X. Jiang, J. A. Kuchenbecker, P. Touch, and R. Sabesan, “Measuring and compensating for ocular longitudinal chromatic aberration,” Optica 6(8), 981–989 (2019).
[Crossref]
N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).
[Crossref]
A. Alarcon, C. Canovas, R. Rosen, H. Weeber, L. Tsai, K. Hileman, and P. Piers, “Preclinical metrics to predict through-focus visual acuity for pseudophakic patients,” Biomed. Opt. Express 7(5), 1877–1888 (2016).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(17), 14159–14171 (2016).
[Crossref]
A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]
M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing , double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]
C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref]
E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]
J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus,” J. Cataract. & Refract. Surg. 38(2), 270–277 (2012).
[Crossref]
K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref]
L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]
L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]
P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref]
K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]
E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[Crossref]
S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]
S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]
L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]
E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]
Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref]
A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract. Refract. Surg. 33(3), 497–509 (2007).
[Crossref]
P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]
N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[Crossref]
G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
[Crossref]
D. A. Atchison, D. H. Scott, N. C. Strang, and P. Artal, “Influence of Stiles-Crawford apodization on visual acuity,” J. Opt. Soc. Am. A 19(6), 1073–1083 (2002).
[Crossref]
J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]
F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]
M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]
L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref]
X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]
M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73(1), 49–53 (1996).
[Crossref]
C. A. Johnson and E. J. Casson, “Effects of Luminance, Contrast, and Blur on Visual Acuity.pdf,” Optom. Vis. Sci. 72(12), 864–869 (1995).
[Crossref]
K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).
M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref]
A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]
X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]
L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]
L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]
D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29(3), 349–360 (1989).
[Crossref]
A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]
P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref]
P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref]
M. Millodot, “The influence of age on the chromatic aberration of the eye,” Albrecht von Graefes Arch. fur Klinische und Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref]
A. W. Snyder and C. Pask, “The Stiles-Crawford effect - explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref]
F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” The J. Physiol. 192(2), 345–358 (1967).
[Crossref]
F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” The J. Physiol. 181(3), 576–593 (1965).
[Crossref]
E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Investig. Opthalmology & Vis. Sci. 1(6), 776–783 (1962).
W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. Royal Soc. London. Ser. B - Biol. Sci. 123(830), 90–118 (1937).
[Crossref]
W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112(778), 428–450 (1933).
[Crossref]
K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).
P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]
E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]
N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).
[Crossref]
E. J. Fernández and P. Artal, “Achromatic doublet intraocular lens for full aberration correction,” Biomed. Opt. Express 8(5), 2396–2404 (2017).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(17), 14159–14171 (2016).
[Crossref]
C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref]
E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]
J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus,” J. Cataract. & Refract. Surg. 38(2), 270–277 (2012).
[Crossref]
P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref]
E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[Crossref]
Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref]
L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]
P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]
D. A. Atchison, D. H. Scott, N. C. Strang, and P. Artal, “Influence of Stiles-Crawford apodization on visual acuity,” J. Opt. Soc. Am. A 19(6), 1073–1083 (2002).
[Crossref]
F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]
M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73(1), 49–53 (1996).
[Crossref]
J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
[Crossref]
E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Investig. Opthalmology & Vis. Sci. 1(6), 776–783 (1962).
L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]
S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]
X. Zhang, M. Ye, A. Bradley, and L. N. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref]
X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]
L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref]
A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]
L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]
X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]
L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]
A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]
P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref]
J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]
F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” The J. Physiol. 192(2), 345–358 (1967).
[Crossref]
F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” The J. Physiol. 181(3), 576–593 (1965).
[Crossref]
C. A. Johnson and E. J. Casson, “Effects of Luminance, Contrast, and Blur on Visual Acuity.pdf,” Optom. Vis. Sci. 72(12), 864–869 (1995).
[Crossref]
K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]
L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]
L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[Crossref]
P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]
N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[Crossref]
H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref]
W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112(778), 428–450 (1933).
[Crossref]
M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing , double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]
L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]
S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]
N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
[Crossref]
E. J. Fernández and P. Artal, “Achromatic doublet intraocular lens for full aberration correction,” Biomed. Opt. Express 8(5), 2396–2404 (2017).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(17), 14159–14171 (2016).
[Crossref]
C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref]
E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[Crossref]
P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]
D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29(3), 349–360 (1989).
[Crossref]
A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract. Refract. Surg. 33(3), 497–509 (2007).
[Crossref]
L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]
S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]
K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref]
F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” The J. Physiol. 181(3), 576–593 (1965).
[Crossref]
F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” The J. Physiol. 192(2), 345–358 (1967).
[Crossref]
L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]
L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[Crossref]
H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref]
L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]
P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref]
C. A. Johnson and E. J. Casson, “Effects of Luminance, Contrast, and Blur on Visual Acuity.pdf,” Optom. Vis. Sci. 72(12), 864–869 (1995).
[Crossref]
J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
[Crossref]
K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]
L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[Crossref]
K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).
P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]
P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref]
M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]
A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]
C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref]
P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref]
Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref]
P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]
M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing , double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]
L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]
L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]
S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]
J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]
E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(17), 14159–14171 (2016).
[Crossref]
P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]
J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]
M. Millodot, “The influence of age on the chromatic aberration of the eye,” Albrecht von Graefes Arch. fur Klinische und Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref]
E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]
M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]
K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).
M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing , double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]
L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]
A. W. Snyder and C. Pask, “The Stiles-Crawford effect - explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref]
A. Alarcon, C. Canovas, R. Rosen, H. Weeber, L. Tsai, K. Hileman, and P. Piers, “Preclinical metrics to predict through-focus visual acuity for pseudophakic patients,” Biomed. Opt. Express 7(5), 1877–1888 (2016).
