Abstract

An enhanced adaptive optics visual simulator (AOVS) was used to study the impact of chromatic aberration on vision. In particular, through-focus visual acuity (VA) was measured in four subjects under three longitudinal chromatic aberration (LCA) conditions: natural LCA, compensated LCA and doubled LCA. Ray-tracing simulations using a chromatic eye model were also performed for a better understanding of experimental results. Simulations predicted the optical quality of the retinal images and VA by applying a semi-empirical formula. Experimental and ray tracing results showed a significant agreement in the natural LCA case (R2 = 0.92). Modifying the LCA caused an impairment in the predictability of the results, with decreasing correlations between experiment and simulations (compensated LCA, R2 = 0.84; doubled LCA, R2 = 0.59). VA under modified LCA was systematically overestimated by the model around the best focus position. The results provided useful information on how LCA manipulation affects the depth of focus. Decreased capability of the model to predict VA in modified LCA conditions suggests that neural adaptation may play a role.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Visual effect of the combined correction of spherical and longitudinal chromatic aberrations

Pablo Artal, Silvestre Manzanera, Patricia Piers, and Henk Weeber
Opt. Express 18(2) 1637-1648 (2010)

Measuring and compensating for ocular longitudinal chromatic aberration

Xiaoyun Jiang, James A. Kuchenbecker, Phanith Touch, and Ramkumar Sabesan
Optica 6(8) 981-990 (2019)

Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics

Maria Vinas, Carlos Dorronsoro, Daniel Cortes, Daniel Pascual, and Susana Marcos
Biomed. Opt. Express 6(3) 948-962 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
    [Crossref]
  2. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47(6), 564–565 (1957).
    [Crossref]
  3. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
    [Crossref]
  4. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
    [Crossref]
  5. M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
    [Crossref]
  6. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing , double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref]
  7. X. Jiang, J. A. Kuchenbecker, P. Touch, and R. Sabesan, “Measuring and compensating for ocular longitudinal chromatic aberration,” Optica 6(8), 981–989 (2019).
    [Crossref]
  8. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref]
  9. M. Millodot, “The influence of age on the chromatic aberration of the eye,” Albrecht von Graefes Arch. fur Klinische und Exp. Ophthalmol. 198(3), 235–243 (1976).
    [Crossref]
  10. P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
    [Crossref]
  11. P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
    [Crossref]
  12. A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
    [Crossref]
  13. X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
    [Crossref]
  14. G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
    [Crossref]
  15. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
    [Crossref]
  16. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
    [Crossref]
  17. E. J. Fernández and P. Artal, “Achromatic doublet intraocular lens for full aberration correction,” Biomed. Opt. Express 8(5), 2396–2404 (2017).
    [Crossref]
  18. A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract. Refract. Surg. 33(3), 497–509 (2007).
    [Crossref]
  19. F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” The J. Physiol. 192(2), 345–358 (1967).
    [Crossref]
  20. L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4(8), 1673–1680 (1987).
    [Crossref]
  21. L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
    [Crossref]
  22. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20(24), 4152–4155 (1981).
    [Crossref]
  23. N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).
    [Crossref]
  24. L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
    [Crossref]
  25. F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
    [Crossref]
  26. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
    [Crossref]
  27. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
    [Crossref]
  28. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
    [Crossref]
  29. E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
    [Crossref]
  30. S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
    [Crossref]
  31. L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
    [Crossref]
  32. C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
    [Crossref]
  33. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
    [Crossref]
  34. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
    [Crossref]
  35. E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
    [Crossref]
  36. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
    [Crossref]
  37. L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
    [Crossref]
  38. L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
    [Crossref]
  39. A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
    [Crossref]
  40. J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
    [Crossref]
  41. A. Alarcon, C. Canovas, R. Rosen, H. Weeber, L. Tsai, K. Hileman, and P. Piers, “Preclinical metrics to predict through-focus visual acuity for pseudophakic patients,” Biomed. Opt. Express 7(5), 1877–1888 (2016).
    [Crossref]
  42. J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(17), 14159–14171 (2016).
    [Crossref]
  43. J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
    [Crossref]
  44. E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Investig. Opthalmology & Vis. Sci. 1(6), 776–783 (1962).
  45. M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73(1), 49–53 (1996).
    [Crossref]
  46. W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112(778), 428–450 (1933).
    [Crossref]
  47. A. W. Snyder and C. Pask, “The Stiles-Crawford effect - explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
    [Crossref]
  48. D. A. Atchison, D. H. Scott, N. C. Strang, and P. Artal, “Influence of Stiles-Crawford apodization on visual acuity,” J. Opt. Soc. Am. A 19(6), 1073–1083 (2002).
    [Crossref]
  49. X. Zhang, M. Ye, A. Bradley, and L. N. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
    [Crossref]
  50. R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10(7), 1611–1623 (1993).
    [Crossref]
  51. F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” The J. Physiol. 181(3), 576–593 (1965).
    [Crossref]
  52. J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
    [Crossref]
  53. S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
    [Crossref]
  54. X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
    [Crossref]
  55. J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus,” J. Cataract. & Refract. Surg. 38(2), 270–277 (2012).
    [Crossref]
  56. W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. Royal Soc. London. Ser. B - Biol. Sci. 123(830), 90–118 (1937).
    [Crossref]
  57. C. A. Johnson and E. J. Casson, “Effects of Luminance, Contrast, and Blur on Visual Acuity.pdf,” Optom. Vis. Sci. 72(12), 864–869 (1995).
    [Crossref]
  58. K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).
  59. K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
    [Crossref]
  60. D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29(3), 349–360 (1989).
    [Crossref]
  61. A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
    [Crossref]

