feldman, and T. McClelland, “High-Pressure Infrared Xenon Laser with X-Ray Preionization,” IEEE Photonics Technol. Lett. 1(8), 193–195 (1989).
[Crossref]

M. Ohwa, T. J. Moratz, and M. J. Kushner, “Excitation mechanisms of the electron-beam-pumped atomic xenon (5d?6p) laser in Ar/Xe mixtures,” J. Appl. Phys. 66(11), 5131–5145 (1989).
[Crossref]

1988 (1)

P. J. M. Peters, M. Qi-Chu, and W. J. Witteman, “Near infrared lasing transitions in Ar, Kr, and Xe atoms pumped by a coaxial e-beam,” Appl. Phys. B: Photophys. Laser Chem. 47(2), 187–190 (1988).
[Crossref]

1983 (1)

F. S. Collier, P. Labastie, M. Maillet, and M. Michon, “High-Efficiency Infrared Xenon Laser Excited by a UV Preionized Discharge,” IEEE J. Quantum Electron. 19(6), 1129–1133 (1983).
[Crossref]

1982 (1)

1979 (2)

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Ultra-high-gain laser-produced plasma laser in xenon using periodic pumping,” Appl. Phys. Lett. 34(3), 213–215 (1979).
[Crossref]

S. A. Lawton, J. B. Richards, L. A. Newman, L. Specht, and T. A. DeTemple, “The high-pressure neutral infrared xenon laser,” J. Appl. Phys. 50(6), 3888–3898 (1979).
[Crossref]

1977 (1)

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Recombination lasers in expanding CO2 laser-produced plasmas of argon, krypton, and xenon,” Appl. Phys. Lett. 31(5), 334–337 (1977).
[Crossref]

1975 (1)

H. H. Helmick, J. L. Fuller, and R. T. Schneider, “Direct nuclear pumping of a helium-xenon laser,” Appl. Phys. Lett. 26(6), 327–328 (1975).
[Crossref]

1974 (1)

S. C. Wallace and R. W. Dreyfus, “Continuously tunable xenon laser at 1720 Å,” Appl. Phys. Lett. 25(9), 498–500 (1974).
[Crossref]

1973 (4)

E. Gallego Lluesma, A. A. Tagliaferri, C. A. Massone, M. Garavaglia, and M. Gallardo, “Ionic assignment of unidentified xenon laser lines*,” J. Opt. Soc. Am. 63(3), 362–364 (1973).
[Crossref]

J. B. Gerardo and A. W. Johnson, “High-Pressure xenon laser at 1730 Å,” IEEE J. Quantum Electron. 9(7), 748–755 (1973).
[Crossref]

S. C. Wallace, R. T. Hodgson, and R. W. Dreyfus, “Short-pulse excitation of a xenon molecular dissociation laser at 172.9 nm by relativistic electrons,” Appl. Phys. Lett. 23(12), 672–674 (1973).
[Crossref]

J. W. Shearer and J. L. Eddleman, “Laser light forces and self-focusing in fully ionized plasmas,” Phys. Fluids 16(10), 1753–1761 (1973).
[Crossref]

1972 (3)

1971 (1)

R. Targ and M. W. Sasnett, “Xenon-helium laser at high pressure and high repetition rate,” Appl. Phys. Lett. 19(12), 537–539 (1971).
[Crossref]

1970 (3)

S. E. Schwarz, T. A. Detemple, and R. Targ, “High-pressure pulsed xenon laser,” Appl. Phys. Lett. 17(7), 305–306 (1970).
[Crossref]

E. T. Gerry, “Gasdynamic lasers,” IEEE Spectrum 7(11), 51–58 (1970).
[Crossref]

L. C. Steinhauer and H. G. Ahlstrom, “Thermal and electromagnetic forces induced by the interaction of laser radiation with a plasma,” Phys. Fluids 13(4), 1103–1105 (1970).
[Crossref]

1965 (1)

P. O. Clark, “Investigation of the operating characteristics of the 3.5 µm xenon laser,” IEEE J. Quantum Electron. 1(3), 109–113 (1965).
[Crossref]

1964 (1)

R. Chevalier and G. Rivoire, “Laser Action in Singly Ionized Krypton and Xenon,” Proc. IEEE 52(7), 843–844 (1964).
[Crossref]

1963 (1)

N. G. Basov and A. N. Oraevskii, “Attainment of negative temperatures by heating and cooling of a system,” Sov. Phys. JETP 17(5), 1171–1172 (1963).

Afonin, Y. V.

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

Ahlstrom, H. G.

L. C. Steinhauer and H. G. Ahlstrom, “Thermal and electromagnetic forces induced by the interaction of laser radiation with a plasma,” Phys. Fluids 13(4), 1103–1105 (1970).
[Crossref]

Alford, W. J.

W. J. Alford, G. N. Hays, M. Ohwa, and M. J. Kushner, “The effects of He addition on the performance of the fission-fragment excited Ar/Xe atomic xenon laser,” J. Appl. Phys. 69(4), 1843–1848 (1991).
[Crossref]

Azyazov, V. N.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D: Appl. Phys. 51(4), 045201 (2018).
[Crossref]

Baker, H. J.