[Crossref]
P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref]
P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(17), 14159–14171 (2016).
[Crossref]
C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref]
E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[Crossref]
Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref]
J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]
F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]
L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]
S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]
K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]
E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]
E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]
M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]
P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]
L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]
L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]
S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]
K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref]
J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
[Crossref]
L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[Crossref]
P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]
N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[Crossref]
H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref]
A. W. Snyder and C. Pask, “The Stiles-Crawford effect - explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref]
W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. Royal Soc. London. Ser. B - Biol. Sci. 123(830), 90–118 (1937).
[Crossref]
W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112(778), 428–450 (1933).
[Crossref]
L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]
A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]
J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus,” J. Cataract. & Refract. Surg. 38(2), 270–277 (2012).
[Crossref]
E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]
L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]
S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]
X. Zhang, M. Ye, A. Bradley, and L. N. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref]
X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]
L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref]
M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref]
X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]
A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]
L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]
L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]
L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4(8), 1673–1680 (1987).
[Crossref]
A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]
K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]
A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]
A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]
E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]
L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]
A. Alarcon, C. Canovas, R. Rosen, H. Weeber, L. Tsai, K. Hileman, and P. Piers, “Preclinical metrics to predict through-focus visual acuity for pseudophakic patients,” Biomed. Opt. Express 7(5), 1877–1888 (2016).
[Crossref]
P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref]
E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]
L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]
L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[Crossref]
P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]
N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[Crossref]
G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
[Crossref]
H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref]
A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]
E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Investig. Opthalmology & Vis. Sci. 1(6), 776–783 (1962).
E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]
X. Zhang, M. Ye, A. Bradley, and L. N. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref]
X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]
X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]
L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]
A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]
L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]
M. Millodot, “The influence of age on the chromatic aberration of the eye,” Albrecht von Graefes Arch. fur Klinische und Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref]
E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref]
C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5(10), 3355–3366 (2014).
[Crossref]
M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing , double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]
A. Alarcon, C. Canovas, R. Rosen, H. Weeber, L. Tsai, K. Hileman, and P. Piers, “Preclinical metrics to predict through-focus visual acuity for pseudophakic patients,” Biomed. Opt. Express 7(5), 1877–1888 (2016).
[Crossref]
E. J. Fernández and P. Artal, “Achromatic doublet intraocular lens for full aberration correction,” Biomed. Opt. Express 8(5), 2396–2404 (2017).
[Crossref]
E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Investig. Opthalmology & Vis. Sci. 1(6), 776–783 (1962).
K. R. Aggarwala, S. Nowbotsing, and P. B. Kruger, “Accommodation to monochromatic and white-light targets,” Investig. Opthalmology & Vis. Sci. 36(13), 2695–2705 (1995).
J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus,” J. Cataract. & Refract. Surg. 38(2), 270–277 (2012).
[Crossref]
K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. & Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref]
A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract. Refract. Surg. 33(3), 497–509 (2007).
[Crossref]
X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]
M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref]
X. Zhang, M. Ye, A. Bradley, and L. N. Thibos, “Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16(4), 812–820 (1999).
[Crossref]
F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]
L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4(8), 1673–1680 (1987).
[Crossref]
R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10(7), 1611–1623 (1993).
[Crossref]
D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref]
L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[Crossref]
Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref]
S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref]
G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
[Crossref]
D. A. Atchison, D. H. Scott, N. C. Strang, and P. Artal, “Influence of Stiles-Crawford apodization on visual acuity,” J. Opt. Soc. Am. A 19(6), 1073–1083 (2002).
[Crossref]
N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).
[Crossref]
P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(8), 281 (2004).
[Crossref]
L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref]
L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]
E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]
S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]
L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under adaptive-optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]
K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref]
J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325(6103), 439–441 (1987).
[Crossref]
J. S. Mclellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye ’ s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
[Crossref]
E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[Crossref]
P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref]
J. L. Martínez, E. J. Fernández, P. M. Prieto, and P. Artal, “Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating,” Opt. Express 24(17), 14159–14171 (2016).
[Crossref]
H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref]
X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref]
L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref]
M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73(1), 49–53 (1996).
[Crossref]
C. A. Johnson and E. J. Casson, “Effects of Luminance, Contrast, and Blur on Visual Acuity.pdf,” Optom. Vis. Sci. 72(12), 864–869 (1995).
[Crossref]
L. N. Thibos, A. Bradley, and X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref]
A. Bradley, X. Zhang, and L. N. Thibos, “Achromatizing the human eye,” Optom. Vis. Sci. 68(8), 608–616 (1991).
[Crossref]
W. S. Stiles and B. H. Crawford, “The luminous efficiency of rays entering the eye pupil at different points,” Proc. R. Soc. London, Ser. B 112(778), 428–450 (1933).
[Crossref]
W. S. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. Royal Soc. London. Ser. B - Biol. Sci. 123(830), 90–118 (1937).
[Crossref]
F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” The J. Physiol. 181(3), 576–593 (1965).
[Crossref]
F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” The J. Physiol. 192(2), 345–358 (1967).
[Crossref]
P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref]
P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33(10), 1397–1411 (1993).
[Crossref]
P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref]
L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]
M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref]
A. P. Venkataraman, S. Winter, P. Unsbo, and L. Lundström, “Blur adaptation: Contrast sensitivity changes and stimulus extent,” Vision Res. 110, 100–106 (2015).
[Crossref]
D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29(3), 349–360 (1989).
[Crossref]
A. Bradley, E. Switkes, and K. D. E. Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28(7), 841–856 (1988).
[Crossref]
A. W. Snyder and C. Pask, “The Stiles-Crawford effect - explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973).
[Crossref]