2019 (2)

2017 (2)

2016 (2)

2015 (2)

2014 (2)

C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref]

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]

2012 (2)

J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus,” J. Cataract. & Refract. Surg. 38(2), 270–277 (2012).
[Crossref]

K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref]

2010 (3)

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref]

2009 (2)

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[Crossref]

2008 (2)

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]

2007 (4)

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref]

A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract. Refract. Surg. 33(3), 497–509 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]

2002 (4)

2001 (1)

1999 (1)

1998 (2)

F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]

1997 (2)

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref]

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]

1996 (1)

M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73(1), 49–53 (1996).
[Crossref]

1995 (3)

C. A. Johnson and E. J. Casson, “Effects of Luminance, Contrast, and Blur on Visual Acuity.pdf,” Optom. Vis. Sci. 72(12), 864–869 (1995).
[Crossref]

K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref]

1993 (2)

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10(7), 1611–1623 (1993).
[Crossref]

1991 (3)

A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]

X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]

L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]

1990 (1)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

1989 (1)

D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29(3), 349–360 (1989).
[Crossref]

1988 (1)

A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]

1987 (2)

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
[Crossref]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4(8), 1673–1680 (1987).
[Crossref]

1986 (2)

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref]

P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref]

1981 (1)

1976 (1)

M. Millodot, “The influence of age on the chromatic aberration of the eye,” Albrecht von Graefes Arch. fur Klinische und Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref]

1973 (1)

A. W. Snyder and C. Pask, “The Stiles-Crawford effect - explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref]

1967 (1)

F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” The J. Physiol. 192(2), 345–358 (1967).
[Crossref]

1965 (1)

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” The J. Physiol. 181(3), 576–593 (1965).
[Crossref]

1962 (1)

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Investig. Opthalmology & Vis. Sci. 1(6), 776–783 (1962).

1957 (1)

1937 (1)

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. Royal Soc. London. Ser. B - Biol. Sci. 123(830), 90–118 (1937).
[Crossref]

1933 (1)

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112(778), 428–450 (1933).
[Crossref]

Aggarwala, K. R.

K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]

Alarcon, A.

Alcón, E.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]

Applegate, R. A.

Artal, P.

N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).
[Crossref]

E. J. Fernández and P. Artal, “Achromatic doublet intraocular lens for full aberration correction,” Biomed. Opt. Express 8(5), 2396–2404 (2017).
[Crossref]

J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
[Crossref]

J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(17), 14159–14171 (2016).
[Crossref]

C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref]

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]

J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus,” J. Cataract. & Refract. Surg. 38(2), 270–277 (2012).
[Crossref]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[Crossref]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref]

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]

D. A. Atchison, D. H. Scott, N. C. Strang, and P. Artal, “Influence of Stiles-Crawford apodization on visual acuity,” J. Opt. Soc. Am. A 19(6), 1073–1083 (2002).
[Crossref]

F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]

Atchison, D. A.

Bach, M.

M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73(1), 49–53 (1996).
[Crossref]

Baylor, D. A.

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
[Crossref]

Bedford, R. E.

Benny, Y.

Bierden, P.

Boettner, E. A.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Investig. Opthalmology & Vis. Sci. 1(6), 776–783 (1962).

Bradley, A.