A. D. Colley, H. J. Baker, and D. R. Hall, “Planar waveguide, 1 kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61(2), 136–138 (1992).
[Crossref]

Barmashenko, B. D.

Basov, H.

H. Basov, V. Danilychev, Y. Popov, and D. Khodkevich, “Laser Operating in the Vacuum Region of the Spectrum by Excitation of Liquid Xenon with an Electron Beam,” JETP Lett.12, (1970).

Basov, N. G.

N. G. Basov and A. N. Oraevskii, “Attainment of negative temperatures by heating and cooling of a system,” Sov. Phys. JETP 17(5), 1171–1172 (1963).

Berube, M.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Brandi, F.

F. Brandi, I. Velchev, W. Hogervorst, and W. Ubachs, “Vacuum-ultraviolet spectroscopy of Xe: Hyperfine splittings, isotope shifts, and isotope-dependent ionization energies,” Phys. Rev. A: At., Mol., Opt. Phys. 64(3), 032505 (2001).
[Crossref]

Brannon, P. J.

E. L. Patterson, G. E. Samlin, P. J. Brannon, and M. J. Hurst, “A Study of an Electron-Beam Excited Atomic Xenon Laser at High Energy Loading,” IEEE J. Quantum Electron. 26(9), 1661–1667 (1990).
[Crossref]

Brown, D.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Bullock, R.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Casperson, L. W.

Chen, J.

Chevalier, R.

R. Chevalier and G. Rivoire, “Laser Action in Singly Ionized Krypton and Xenon,” Proc. IEEE 52(7), 843–844 (1964).
[Crossref]

Chyr, I.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Clark, P. O.

P. O. Clark, “Investigation of the operating characteristics of the 3.5 µm xenon laser,” IEEE J. Quantum Electron. 1(3), 109–113 (1965).
[Crossref]

Colley, A. D.

A. D. Colley, H. J. Baker, and D. R. Hall, “Planar waveguide, 1 kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61(2), 136–138 (1992).
[Crossref]

Collier, F. S.

F. S. Collier, P. Labastie, M. Maillet, and M. Michon, “High-Efficiency Infrared Xenon Laser Excited by a UV Preionized Discharge,” IEEE J. Quantum Electron. 19(6), 1129–1133 (1983).
[Crossref]

Contag, K.

M. Larionov, H. Hugel, K. Contag, A. Giesen, and C. Stewen, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Danilychev, V.

H. Basov, V. Danilychev, Y. Popov, and D. Khodkevich, “Laser Operating in the Vacuum Region of the Spectrum by Excitation of Liquid Xenon with an Electron Beam,” JETP Lett.12, (1970).

Davis, S. J.

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 9729, 97290B (2016).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref]

Demaria, A. J.

A. J. Demaria, “Review of CW High-Power CO2 Lasers,” Proc. IEEE61(6), 731–748 (1973).

Demyanov, A. V.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D: Appl. Phys. 51(4), 045201 (2018).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D: Appl. Phys. 46(37), 375202 (2013).
[Crossref]

DeTemple, T. A.

S. A. Lawton, J. B. Richards, L. A. Newman, L. Specht, and T. A. DeTemple, “The high-pressure neutral infrared xenon laser,” J. Appl. Phys. 50(6), 3888–3898 (1979).
[Crossref]

S. E. Schwarz, T. A. Detemple, and R. Targ, “High-pressure pulsed xenon laser,” Appl. Phys. Lett. 17(7), 305–306 (1970).
[Crossref]

Dreyfus, R. W.

S. C. Wallace and R. W. Dreyfus, “Continuously tunable xenon laser at 1720 Å,” Appl. Phys. Lett. 25(9), 498–500 (1974).
[Crossref]

S. C. Wallace, R. T. Hodgson, and R. W. Dreyfus, “Short-pulse excitation of a xenon molecular dissociation laser at 172.9 nm by relativistic electrons,” Appl. Phys. Lett. 23(12), 672–674 (1973).
[Crossref]

Eddleman, J. L.

J. W. Shearer and J. L. Eddleman, “Laser light forces and self-focusing in fully ionized plasmas,” Phys. Fluids 16(10), 1753–1761 (1973).
[Crossref]

Eshel, B.

Feldman, B. J.

J. E. Tucker, B. L. Wexler, B. J. Feldman, and T. McClelland, “High-Pressure Infrared Xenon Laser with X-Ray Preionization,” IEEE Photonics Technol. Lett. 1(8), 193–195 (1989).
[Crossref]

Filev, V. F.

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

Franson, J. D.

Fuller, J. L.

H. H. Helmick, J. L. Fuller, and R. T. Schneider, “Direct nuclear pumping of a helium-xenon laser,” Appl. Phys. Lett. 26(6), 327–328 (1975).
[Crossref]

Galbally-Kinney, K. L.

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 9729, 97290B (2016).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref]

Gallardo, M.

Gallego Lluesma, E.

Gao, J.

Garavaglia, M.

Gerardo, J. B.

J. B. Gerardo and A. W. Johnson, “High-Pressure xenon laser at 1730 Å,” IEEE J. Quantum Electron. 9(7), 748–755 (1973).
[Crossref]

Gerry, E. T.

