Abstract

In this investigation, we propose a technique to obtain not only the dimensional surface profile but also tilt information of the rough dielectric surface having a few microns root-mean-square roughness. This technique is based on low coherence scanning interferometry (LCSI) using a compound light source by combining a superluminescent light-emitting diode with ytterbium-doped fiber amplifier. Tilt angle and direction of the measured surface is extracted by the principal component analysis (PCA) from the measurement surface data and the centroid peak detection algorithm. To verify the performance of the proposed tilt measurement method, standard angle gauge block and certified step height sample were used as specimens. LCSI tilt measurement was about 3 times superior to the conventional auto-collimator in terms of the measurement precision in the practical camera module manufacturing process of smartphones. The proposed method was also discussed the dynamic tilt evaluation for the moving object.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-aperture ground glass surface profile measurement using coherence scanning interferometry

Eundeok Bae, Yunseok Kim, Sanguk Park, and Seung-Woo Kim
Opt. Express 25(2) 1106-1113 (2017)

High-speed polarized low coherence scanning interferometry based on spatial phase shifting

Jun Woo Jeon, Hee Won Jeong, Hyo Bin Jeong, and Ki-Nam Joo
Appl. Opt. 58(20) 5360-5365 (2019)

Low cost wafer metrology using a NIR low coherence interferometry

Young Gwang Kim, Yong Bum Seo, and Ki-Nam Joo
Opt. Express 21(11) 13648-13655 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Ikram and G. Hussain, “Michelson interferometer for precision angle measurement,” Appl. Opt. 38(1), 113–120 (1999).
    [Crossref]
  2. P. R. Yoder, Opto-Mechanical Systems Design, 3rd ed. (CRC, 2006).
  3. D. Malacara, Optical Shop Test, 3rd ed. (John Wiley & Sons, 2014).
  4. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33(31), 7334–7338 (1994).
    [Crossref]
  5. S. -W. Kim and G. -H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38(28), 5968–5973 (1999).
    [Crossref]
  6. I. Shvrin, L. Lipiäinen, K. Kokkonen, S. Novotny, M. Kaivola, and H. Ludvigsen, “Stroboscopic white-light interferometry of vibrating microstructures,” Opt. Express 21(14), 16901–16907 (2013).
    [Crossref]
  7. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
    [Crossref]
  8. J.-A. Owen, “Principal Component Analysis: Data Reduction and Simplification,” McNair Scholars Res. J. 1(2), 1–23 (2014).
  9. H. Gross, B. Dörband, and H. Müller, Handbook of Optical Systems: Metrology of Optical Components and Systems, (Wiley, 2015), Chap. 50.
  10. H. E. Bennett and J. O. Porteus, “Relation between surface roughness and specular reflectance at normal incidence,” J. Opt. Soc. Am. 51(2), 123–129 (1961).
    [Crossref]
  11. H. E. Bennett, “Specular reflectance of aluminized ground glass and the height distribution of surface irregularities,” J. Opt. Soc. Am. 53(12), 1389–1394 (1963).
    [Crossref]
  12. O. Sasaki, Y. Ikeada, and T. Suzuki, “Superluminescent diode interferometer using sinusoidal phase modulation for step-profile measurement,” Appl. Opt. 37(22), 5126–5131 (1998).
    [Crossref]
  13. C. -Y. Lee, S. -W. Hyun, Y. -J. Kim, and S. -W. Kim, “Optical inspection of smartphone camera modules by near-infrared low-coherence interferometrry,” Opt. Eng. 55(9), 091404 (2016).
    [Crossref]
  14. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  15. Y. Chiba, H. Takada, K. Torizuka, and K. Misawa, “65-fs Yb-doped fiber laser system with gain-narrowing compensation,” Opt. Express 23(5), 6809–6814 (2015).
    [Crossref]
  16. P. Magnan, “Detection of visible photons in CCD and CMOS: A comparative view,” Nucl. Instrum. Methods Phys. Res., Sect. A 504(1-3), 199–212 (2003).
    [Crossref]
  17. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
    [Crossref]
  18. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41(25), 5256–5262 (2002).
    [Crossref]
  19. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and application,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  20. P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
    [Crossref]
  21. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
    [Crossref]
  22. C. Ai and E. L. Novak, “Centroid approach for estimating modulation peak in broad-bandwidth interferometry,” U.S. patent 5,633,715 (filed 19 May 1996; issued 27 May 1997).
  23. P. Pavliček and O. Hŷbl, “White-light interferometry on rough surface measurement uncertainty caused by surface roughness,” Appl. Opt. 47(16), 2941–2949 (2008).
    [Crossref]

2016 (1)

C. -Y. Lee, S. -W. Hyun, Y. -J. Kim, and S. -W. Kim, “Optical inspection of smartphone camera modules by near-infrared low-coherence interferometrry,” Opt. Eng. 55(9), 091404 (2016).
[Crossref]

2015 (1)

2014 (1)

J.-A. Owen, “Principal Component Analysis: Data Reduction and Simplification,” McNair Scholars Res. J. 1(2), 1–23 (2014).