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]

X. Zhang, M. Ye, A. Bradley, and L. N. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref]

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref]

A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]

L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]

X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref]

Burns, S. A.

J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

Campbell, F. W.

F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” The J. Physiol. 192(2), 345–358 (1967).
[Crossref]

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” The J. Physiol. 181(3), 576–593 (1965).
[Crossref]

Canovas, C.

Casson, E. J.

C. A. Johnson and E. J. Casson, “Effects of Luminance, Contrast, and Blur on Visual Acuity.pdf,” Optom. Vis. Sci. 72(12), 864–869 (1995).
[Crossref]

Chateau, N.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]

Chen, L.

Chisholm, W.

Cortes, D.

Crawford, B. H.

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112(778), 428–450 (1933).
[Crossref]

Doble, N.

Dorronsoro, C.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing , double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Fernández, E. J.

Flitcroft, D. I.

D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29(3), 349–360 (1989).
[Crossref]

Franchini, A.

A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract. Refract. Surg. 33(3), 497–509 (2007).
[Crossref]

Gambra, E.

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Graef, K.

K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref]

Green, D. G.

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” The J. Physiol. 181(3), 576–593 (1965).
[Crossref]

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” The J. Physiol. 192(2), 345–358 (1967).
[Crossref]

Gutierrez, D.

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]

Hileman, K.

Hofer, H.

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref]

Jiang, X.

Johnson, C. A.

C. A. Johnson and E. J. Casson, “Effects of Luminance, Contrast, and Blur on Visual Acuity.pdf,” Optom. Vis. Sci. 72(12), 864–869 (1995).
[Crossref]

Kraft, T. W.

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
[Crossref]

Krueger, R. R.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]

Kruger, P. B.

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[Crossref]

K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]

P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref]

Kuchenbecker, J. A.

Lakshminarayanan, V.

Lidkea, B.

Losada, M. A.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]

Lundström, L.

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]

Manzanera, S.

Marcos, S.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing , double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

Marín, J. M.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]

Martínez, J. L.

Mathews, S.

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]

Mclellan, J. S.

J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

Millodot, M.

M. Millodot, “The influence of age on the chromatic aberration of the eye,” Albrecht von Graefes Arch. fur Klinische und Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref]

Mirabet, S.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]

Navarro, R.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]

Nowbotsing, S.

K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).

Olivier, S.

Pascual, D.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing , double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

Pask, C.

A. W. Snyder and C. Pask, “The Stiles-Crawford effect - explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref]

Piers, P.

Pola, J.

P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref]

Powell, I.

Prieto, P. M.

Ravikumar, S.

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]

Ribak, E. N.

Rocha, K. M.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]

Roorda, A.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

Rosen, R.

Rossi, E. A.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

Rynders, M.

Rynders, M. C.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]

Sabesan, R.

Sanchez, N.

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]

Sawides, L.

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Schaeffel, F.

K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref]

Schnapf, J. L.

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
[Crossref]

Schwarz, C.

Scott, D. H.

Singer, B.

Smith, G.

Snyder, A. W.

A. W. Snyder and C. Pask, “The Stiles-Crawford effect - explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref]

Stiles, W. S.

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. Royal Soc. London. Ser. B - Biol. Sci. 123(830), 90–118 (1937).
[Crossref]

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112(778), 428–450 (1933).
[Crossref]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

Strang, N. C.

Suchkov, N.

Switkes, E.

A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]

Tabernero, J.

J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus,” J. Cataract. & Refract. Surg. 38(2), 270–277 (2012).
[Crossref]

Tarrant, J.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

Thibos, L. N.

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]

X. Zhang, M. Ye, A. Bradley, and L. N. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref]

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref]

X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]

A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]

L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4(8), 1673–1680 (1987).
[Crossref]

Touch, P.

Tsai, L.

Unsbo, P.

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]

Vabre, L.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]

Valois, K. D. E.

A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]

Vargas-Martín, F.

Venkataraman, A. P.

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]

Villegas, E. A.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]

Vinas, M.

Webster, M.

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

Weeber, H.

Weiser, P.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

Williams, D. R.

Winter, S.

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]

Wolter, J. R.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Investig. Opthalmology & Vis. Sci. 1(6), 776–783 (1962).

Wyszecki, G.

Yago, I.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]

Yamauchi, Y.

Ye, M.

Yoon, G.

Yoon, G. Y.

Yoon, G.-Y.

Zhang, X.