E. T. Gerry, “Gasdynamic lasers,” IEEE Spectrum 7(11), 51–58 (1970).
[Crossref]

Giesen, A.

M. Larionov, H. Hugel, K. Contag, A. Giesen, and C. Stewen, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Glebov, L.

Glebov, L. B.

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

Golyshev, A. P.

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

Gottwald, T.

T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

Guild, E. M.

Guo, S.

Hager, G. D.

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

K. A. Truesdell, C. A. Helms, and G. D. Hager, “History of chemical oxygen-iodine laser (COIL) development in the USA,” Proc. SPIE 2502, 217–237 (1995).
[Crossref]

Hall, D. R.

A. D. Colley, H. J. Baker, and D. R. Hall, “Planar waveguide, 1 kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61(2), 136–138 (1992).
[Crossref]

Han, J.

Harrison, J.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Hayes, J. N.

Hays, G. N.

W. J. Alford, G. N. Hays, M. Ohwa, and M. J. Kushner, “The effects of He addition on the performance of the fission-fragment excited Ar/Xe atomic xenon laser,” J. Appl. Phys. 69(4), 1843–1848 (1991).
[Crossref]

He, Y.

Heaven, M. C.

Hecht, J.

J. Hecht, “Half a Century of Laser Weapons,” Opt. Photonics News 20(2), 14–21 (2009).
[Crossref]

Helmick, H. H.

H. H. Helmick, J. L. Fuller, and R. T. Schneider, “Direct nuclear pumping of a helium-xenon laser,” Appl. Phys. Lett. 26(6), 327–328 (1975).
[Crossref]

Helms, C. A.

K. A. Truesdell, C. A. Helms, and G. D. Hager, “History of chemical oxygen-iodine laser (COIL) development in the USA,” Proc. SPIE 2502, 217–237 (1995).
[Crossref]

Hickman, G. T.

Hodgson, R. T.

S. C. Wallace, R. T. Hodgson, and R. W. Dreyfus, “Short-pulse excitation of a xenon molecular dissociation laser at 172.9 nm by relativistic electrons,” Appl. Phys. Lett. 23(12), 672–674 (1973).
[Crossref]

Hogervorst, W.

F. Brandi, I. Velchev, W. Hogervorst, and W. Ubachs, “Vacuum-ultraviolet spectroscopy of Xe: Hyperfine splittings, isotope shifts, and isotope-dependent ionization energies,” Phys. Rev. A: At., Mol., Opt. Phys. 64(3), 032505 (2001).
[Crossref]

Hokr, B.

Hopwood, J. A.

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 9729, 97290B (2016).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref]

Hoskinson, A. R.

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 9729, 97290B (2016).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref]

Hugel, H.

M. Larionov, H. Hugel, K. Contag, A. Giesen, and C. Stewen, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Hurst, M. J.

E. L. Patterson, G. E. Samlin, P. J. Brannon, and M. J. Hurst, “A Study of an Electron-Beam Excited Atomic Xenon Laser at High Energy Loading,” IEEE J. Quantum Electron. 26(9), 1661–1667 (1990).
[Crossref]

Ivanchenko, A. I.

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

Jin, X.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Johnson, A. W.

J. B. Gerardo and A. W. Johnson, “High-Pressure xenon laser at 1730 Å,” IEEE J. Quantum Electron. 9(7), 748–755 (1973).
[Crossref]

Khitrov, V.

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Khodkevich, D.

H. Basov, V. Danilychev, Y. Popov, and D. Khodkevich, “Laser Operating in the Vacuum Region of the Spectrum by Excitation of Liquid Xenon with an Electron Beam,” JETP Lett.12, (1970).

Killi, A.

T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

Knight, L. V.

Knize, R. J.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Potassium Diode Pumped Alkali Laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[Crossref]

Kochetov, I. V.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D: Appl. Phys. 51(4), 045201 (2018).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D: Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

J. Zweiback and W. F. Krupke, “Diode Pumped Alkali Laser,” Opt. Express 18(2), 1444–1449 (2010).
[Crossref]

Kuhn, V.

T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

Kushner, M. J.

W. J. Alford, G. N. Hays, M. Ohwa, and M. J. Kushner, “The effects of He addition on the performance of the fission-fragment excited Ar/Xe atomic xenon laser,” J. Appl. Phys. 69(4), 1843–1848 (1991).
[Crossref]

M. Ohwa, T. J. Moratz, and M. J. Kushner, “Excitation mechanisms of the electron-beam-pumped atomic xenon (5d?6p) laser in Ar/Xe mixtures,” J. Appl. Phys. 66(11), 5131–5145 (1989).
[Crossref]

Labastie, P.

F. S. Collier, P. Labastie, M. Maillet, and M. Michon, “High-Efficiency Infrared Xenon Laser Excited by a UV Preionized Discharge,” IEEE J. Quantum Electron. 19(6), 1129–1133 (1983).
[Crossref]

Larionov, M.

M. Larionov, H. Hugel, K. Contag, A. Giesen, and C. Stewen, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Lawton, S. A.

S. A. Lawton, J. B. Richards, L. A. Newman, L. Specht, and T. A. DeTemple, “The high-pressure neutral infrared xenon laser,” J. Appl. Phys. 50(6), 3888–3898 (1979).
[Crossref]

Leng, J.