2013 (1)

2008 (1)

2004 (1)

2003 (3)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and application,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
[Crossref]

P. Magnan, “Detection of visible photons in CCD and CMOS: A comparative view,” Nucl. Instrum. Methods Phys. Res., Sect. A 504(1-3), 199–212 (2003).
[Crossref]

2002 (1)

1999 (2)

1998 (1)

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

1994 (1)

1992 (2)

1963 (1)

1961 (1)

Adler, D. C.

Ai, C.

C. Ai and E. L. Novak, “Centroid approach for estimating modulation peak in broad-bandwidth interferometry,” U.S. patent 5,633,715 (filed 19 May 1996; issued 27 May 1997).

Akcay, C.

Bennett, H. E.

Chiba, Y.

de Groot, P.

Deck, L.

Dörband, B.

H. Gross, B. Dörband, and H. Müller, Handbook of Optical Systems: Metrology of Optical Components and Systems, (Wiley, 2015), Chap. 50.

Dresel, T.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and application,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and application,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fujimoto, J. G.

Gross, H.

H. Gross, B. Dörband, and H. Müller, Handbook of Optical Systems: Metrology of Optical Components and Systems, (Wiley, 2015), Chap. 50.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Häusler, G.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and application,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Hussain, G.

Hybl, O.

Hyun, S. -W.

C. -Y. Lee, S. -W. Hyun, Y. -J. Kim, and S. -W. Kim, “Optical inspection of smartphone camera modules by near-infrared low-coherence interferometrry,” Opt. Eng. 55(9), 091404 (2016).
[Crossref]

Ikeada, Y.

Ikram, M.

Kaivola, M.

Kim, G. -H.

Kim, S. -W.

C. -Y. Lee, S. -W. Hyun, Y. -J. Kim, and S. -W. Kim, “Optical inspection of smartphone camera modules by near-infrared low-coherence interferometrry,” Opt. Eng. 55(9), 091404 (2016).
[Crossref]

S. -W. Kim and G. -H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38(28), 5968–5973 (1999).
[Crossref]

Kim, Y. -J.

C. -Y. Lee, S. -W. Hyun, Y. -J. Kim, and S. -W. Kim, “Optical inspection of smartphone camera modules by near-infrared low-coherence interferometrry,” Opt. Eng. 55(9), 091404 (2016).
[Crossref]

Ko, T. H.

Kokkonen, K.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and application,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lee, C. -Y.

C. -Y. Lee, S. -W. Hyun, Y. -J. Kim, and S. -W. Kim, “Optical inspection of smartphone camera modules by near-infrared low-coherence interferometrry,” Opt. Eng. 55(9), 091404 (2016).
[Crossref]

Lipiäinen, L.

Ludvigsen, H.

Magnan, P.

P. Magnan, “Detection of visible photons in CCD and CMOS: A comparative view,” Nucl. Instrum. Methods Phys. Res., Sect. A 504(1-3), 199–212 (2003).
[Crossref]

Malacara, D.

D. Malacara, Optical Shop Test, 3rd ed. (John Wiley & Sons, 2014).

Mamedov, D.

Misawa, K.

Müller, H.

H. Gross, B. Dörband, and H. Müller, Handbook of Optical Systems: Metrology of Optical Components and Systems, (Wiley, 2015), Chap. 50.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Novak, E. L.

C. Ai and E. L. Novak, “Centroid approach for estimating modulation peak in broad-bandwidth interferometry,” U.S. patent 5,633,715 (filed 19 May 1996; issued 27 May 1997).

Novotny, S.

Owen, J.-A.

J.-A. Owen, “Principal Component Analysis: Data Reduction and Simplification,” McNair Scholars Res. J. 1(2), 1–23 (2014).

Parrein, P.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Pavlicek, P.

Porteus, J. O.

Prokhorov, V.

Rolland, J. P.

Sasaki, O.

Shidlovski, V.

Shvrin, I.

Soubusta, J.

Suzuki, T.

Takada, H.

Torizuka, K.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Venzke, H.

Yakubovich, S.

Yoder, P. R.