X. Zhang, M. Ye, A. Bradley, and L. N. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref]

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]

X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]

L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]

A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

Albrecht von Graefes Arch. fur Klinische und Exp. Ophthalmol. (1)

M. Millodot, “The influence of age on the chromatic aberration of the eye,” Albrecht von Graefes Arch. fur Klinische und Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref]

Am. J. Ophthalmol. (1)

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (4)

Investig. Opthalmology & Vis. Sci. (2)

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Investig. Opthalmology & Vis. Sci. 1(6), 776–783 (1962).

K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).

J. Cataract. & Refract. Surg. (2)

J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus,” J. Cataract. & Refract. Surg. 38(2), 270–277 (2012).
[Crossref]

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]

J. Cataract. Refract. Surg. (1)

A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract. Refract. Surg. 33(3), 497–509 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (13)

X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref]

X. Zhang, M. Ye, A. Bradley, and L. N. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref]

F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4(8), 1673–1680 (1987).
[Crossref]

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10(7), 1611–1623 (1993).
[Crossref]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref]

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[Crossref]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]

G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
[Crossref]

D. A. Atchison, D. H. Scott, N. C. Strang, and P. Artal, “Influence of Stiles-Crawford apodization on visual acuity,” J. Opt. Soc. Am. A 19(6), 1073–1083 (2002).
[Crossref]

N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).
[Crossref]

J. Vis. (7)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref]

Nature (2)

J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
[Crossref]

J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Optom. Vis. Sci. (6)

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref]

M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73(1), 49–53 (1996).
[Crossref]

C. A. Johnson and E. J. Casson, “Effects of Luminance, Contrast, and Blur on Visual Acuity.pdf,” Optom. Vis. Sci. 72(12), 864–869 (1995).
[Crossref]

L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]

A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]

Proc. R. Soc. London, Ser. B (1)

W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112(778), 428–450 (1933).
[Crossref]

Proc. Royal Soc. London. Ser. B - Biol. Sci. (1)

W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. Royal Soc. London. Ser. B - Biol. Sci. 123(830), 90–118 (1937).
[Crossref]

The J. Physiol. (2)

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” The J. Physiol. 181(3), 576–593 (1965).
[Crossref]

F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” The J. Physiol. 192(2), 345–358 (1967).
[Crossref]

Vision Res. (9)

P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref]

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]

A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]

D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29(3), 349–360 (1989).
[Crossref]

A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]

A. W. Snyder and C. Pask, “The Stiles-Crawford effect - explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the AOVS system. Lenses L1 to L6 – achromats with focal lengths of 100 mm. Planes conjugated to the entrance pupil of the system are shown with a green dotted line. Further explanation is given in text.
Fig. 2.
Fig. 2. Retinal spectral illuminance estimated for the experiment
Fig. 3.
Fig. 3. Averaged chromatic shifts under monochromatic stimuli from the four subjects for chromatic conditions: Natural LCA (A); Compensated LCA (B); and Doubled LCA (C). Error bars represent standard deviation, omitted when too small for the figure scale.
Fig. 4.
Fig. 4. Average through-focus VA from the four subjects for chromatic conditions: Natural LCA (A); Compensated LCA (B); and doubled LCA (C). The solid lines connecting experimental points were obtained from a cubic splines interpolation.
Fig. 5.
Fig. 5. Chromatic shift (D) at the retina calculated from the eye model for natural, compensated, and doubled LCA.
Fig. 6.
Fig. 6. (A) MTF area (normalized for the natural LCA) through-focus for natural (red line), compensated (blue line) and double (green line) LCA. (B) Theoretical estimation of the decimal VA associated with the conditions natural (red line), compensated (blue line), and double (green line) LCA.
Fig. 7.
Fig. 7. Visual acuity from simulations and experimental measurements. (A) natural LCA; (B) compensated LCA; (C) doubled LCA. Error bars represent standard deviation

Tables (2)

Tables Icon

Table 1. Parameters of eye model. Unit for radius, thickness and semi-diameter is mm.

Tables Icon

Table 2. Parameters of achromatizing triplets. Unit for radius, thickness and semi-diameter is mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ( λ ) = L n ( λ ) T n ( λ ) S n ( λ ) ,
A G ( x , y ) = e 2 η e d g e ( x , y ) / η m a x ,
V A d e c ( w M T F a ) = 10 ( a w M T F a b + c ) ,
w M T F a = f = 1 150 / d d 150 M T F ( f d ) C S F ( f d ) ,