Li, H.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Litzenberger, L. N.

L. N. Litzenberger, D. W. Trainor, and M. W. McGeoch, “A 650 J e-Beam-Pumped Atomic Xenon Laser,” IEEE J. Quantum Electron. 26(9), 1668–1675 (1990).
[Crossref]

Lu, Q.

Lv, H.

Maillet, M.

F. S. Collier, P. Labastie, M. Maillet, and M. Michon, “High-Efficiency Infrared Xenon Laser Excited by a UV Preionized Discharge,” IEEE J. Quantum Electron. 19(6), 1129–1133 (1983).
[Crossref]

Malov, A. N.

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

Massone, C. A.

McClelland, T.

J. E. Tucker, B. L. Wexler, B. J. Feldman, and T. McClelland, “High-Pressure Infrared Xenon Laser with X-Ray Preionization,” IEEE Photonics Technol. Lett. 1(8), 193–195 (1989).
[Crossref]

McGeoch, M. W.

L. N. Litzenberger, D. W. Trainor, and M. W. McGeoch, “A 650 J e-Beam-Pumped Atomic Xenon Laser,” IEEE J. Quantum Electron. 26(9), 1668–1675 (1990).
[Crossref]

Michon, M.

F. S. Collier, P. Labastie, M. Maillet, and M. Michon, “High-Efficiency Infrared Xenon Laser Excited by a UV Preionized Discharge,” IEEE J. Quantum Electron. 19(6), 1129–1133 (1983).
[Crossref]

Mikheyev, P. A.

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D: Appl. Phys. 51(4), 045201 (2018).
[Crossref]

P. A. Mikheyev, “Optically pumped rare-gas lasers,” Quantum Electron. 45(8), 704–708 (2015).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D: Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Minelly, J. D.

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Moran, P. J.

Moratz, T. J.

M. Ohwa, T. J. Moratz, and M. J. Kushner, “Excitation mechanisms of the electron-beam-pumped atomic xenon (5d?6p) laser in Ar/Xe mixtures,” J. Appl. Phys. 66(11), 5131–5145 (1989).
[Crossref]

Newman, L. A.

S. A. Lawton, J. B. Richards, L. A. Newman, L. Specht, and T. A. DeTemple, “The high-pressure neutral infrared xenon laser,” J. Appl. Phys. 50(6), 3888–3898 (1979).
[Crossref]

Nguyen, T.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Ohwa, M.

W. J. Alford, G. N. Hays, M. Ohwa, and M. J. Kushner, “The effects of He addition on the performance of the fission-fragment excited Ar/Xe atomic xenon laser,” J. Appl. Phys. 69(4), 1843–1848 (1991).
[Crossref]

M. Ohwa, T. J. Moratz, and M. J. Kushner, “Excitation mechanisms of the electron-beam-pumped atomic xenon (5d?6p) laser in Ar/Xe mixtures,” J. Appl. Phys. 66(11), 5131–5145 (1989).
[Crossref]

Oraevskii, A. N.

N. G. Basov and A. N. Oraevskii, “Attainment of negative temperatures by heating and cooling of a system,” Sov. Phys. JETP 17(5), 1171–1172 (1963).

Orishich, A. M.

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

Patterson, E. L.

E. L. Patterson, G. E. Samlin, P. J. Brannon, and M. J. Hurst, “A Study of an Electron-Beam Excited Atomic Xenon Laser at High Energy Loading,” IEEE J. Quantum Electron. 26(9), 1661–1667 (1990).
[Crossref]

Pechurin, V. A.

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

Perram, G. P.

Peters, P. J. M.

P. J. M. Peters, M. Qi-Chu, and W. J. Witteman, “Near infrared lasing transitions in Ar, Kr, and Xe atoms pumped by a coaxial e-beam,” Appl. Phys. B: Photophys. Laser Chem. 47(2), 187–190 (1988).
[Crossref]

Petit, V.

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Pittman, T. B.

Pitz, G. A.

Poehler, T. O.

T. O. Poehler and R. E. Walker, “CHEMICAL LASERS,” APL Tech. Dig. pp. 2–10 (1972).

Pooler, E. S.

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Popov, Y.

H. Basov, V. Danilychev, Y. Popov, and D. Khodkevich, “Laser Operating in the Vacuum Region of the Spectrum by Excitation of Liquid Xenon with an Electron Beam,” JETP Lett.12, (1970).

Qi-Chu, M.

P. J. M. Peters, M. Qi-Chu, and W. J. Witteman, “Near infrared lasing transitions in Ar, Kr, and Xe atoms pumped by a coaxial e-beam,” Appl. Phys. B: Photophys. Laser Chem. 47(2), 187–190 (1988).
[Crossref]

Rawlins, W. T.

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 9729, 97290B (2016).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, J. A. Hopwood, and M. C. Heaven, “Optically pumped microplasma rare gas laser,” Opt. Express 23(4), 4804–4813 (2015).
[Crossref]

Reinhardt, F.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Richards, J. B.