P. R. Yoder, Opto-Mechanical Systems Design, 3rd ed. (CRC, 2006).

Appl. Opt. (9)

M. Ikram and G. Hussain, “Michelson interferometer for precision angle measurement,” Appl. Opt. 38(1), 113–120 (1999).
[Crossref]

L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33(31), 7334–7338 (1994).
[Crossref]

S. -W. Kim and G. -H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38(28), 5968–5973 (1999).
[Crossref]

T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
[Crossref]

O. Sasaki, Y. Ikeada, and T. Suzuki, “Superluminescent diode interferometer using sinusoidal phase modulation for step-profile measurement,” Appl. Opt. 37(22), 5126–5131 (1998).
[Crossref]

C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41(25), 5256–5262 (2002).
[Crossref]

P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
[Crossref]

T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
[Crossref]

P. Pavliček and O. Hŷbl, “White-light interferometry on rough surface measurement uncertainty caused by surface roughness,” Appl. Opt. 47(16), 2941–2949 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

J. Opt. Soc. Am. (2)

McNair Scholars Res. J. (1)

J.-A. Owen, “Principal Component Analysis: Data Reduction and Simplification,” McNair Scholars Res. J. 1(2), 1–23 (2014).

Nucl. Instrum. Methods Phys. Res., Sect. A (1)

P. Magnan, “Detection of visible photons in CCD and CMOS: A comparative view,” Nucl. Instrum. Methods Phys. Res., Sect. A 504(1-3), 199–212 (2003).
[Crossref]

Opt. Eng. (1)

C. -Y. Lee, S. -W. Hyun, Y. -J. Kim, and S. -W. Kim, “Optical inspection of smartphone camera modules by near-infrared low-coherence interferometrry,” Opt. Eng. 55(9), 091404 (2016).
[Crossref]

Opt. Express (3)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and application,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Other (4)

P. R. Yoder, Opto-Mechanical Systems Design, 3rd ed. (CRC, 2006).

D. Malacara, Optical Shop Test, 3rd ed. (John Wiley & Sons, 2014).

H. Gross, B. Dörband, and H. Müller, Handbook of Optical Systems: Metrology of Optical Components and Systems, (Wiley, 2015), Chap. 50.

C. Ai and E. L. Novak, “Centroid approach for estimating modulation peak in broad-bandwidth interferometry,” U.S. patent 5,633,715 (filed 19 May 1996; issued 27 May 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Usages of autocollimator for the measurement of the tilt angle of (a) a specular target surface and (b) a diffusive dielectric surface that is the rough seat surface in the camera modules.
Fig. 2.
Fig. 2. (a) Optical layout of low coherence scanning interferometry in this study. (b) Compound light source constructed for the low coherence scanning interferometry is based on a superluminescent light emitting diode (SLD). (c) Optical spectrum at the exit of the SLD before the fiber amplification. (d) Optical spectrum at the exit fiber of the ytterbium-doped fiber amplifier (YDFA). (e) Coherence correlogram obtained from a mirror target surface to measure the temporal coherence length.
Fig. 3.
Fig. 3. (a) Photograph of the certified reference material (CRM) for the step height measurement in the experiment and measurement results of (b) surface profiles, and (c) consecutive step height data for the CRM.
Fig. 4.
Fig. 4. Tilt measurement processes for the standard angle gauge block with LCSI; (a) the configuration for the angle gauge block on the flat gold mirror, (b) the gold mirror (Thorlabs Model#: PF10-03-M01-Ø1“) as the reference flat surface (c) the measured surface profile for the angle gauge block on the flat gold mirror and (d) the measured surface profile for the flat gold mirror.
Fig. 5.
Fig. 5. Typical surfaces where tilt measurements are required at the camera assembly process in the smartphone manufacturing; (a) seat surface of the carrier on which the barrel containing lens assembly will be before assembling the barrel and (b) barrel top surface after assembling the barrel into the carrier.
Fig. 6.
Fig. 6. (a) Location of seat and reference surface, (b) surface profile of the reference surface for the tilt measurement, (c) surface profile of the seat surface, (d) location of barrel top surface, (e) surface profile of barrel top surface and (f) the measured tilt showing angle and tilt direction of the barrel top surface.
Fig. 7.
Fig. 7. Comparison of tilt measurements for (a)–(d) four combination of housings and carriers inside one kind of camera module and (e) distribution of the variation of a maximum-minimum for each tilt measurement method.
Fig. 8.
Fig. 8. Measured tilt trajectory of barrel top surface in the axial zooming actuator movement of the lens assembly.

Tables (3)

Tables Icon

Table 1. Low coherence scanning interferometer conditions

Tables Icon

Table 2. Repeated measurements with LCSI for the standard angle gauge block

Tables Icon

Table 3. 5 repeated tilt measurement corresponding to Fig. 6(f)

Metrics