Abstract

As an important micro-optical device, microlens array (MLA) also has broad applications in aqueous environment apart from atmosphere, such as bioscience research, ocean exploration, and microfluidic systems. However, the surface of the normal MLA is easily polluted by oil contaminations when the MLA is practically applied in a water medium, leading to the loss of its optical imaging ability. Herein, we fabricated a functional MLA with underwater anti-oil and self-cleaning abilities by combining the femtosecond laser wet etching (FLWE) and the femtosecond laser direct writing (FLDW) techniques. The as-prepared close-packed MLA is composed of 10000 single microlenses with the aperture diameter of 50 µm. The surface of each microlens is further textured with micro/nanoparticles. Clear and uniform images could be captured by using the resultant MLA in water, demonstrating great underwater imaging ability. The modulation transfer function value is larger than 0.6 at 55 lp/mm. In addition, the micro/nanostructures endow the as-fabricated MLA surface with underwater superoleophobicity and oil-repellent performance. Various oils can be repelled by the resultant MLA in water. Underwater 1,2-dichloroethane oil droplet on the textured MLA has a contact angle of 158.0 ± 0.5° and a sliding angle of 2.0 ± 0.2°. The underwater superoleophobic MLA also has good mechanical durability. The anti-oil and self-cleaning functions will broaden the applications of the MLA in ocean exploration, bioscience research, microfluidic system, and many underwater MLA-based systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method

Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou
Opt. Express 18(19) 20334-20343 (2010)

Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching

Siyu Tong, Hao Bian, Qing Yang, Feng Chen, Zefang Deng, Jinhai Si, and Xun Hou
Opt. Express 22(23) 29283-29291 (2014)

Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces

Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou
Opt. Express 20(12) 12939-12948 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
    [Crossref]
  2. P. Gorzelak, M. A. Salamon, R. Lach, M. Loba, and B. Ferre, “Microlens Arrays in the Complex Visual System of Cretaceous Echinoderms,” Nat. Commun. 5(1), 3576 (2014).
    [Crossref]
  3. Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
    [Crossref]
  4. X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
    [Crossref]
  5. C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
    [Crossref]
  6. V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
    [Crossref]
  7. E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
    [Crossref]
  8. Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, “Janus Interface Materials: Superhydrophobic Air/Solid Interface and Superoleophobic Water/Solid Interface Inspired by a Lotus Leaf,” Soft Matter 7(13), 5948–5951 (2011).
    [Crossref]
  9. Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
    [Crossref]
  10. Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
    [Crossref]
  11. J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
    [Crossref]
  12. J. Yong, F. Chen, Q. Yang, J. Huo, and X. Hou, “Superoleophobic Surfaces,” Chem. Soc. Rev. 46(14), 4168–4217 (2017).
    [Crossref]
  13. K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
    [Crossref]
  14. L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, “Underwater Superoleophobic Porous Membrane Based on Hierarchical TiO2 Nanotubes: Multifunctional Integration of Oil-Water Separation, Flow-through Photocatalysis and Self-Cleaning,” J. Mater. Chem. A 3(3), 1279–1286 (2015).
    [Crossref]
  15. D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
    [Crossref]
  16. M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, “Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface,” Adv. Mater. 21(6), 665–669 (2009).
    [Crossref]
  17. X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
    [Crossref]
  18. E. Zhang, Z. Cheng, T. Lv, L. Li, and Y. Liu, “The Design of Underwater Superoleophobic Ni/NiO Microstructures with Tunable Oil Adhesion,” Nanoscale 7(45), 19293–19299 (2015).
    [Crossref]
  19. L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
    [Crossref]
  20. J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
    [Crossref]
  21. H. Wang and Z. Guo, “Design of Underwater Superoleophobic TiO2 Coatings with Additional Photo-Induced Self-Cleaning Properties by One-Step Route Bio-Inspired from Fish Scales,” Appl. Phys. Lett. 104(18), 183703 (2014).
    [Crossref]
  22. Z. Wang, L. Zhu, W. Li, and H. Liu, “Bioinspired in Situ Growth of Conversion Films with Underwater Superoleophobicity and Excellent Self-Cleaning Performance,” ACS Appl. Mater. Interfaces 5(21), 10904–10911 (2013).
    [Crossref]
  23. Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang, “Special Wettable Materials for Oil/Water Separation,” J. Mater. Chem. A 2(8), 2445–2460 (2014).
    [Crossref]
  24. Z. Xue, M. Liu, and L. Jiang, “Recent Developments in Polymeric Superoleophobic Surfaces,” J. Polym. Sci., Part B: Polym. Phys. 50(17), 1209–1224 (2012).
    [Crossref]
  25. J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
    [Crossref]
  26. J. Yong, F. Chen, Q. Yang, and X. Hou, “Femtosecond Laser Controlled Wettability of Solid Surfaces,” Soft Matter 11(46), 8897–8906 (2015).
    [Crossref]
  27. J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
    [Crossref]
  28. Z. Wang, X. Jiang, X. Cheng, C. H. Lau, and L. Shao, “Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in Water Emulsion Separation,” ACS Appl. Mater. Interfaces 7(18), 9534–9545 (2015).
    [Crossref]
  29. F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang, “Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation,” Adv. Mater. 25(30), 4192–4198 (2013).
    [Crossref]
  30. L. Zhang, Y. Zhong, D. K. Cha, and P. Wang, “Self-Cleaning Underwater Superoleophobic Mesh for Oil-Water Separation,” Sci. Rep. 3(1), 2326 (2013).
    [Crossref]
  31. M. Zhang, T. Zhang, and T. Cui, “Wettability Conversion from Superoleophobic to Superhydrophilic on Titania/Single-Walled Carbon Nanotube Composite Coatings,” Langmuir 27(15), 9295–9301 (2011).
    [Crossref]
  32. J. L. Yong, S. C. Singh, Z. Zhan, F. Chen, and C. Guo, “Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water,” ACS Appl. Mater. Interfaces 11(8), 8667–8675 (2019).
    [Crossref]
  33. J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
    [Crossref]
  34. J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
    [Crossref]
  35. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless Fabrication of Concave Microlens Arrays on Silica Glasses by a Femtosecond-Laser-Enhanced Local Wet Etching Method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref]
  36. H. Liu, H. Bian, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile Route to Gapless Microlens Arrays Using Laser-Tunable Wet-Etched Curved Surface,” Opt. Express 20(12), 12939–12948 (2012).
    [Crossref]
  37. J. L. Yong, S. C. Singh, Z. Zhan, E. Mohamed, F. Chen, and C. Guo, “Femtosecond Laser-Produced Underwater “Superpolymphobic” Nanorippled Surfaces: Repelling Liquid Polymers in Water for Application of Controlling Polymer Shape and Adhesion,” ACS Appl. Nano Mater. doi.org/10.1021/acsanm.9b01869 (2019).
  38. X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong, X. Hou, and F. Chen, “Superhydrophobicity-Memory Surfaces Prepared by a Femtosecond Laser,” Chem. Eng. J. doi.org/10.1016/j.cej.2019.123143 (2019).
  39. M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
    [Crossref]
  40. Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of Polymer Microlens Array with Controllable Focal Length by Modifying Surface Wettability,” Opt. Express 26(4), 4172–4182 (2018).
    [Crossref]
  41. S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-Scale High Quality Glass Microlens Arrays Fabricated by Laser Enhanced Wet Etching,” Opt. Express 22(23), 29283–29291 (2014).
    [Crossref]
  42. J. C. Feltz and M. A. Karim, “Modulation Transfer Function of Charge-Coupled Devices,” Appl. Opt. 29(5), 717–722 (1990).
    [Crossref]
  43. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin Wafer-Level Camera Lenses Inspired by Insect Compound Eyes,” Opt. Express 18(24), 24379–24394 (2010).
    [Crossref]
  44. S. Haghanifar, T. Gao, R. T. R. D. Vecchis, B. Pafchek, T. D. B. Jacobs, and P. W. Leu, “Ultrahigh-Transparency, Ultrahigh-haze Nanograss Glass with Fluid-Induced Switchable Haze,” Optica 4(12), 1522–1525 (2017).
    [Crossref]