S. A. Lawton, J. B. Richards, L. A. Newman, L. Specht, and T. A. DeTemple, “The high-pressure neutral infrared xenon laser,” J. Appl. Phys. 50(6), 3888–3898 (1979).
[Crossref]

Rivoire, G.

R. Chevalier and G. Rivoire, “Laser Action in Singly Ionized Krypton and Xenon,” Proc. IEEE 52(7), 843–844 (1964).
[Crossref]

Rosenwaks, S.

Rotondaro, M. D.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Potassium Diode Pumped Alkali Laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

Samlin, G. E.

E. L. Patterson, G. E. Samlin, P. J. Brannon, and M. J. Hurst, “A Study of an Electron-Beam Excited Atomic Xenon Laser at High Energy Loading,” IEEE J. Quantum Electron. 26(9), 1661–1667 (1990).
[Crossref]

Sanderson, C. R.

Sasnett, M. W.

R. Targ and M. W. Sasnett, “High-Repetition-Rate Xenon Laser With Transverse Excitation,” IEEE J. Quantum Electron. 8(2), 166–169 (1972).
[Crossref]

R. Targ and M. W. Sasnett, “Xenon-helium laser at high pressure and high repetition rate,” Appl. Phys. Lett. 19(12), 537–539 (1971).
[Crossref]

Schad, S.-S.

T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

Schneider, R. T.

H. H. Helmick, J. L. Fuller, and R. T. Schneider, “Direct nuclear pumping of a helium-xenon laser,” Appl. Phys. Lett. 26(6), 327–328 (1975).
[Crossref]

Schwarz, S. E.

S. E. Schwarz, T. A. Detemple, and R. Targ, “High-pressure pulsed xenon laser,” Appl. Phys. Lett. 17(7), 305–306 (1970).
[Crossref]

Setser, D. W.

D. H. Stedman and D. W. Setser, “Chemical Applications Of Metastable Rare Gas Atoms,” in Progress in Reaction Kinetics, Vol. 6, K. R. Jennings and R. B. Cundall, eds. (Pergamon Press, New York, 1972), chap. 5, pp. 193–235, 1st ed.

Shaffer, M. K.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Potassium Diode Pumped Alkali Laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

Shearer, J. W.

J. W. Shearer and J. L. Eddleman, “Laser light forces and self-focusing in fully ionized plasmas,” Phys. Fluids 16(10), 1753–1761 (1973).
[Crossref]

Sheldon, S. J.

Shulyat’ev, V. B.

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

Silfvast, W. T.

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Ultra-high-gain laser-produced plasma laser in xenon using periodic pumping,” Appl. Phys. Lett. 34(3), 213–215 (1979).
[Crossref]

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Recombination lasers in expanding CO2 laser-produced plasmas of argon, krypton, and xenon,” Appl. Phys. Lett. 31(5), 334–337 (1977).
[Crossref]

Specht, L.

S. A. Lawton, J. B. Richards, L. A. Newman, L. Specht, and T. A. DeTemple, “The high-pressure neutral infrared xenon laser,” J. Appl. Phys. 50(6), 3888–3898 (1979).
[Crossref]

Srinivasan, R.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Stedman, D. H.

D. H. Stedman and D. W. Setser, “Chemical Applications Of Metastable Rare Gas Atoms,” in Progress in Reaction Kinetics, Vol. 6, K. R. Jennings and R. B. Cundall, eds. (Pergamon Press, New York, 1972), chap. 5, pp. 193–235, 1st ed.

Steinhauer, L. C.

L. C. Steinhauer and H. G. Ahlstrom, “Thermal and electromagnetic forces induced by the interaction of laser radiation with a plasma,” Phys. Fluids 13(4), 1103–1105 (1970).
[Crossref]

Stewen, C.

M. Larionov, H. Hugel, K. Contag, A. Giesen, and C. Stewen, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

Stolzenburg, C.

T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

Sun, P.

Szeto, L. H.

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Ultra-high-gain laser-produced plasma laser in xenon using periodic pumping,” Appl. Phys. Lett. 34(3), 213–215 (1979).
[Crossref]

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Recombination lasers in expanding CO2 laser-produced plasmas of argon, krypton, and xenon,” Appl. Phys. Lett. 31(5), 334–337 (1977).
[Crossref]

Tagliaferri, A. A.

Targ, R.

R. Targ and M. W. Sasnett, “High-Repetition-Rate Xenon Laser With Transverse Excitation,” IEEE J. Quantum Electron. 8(2), 166–169 (1972).
[Crossref]

R. Targ and M. W. Sasnett, “Xenon-helium laser at high pressure and high repetition rate,” Appl. Phys. Lett. 19(12), 537–539 (1971).
[Crossref]

S. E. Schwarz, T. A. Detemple, and R. Targ, “High-pressure pulsed xenon laser,” Appl. Phys. Lett. 17(7), 305–306 (1970).
[Crossref]

Thorne, J. M.

Towe, T.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Trainor, D. W.

L. N. Litzenberger, D. W. Trainor, and M. W. McGeoch, “A 650 J e-Beam-Pumped Atomic Xenon Laser,” IEEE J. Quantum Electron. 26(9), 1668–1675 (1990).
[Crossref]

Truchan, T.

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

Truesdell, K. A.

K. A. Truesdell, C. A. Helms, and G. D. Hager, “History of chemical oxygen-iodine laser (COIL) development in the USA,” Proc. SPIE 2502, 217–237 (1995).
[Crossref]

Tucker, J. E.

J. E. Tucker, B. L. Wexler, B. J. Feldman, and T. McClelland, “High-Pressure Infrared Xenon Laser with X-Ray Preionization,” IEEE Photonics Technol. Lett. 1(8), 193–195 (1989).
[Crossref]

Tumminelli, R.

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

Ubachs, W.

F. Brandi, I. Velchev, W. Hogervorst, and W. Ubachs, “Vacuum-ultraviolet spectroscopy of Xe: Hyperfine splittings, isotope shifts, and isotope-dependent ionization energies,” Phys. Rev. A: At., Mol., Opt. Phys. 64(3), 032505 (2001).
[Crossref]

Velchev, I.

F. Brandi, I. Velchev, W. Hogervorst, and W. Ubachs, “Vacuum-ultraviolet spectroscopy of Xe: Hyperfine splittings, isotope shifts, and isotope-dependent ionization energies,” Phys. Rev. A: At., Mol., Opt. Phys. 64(3), 032505 (2001).
[Crossref]

Venus, G.

Venus, G. B.

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics (Prentice Hall, New Jersey, 1995), 3rd ed.

Walker, R. E.

T. O. Poehler and R. E. Walker, “CHEMICAL LASERS,” APL Tech. Dig. pp. 2–10 (1972).

Wallace, S. C.

S. C. Wallace and R. W. Dreyfus, “Continuously tunable xenon laser at 1720 Å,” Appl. Phys. Lett. 25(9), 498–500 (1974).
[Crossref]

S. C. Wallace, R. T. Hodgson, and R. W. Dreyfus, “Short-pulse excitation of a xenon molecular dissociation laser at 172.9 nm by relativistic electrons,” Appl. Phys. Lett. 23(12), 672–674 (1973).
[Crossref]

Wang, H.

Wang, X.

Wexler, B. L.

J. E. Tucker, B. L. Wexler, B. J. Feldman, and T. McClelland, “High-Pressure Infrared Xenon Laser with X-Ray Preionization,” IEEE Photonics Technol. Lett. 1(8), 193–195 (1989).
[Crossref]

Witteman, W. J.

P. J. M. Peters, M. Qi-Chu, and W. J. Witteman, “Near infrared lasing transitions in Ar, Kr, and Xe atoms pumped by a coaxial e-beam,” Appl. Phys. B: Photophys. Laser Chem. 47(2), 187–190 (1988).
[Crossref]

Wood, O. R.

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Ultra-high-gain laser-produced plasma laser in xenon using periodic pumping,” Appl. Phys. Lett. 34(3), 213–215 (1979).
[Crossref]

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Recombination lasers in expanding CO2 laser-produced plasmas of argon, krypton, and xenon,” Appl. Phys. Lett. 31(5), 334–337 (1977).
[Crossref]

Xiao, H.

Xu, X.

Yang, Z.

Yariv, A.

Yu, G.

Yu, H.

Zhang, H.

Zhang, Z.

Zhdanov, B.

Zhdanov, B. V.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Potassium Diode Pumped Alkali Laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Zhou, P.

Zuo, D.

Zweiback, J.

Appl. Opt. (4)

Appl. Phys. B: Photophys. Laser Chem. (1)

P. J. M. Peters, M. Qi-Chu, and W. J. Witteman, “Near infrared lasing transitions in Ar, Kr, and Xe atoms pumped by a coaxial e-beam,” Appl. Phys. B: Photophys. Laser Chem. 47(2), 187–190 (1988).
[Crossref]

Appl. Phys. Lett. (8)

S. E. Schwarz, T. A. Detemple, and R. Targ, “High-pressure pulsed xenon laser,” Appl. Phys. Lett. 17(7), 305–306 (1970).
[Crossref]

R. Targ and M. W. Sasnett, “Xenon-helium laser at high pressure and high repetition rate,” Appl. Phys. Lett. 19(12), 537–539 (1971).
[Crossref]

S. C. Wallace, R. T. Hodgson, and R. W. Dreyfus, “Short-pulse excitation of a xenon molecular dissociation laser at 172.9 nm by relativistic electrons,” Appl. Phys. Lett. 23(12), 672–674 (1973).
[Crossref]

S. C. Wallace and R. W. Dreyfus, “Continuously tunable xenon laser at 1720 Å,” Appl. Phys. Lett. 25(9), 498–500 (1974).
[Crossref]

H. H. Helmick, J. L. Fuller, and R. T. Schneider, “Direct nuclear pumping of a helium-xenon laser,” Appl. Phys. Lett. 26(6), 327–328 (1975).
[Crossref]

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Recombination lasers in expanding CO2 laser-produced plasmas of argon, krypton, and xenon,” Appl. Phys. Lett. 31(5), 334–337 (1977).
[Crossref]

W. T. Silfvast, L. H. Szeto, and O. R. Wood, “Ultra-high-gain laser-produced plasma laser in xenon using periodic pumping,” Appl. Phys. Lett. 34(3), 213–215 (1979).
[Crossref]