2019 (2)

J. L. Yong, S. C. Singh, Z. Zhan, F. Chen, and C. Guo, “Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water,” ACS Appl. Mater. Interfaces 11(8), 8667–8675 (2019).
[Crossref]

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

2018 (3)

Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of Polymer Microlens Array with Controllable Focal Length by Modifying Surface Wettability,” Opt. Express 26(4), 4172–4182 (2018).
[Crossref]

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

2017 (4)

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

J. Yong, F. Chen, Q. Yang, J. Huo, and X. Hou, “Superoleophobic Surfaces,” Chem. Soc. Rev. 46(14), 4168–4217 (2017).
[Crossref]

J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
[Crossref]

S. Haghanifar, T. Gao, R. T. R. D. Vecchis, B. Pafchek, T. D. B. Jacobs, and P. W. Leu, “Ultrahigh-Transparency, Ultrahigh-haze Nanograss Glass with Fluid-Induced Switchable Haze,” Optica 4(12), 1522–1525 (2017).
[Crossref]

2016 (3)

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref]

2015 (6)

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, “Underwater Superoleophobic Porous Membrane Based on Hierarchical TiO2 Nanotubes: Multifunctional Integration of Oil-Water Separation, Flow-through Photocatalysis and Self-Cleaning,” J. Mater. Chem. A 3(3), 1279–1286 (2015).
[Crossref]

E. Zhang, Z. Cheng, T. Lv, L. Li, and Y. Liu, “The Design of Underwater Superoleophobic Ni/NiO Microstructures with Tunable Oil Adhesion,” Nanoscale 7(45), 19293–19299 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, and X. Hou, “Femtosecond Laser Controlled Wettability of Solid Surfaces,” Soft Matter 11(46), 8897–8906 (2015).
[Crossref]

Z. Wang, X. Jiang, X. Cheng, C. H. Lau, and L. Shao, “Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in Water Emulsion Separation,” ACS Appl. Mater. Interfaces 7(18), 9534–9545 (2015).
[Crossref]

2014 (7)

J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
[Crossref]

Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang, “Special Wettable Materials for Oil/Water Separation,” J. Mater. Chem. A 2(8), 2445–2460 (2014).
[Crossref]

J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-Scale High Quality Glass Microlens Arrays Fabricated by Laser Enhanced Wet Etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

H. Wang and Z. Guo, “Design of Underwater Superoleophobic TiO2 Coatings with Additional Photo-Induced Self-Cleaning Properties by One-Step Route Bio-Inspired from Fish Scales,” Appl. Phys. Lett. 104(18), 183703 (2014).
[Crossref]

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

P. Gorzelak, M. A. Salamon, R. Lach, M. Loba, and B. Ferre, “Microlens Arrays in the Complex Visual System of Cretaceous Echinoderms,” Nat. Commun. 5(1), 3576 (2014).
[Crossref]

2013 (6)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Z. Wang, L. Zhu, W. Li, and H. Liu, “Bioinspired in Situ Growth of Conversion Films with Underwater Superoleophobicity and Excellent Self-Cleaning Performance,” ACS Appl. Mater. Interfaces 5(21), 10904–10911 (2013).
[Crossref]

L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
[Crossref]

K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
[Crossref]

F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang, “Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation,” Adv. Mater. 25(30), 4192–4198 (2013).
[Crossref]

L. Zhang, Y. Zhong, D. K. Cha, and P. Wang, “Self-Cleaning Underwater Superoleophobic Mesh for Oil-Water Separation,” Sci. Rep. 3(1), 2326 (2013).
[Crossref]

2012 (4)

Z. Xue, M. Liu, and L. Jiang, “Recent Developments in Polymeric Superoleophobic Surfaces,” J. Polym. Sci., Part B: Polym. Phys. 50(17), 1209–1224 (2012).
[Crossref]