A. D. Colley, H. J. Baker, and D. R. Hall, “Planar waveguide, 1 kW cw, carbon dioxide laser excited by a single transverse rf discharge,” Appl. Phys. Lett. 61(2), 136–138 (1992).
[Crossref]

IEEE J. Quantum Electron. (6)

P. O. Clark, “Investigation of the operating characteristics of the 3.5 µm xenon laser,” IEEE J. Quantum Electron. 1(3), 109–113 (1965).
[Crossref]

R. Targ and M. W. Sasnett, “High-Repetition-Rate Xenon Laser With Transverse Excitation,” IEEE J. Quantum Electron. 8(2), 166–169 (1972).
[Crossref]

J. B. Gerardo and A. W. Johnson, “High-Pressure xenon laser at 1730 Å,” IEEE J. Quantum Electron. 9(7), 748–755 (1973).
[Crossref]

F. S. Collier, P. Labastie, M. Maillet, and M. Michon, “High-Efficiency Infrared Xenon Laser Excited by a UV Preionized Discharge,” IEEE J. Quantum Electron. 19(6), 1129–1133 (1983).
[Crossref]

L. N. Litzenberger, D. W. Trainor, and M. W. McGeoch, “A 650 J e-Beam-Pumped Atomic Xenon Laser,” IEEE J. Quantum Electron. 26(9), 1668–1675 (1990).
[Crossref]

E. L. Patterson, G. E. Samlin, P. J. Brannon, and M. J. Hurst, “A Study of an Electron-Beam Excited Atomic Xenon Laser at High Energy Loading,” IEEE J. Quantum Electron. 26(9), 1661–1667 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Larionov, H. Hugel, K. Contag, A. Giesen, and C. Stewen, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6(4), 650–657 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, and J. Harrison, “Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar,” IEEE Photonics Technol. Lett. 19(13), 960–962 (2007).
[Crossref]

J. E. Tucker, B. L. Wexler, B. J. Feldman, and T. McClelland, “High-Pressure Infrared Xenon Laser with X-Ray Preionization,” IEEE Photonics Technol. Lett. 1(8), 193–195 (1989).
[Crossref]

IEEE Spectrum (1)

E. T. Gerry, “Gasdynamic lasers,” IEEE Spectrum 7(11), 51–58 (1970).
[Crossref]

J. Appl. Phys. (3)

M. Ohwa, T. J. Moratz, and M. J. Kushner, “Excitation mechanisms of the electron-beam-pumped atomic xenon (5d?6p) laser in Ar/Xe mixtures,” J. Appl. Phys. 66(11), 5131–5145 (1989).
[Crossref]

W. J. Alford, G. N. Hays, M. Ohwa, and M. J. Kushner, “The effects of He addition on the performance of the fission-fragment excited Ar/Xe atomic xenon laser,” J. Appl. Phys. 69(4), 1843–1848 (1991).
[Crossref]

S. A. Lawton, J. B. Richards, L. A. Newman, L. Specht, and T. A. DeTemple, “The high-pressure neutral infrared xenon laser,” J. Appl. Phys. 50(6), 3888–3898 (1979).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

J. Phys. D: Appl. Phys. (2)

A. V. Demyanov, I. V. Kochetov, P. A. Mikheyev, V. N. Azyazov, and M. C. Heaven, “Kinetic analysis of rare gas metastable production and optically pumped Xe lasers,” J. Phys. D: Appl. Phys. 51(4), 045201 (2018).
[Crossref]

A. V. Demyanov, I. V. Kochetov, and P. A. Mikheyev, “Kinetic study of a cw optically pumped laser with metastable rare gas atoms produced in an electric discharge,” J. Phys. D: Appl. Phys. 46(37), 375202 (2013).
[Crossref]

Opt. Commun. (1)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Potassium Diode Pumped Alkali Laser demonstration using a closed cycle flowing system,” Opt. Commun. 354, 256–258 (2015).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Photonics News (1)

J. Hecht, “Half a Century of Laser Weapons,” Opt. Photonics News 20(2), 14–21 (2009).
[Crossref]

Phys. Fluids (2)

L. C. Steinhauer and H. G. Ahlstrom, “Thermal and electromagnetic forces induced by the interaction of laser radiation with a plasma,” Phys. Fluids 13(4), 1103–1105 (1970).
[Crossref]

J. W. Shearer and J. L. Eddleman, “Laser light forces and self-focusing in fully ionized plasmas,” Phys. Fluids 16(10), 1753–1761 (1973).
[Crossref]

Phys. Rev. A: At., Mol., Opt. Phys. (1)

F. Brandi, I. Velchev, W. Hogervorst, and W. Ubachs, “Vacuum-ultraviolet spectroscopy of Xe: Hyperfine splittings, isotope shifts, and isotope-dependent ionization energies,” Phys. Rev. A: At., Mol., Opt. Phys. 64(3), 032505 (2001).
[Crossref]

Proc. IEEE (1)

R. Chevalier and G. Rivoire, “Laser Action in Singly Ionized Krypton and Xenon,” Proc. IEEE 52(7), 843–844 (1964).
[Crossref]

Proc. SPIE (5)

V. Khitrov, J. D. Minelly, R. Tumminelli, V. Petit, and E. S. Pooler, “3kW single-mode direct diode-pumped fiber laser,” Proc. SPIE 8961, 89610V (2014).
[Crossref]

W. T. Rawlins, K. L. Galbally-Kinney, S. J. Davis, A. R. Hoskinson, and J. A. Hopwood, “Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays,” Proc. SPIE 9729, 97290B (2016).
[Crossref]

J. Han, M. C. Heaven, G. D. Hager, G. B. Venus, and L. B. Glebov, “Kinetics of an optically pumped metastable Ar laser,” Proc. SPIE 8962, 896202 (2014).
[Crossref]

K. A. Truesdell, C. A. Helms, and G. D. Hager, “History of chemical oxygen-iodine laser (COIL) development in the USA,” Proc. SPIE 2502, 217–237 (1995).
[Crossref]

T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, and A. Killi, “Recent developments in high power thin disk lasers at TRUMPF Laser,” Proc. SPIE 8898, 88980P (2013).
[Crossref]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs) - A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Quantum Electron. (2)

Y. V. Afonin, A. P. Golyshev, A. I. Ivanchenko, A. N. Malov, A. M. Orishich, V. A. Pechurin, V. F. Filev, and V. B. Shulyat’ev, “High-quality beam generation in a 8-kW cw CO2 laser,” Quantum Electron. 34(4), 307–309 (2004).
[Crossref]

P. A. Mikheyev, “Optically pumped rare-gas lasers,” Quantum Electron. 45(8), 704–708 (2015).
[Crossref]

Sov. Phys. JETP (1)

N. G. Basov and A. N. Oraevskii, “Attainment of negative temperatures by heating and cooling of a system,” Sov. Phys. JETP 17(5), 1171–1172 (1963).

Other (5)

T. O. Poehler and R. E. Walker, “CHEMICAL LASERS,” APL Tech. Dig. pp. 2–10 (1972).

A. J. Demaria, “Review of CW High-Power CO2 Lasers,” Proc. IEEE61(6), 731–748 (1973).

H. Basov, V. Danilychev, Y. Popov, and D. Khodkevich, “Laser Operating in the Vacuum Region of the Spectrum by Excitation of Liquid Xenon with an Electron Beam,” JETP Lett.12, (1970).

D. H. Stedman and D. W. Setser, “Chemical Applications Of Metastable Rare Gas Atoms,” in Progress in Reaction Kinetics, Vol. 6, K. R. Jennings and R. B. Cundall, eds. (Pergamon Press, New York, 1972), chap. 5, pp. 193–235, 1st ed.

J. T. Verdeyen, Laser Electronics (Prentice Hall, New Jersey, 1995), 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Level diagram showing the transitions for the 979.9 nm lasing and 904.5 nm pump transitions for a three-level lasing scheme in Xe$^*$. $\textrm {k}_{\textrm {ij}}$ is the relaxation rate that results from collisions with the buffer gas.
Fig. 2.
Fig. 2. Energy level structure of the 904.5 nm transition. The hyperfine structure of the odd isotopes in shown in the top of the figure, and the bottom shows the measured absorption of low pressure Xe. The roman numerals and Greek letters mark the energy levels in the upper figure that are responsible for the absorption dips in the absorption profile. The green line is the signal from the Fabry-Pérot and has a FSR of 1.5 GHz. The even isotopes all contribute to the strong absorption dip in the center (set as the 0 reference) that is broadened by isotope shifts.
Fig. 3.
Fig. 3. (a) Experimental setup for the TDLAS, gain measurements and the Xe$^*$ laser. The area enclosed by dashed lines was only used for the TDLAS and gain measurements. The cavity mirrors were removed for TDLAS and gain measurements, however the pump was used for the gain measurement and lasing only. (b) Schematic of the electrodes and their cross section. BB – Beam Block, DM – Dichroic Mirror, F – Filters, FM – Flip Mirror, FP – Fabry-Pérot interferometer, HR – High Reflector, MFC – Mass Flow Controller, OC – Output Coupler, PCV – Pressure Control Valve, PD – Photodiode, PM – Power Meter, SL – Spherical Lens, TDL – Tunable Diode Laser
Fig. 4.
Fig. 4. Experimental results from the TDLAS measurements and the streak camera. (a) A picture of the plasma at 760 Torr (scale bar is 5 mm). (b) The full width at half maximum of the 904.5 nm absorption profile versus total pressure in the cell. (c) The calculated metastable Xe densities in the plasma versus total pressure in the cell. (d) Data obtained from a streak image showing the rise in fluorescence versus time from the 979.9 nm transition using impulsive excitation at 904.5 nm.
Fig. 5.
Fig. 5. Experimental data showing the gain and laser output power. (a) Measurement of the laser gain coefficient (black line) through the plasma discharge cycle. The green line is the probe with the pump off. (b) The 979.9 nm Xe$^*$ laser output power versus input pump power. (c) The observed Xe$^*$ laser linewidth measured relative to the transition frequency ($\nu _0$).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N = C 0 ln ( I ( ν ) I 0 ( ν ) ) d ν ,
I ( L ) = I ( 0 ) e G L ,

Metrics