E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
[Crossref]

X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
[Crossref]

H. Liu, H. Bian, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile Route to Gapless Microlens Arrays Using Laser-Tunable Wet-Etched Curved Surface,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref]

2011 (3)

Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, “Janus Interface Materials: Superhydrophobic Air/Solid Interface and Superoleophobic Water/Solid Interface Inspired by a Lotus Leaf,” Soft Matter 7(13), 5948–5951 (2011).
[Crossref]

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

M. Zhang, T. Zhang, and T. Cui, “Wettability Conversion from Superoleophobic to Superhydrophilic on Titania/Single-Walled Carbon Nanotube Composite Coatings,” Langmuir 27(15), 9295–9301 (2011).
[Crossref]

2010 (2)

2009 (1)

M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, “Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface,” Adv. Mater. 21(6), 665–669 (2009).
[Crossref]

1990 (1)

Acquard, D. F.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Ariga, K.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Baca, A. S.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Bai, X.

X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong, X. Hou, and F. Chen, “Superhydrophobicity-Memory Surfaces Prepared by a Femtosecond Laser,” Chem. Eng. J. doi.org/10.1016/j.cej.2019.123143 (2019).

Baker, D.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Bellman, R. A.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Bian, H.

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-Scale High Quality Glass Microlens Arrays Fabricated by Laser Enhanced Wet Etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

H. Liu, H. Bian, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile Route to Gapless Microlens Arrays Using Laser-Tunable Wet-Etched Curved Surface,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless Fabrication of Concave Microlens Arrays on Silica Glasses by a Femtosecond-Laser-Enhanced Local Wet Etching Method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref]

Bianco, V.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref]

Bräuer, A.

Brückner, A.

Cao, W.

E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
[Crossref]

Cao, Y.

Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang, “Special Wettable Materials for Oil/Water Separation,” J. Mater. Chem. A 2(8), 2445–2460 (2014).
[Crossref]

Cha, D. K.

L. Zhang, Y. Zhong, D. K. Cha, and P. Wang, “Self-Cleaning Underwater Superoleophobic Mesh for Oil-Water Separation,” Sci. Rep. 3(1), 2326 (2013).
[Crossref]

Chen, F.

J. L. Yong, S. C. Singh, Z. Zhan, F. Chen, and C. Guo, “Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water,” ACS Appl. Mater. Interfaces 11(8), 8667–8675 (2019).
[Crossref]

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

J. Yong, F. Chen, Q. Yang, J. Huo, and X. Hou, “Superoleophobic Surfaces,” Chem. Soc. Rev. 46(14), 4168–4217 (2017).
[Crossref]

J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
[Crossref]

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, and X. Hou, “Femtosecond Laser Controlled Wettability of Solid Surfaces,” Soft Matter 11(46), 8897–8906 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
[Crossref]

J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-Scale High Quality Glass Microlens Arrays Fabricated by Laser Enhanced Wet Etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

H. Liu, H. Bian, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile Route to Gapless Microlens Arrays Using Laser-Tunable Wet-Etched Curved Surface,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless Fabrication of Concave Microlens Arrays on Silica Glasses by a Femtosecond-Laser-Enhanced Local Wet Etching Method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref]

X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong, X. Hou, and F. Chen, “Superhydrophobicity-Memory Surfaces Prepared by a Femtosecond Laser,” Chem. Eng. J. doi.org/10.1016/j.cej.2019.123143 (2019).

J. L. Yong, S. C. Singh, Z. Zhan, E. Mohamed, F. Chen, and C. Guo, “Femtosecond Laser-Produced Underwater “Superpolymphobic” Nanorippled Surfaces: Repelling Liquid Polymers in Water for Application of Controlling Polymer Shape and Adhesion,” ACS Appl. Nano Mater. doi.org/10.1021/acsanm.9b01869 (2019).

Chen, Q.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Cheng, Q.

Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, “Janus Interface Materials: Superhydrophobic Air/Solid Interface and Superoleophobic Water/Solid Interface Inspired by a Lotus Leaf,” Soft Matter 7(13), 5948–5951 (2011).
[Crossref]

Cheng, X.

Z. Wang, X. Jiang, X. Cheng, C. H. Lau, and L. Shao, “Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in Water Emulsion Separation,” ACS Appl. Mater. Interfaces 7(18), 9534–9545 (2015).
[Crossref]

Cheng, Z.

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

E. Zhang, Z. Cheng, T. Lv, L. Li, and Y. Liu, “The Design of Underwater Superoleophobic Ni/NiO Microstructures with Tunable Oil Adhesion,” Nanoscale 7(45), 19293–19299 (2015).
[Crossref]

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

Choi, K.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Coppola, S.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Cui, T.

M. Zhang, T. Zhang, and T. Cui, “Wettability Conversion from Superoleophobic to Superhydrophilic on Titania/Single-Walled Carbon Nanotube Composite Coatings,” Langmuir 27(15), 9295–9301 (2011).
[Crossref]

Dai, B.

Dai, Y.

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

Dannberg, P.

Deng, Z.

Ding, Y.

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

Douglas, E. P.

E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
[Crossref]

Du, G.

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
[Crossref]

J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
[Crossref]

H. Liu, H. Bian, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile Route to Gapless Microlens Arrays Using Laser-Tunable Wet-Etched Curved Surface,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref]

Du, Y.

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

Duparré, J.

Eom, S.

E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
[Crossref]

Fang, Y.

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
[Crossref]

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong, X. Hou, and F. Chen, “Superhydrophobicity-Memory Surfaces Prepared by a Femtosecond Laser,” Chem. Eng. J. doi.org/10.1016/j.cej.2019.123143 (2019).

Farooq, U.

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
[Crossref]

J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
[Crossref]

Feltz, J. C.

Feng, L.

Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang, “Special Wettable Materials for Oil/Water Separation,” J. Mater. Chem. A 2(8), 2445–2460 (2014).
[Crossref]

K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
[Crossref]

Ferraro, P.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref]

Ferre, B.

P. Gorzelak, M. A. Salamon, R. Lach, M. Loba, and B. Ferre, “Microlens Arrays in the Complex Visual System of Cretaceous Echinoderms,” Nat. Commun. 5(1), 3576 (2014).
[Crossref]

Fu, K.

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

Gao, J.

X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
[Crossref]

Gao, S.

K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
[Crossref]

Gao, T.

Gorzelak, P.

P. Gorzelak, M. A. Salamon, R. Lach, M. Loba, and B. Ferre, “Microlens Arrays in the Complex Visual System of Cretaceous Echinoderms,” Nat. Commun. 5(1), 3576 (2014).
[Crossref]

Grilli, S.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref]

Guan, W.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Guo, C.

J. L. Yong, S. C. Singh, Z. Zhan, F. Chen, and C. Guo, “Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water,” ACS Appl. Mater. Interfaces 11(8), 8667–8675 (2019).
[Crossref]

J. L. Yong, S. C. Singh, Z. Zhan, E. Mohamed, F. Chen, and C. Guo, “Femtosecond Laser-Produced Underwater “Superpolymphobic” Nanorippled Surfaces: Repelling Liquid Polymers in Water for Application of Controlling Polymer Shape and Adhesion,” ACS Appl. Nano Mater. doi.org/10.1021/acsanm.9b01869 (2019).

Guo, Z.

H. Wang and Z. Guo, “Design of Underwater Superoleophobic TiO2 Coatings with Additional Photo-Induced Self-Cleaning Properties by One-Step Route Bio-Inspired from Fish Scales,” Appl. Phys. Lett. 104(18), 183703 (2014).
[Crossref]

Haghanifar, S.

Hammond, W. T.

E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
[Crossref]

Hou, C.

Hou, R.

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

Hou, X.

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

J. Yong, F. Chen, Q. Yang, J. Huo, and X. Hou, “Superoleophobic Surfaces,” Chem. Soc. Rev. 46(14), 4168–4217 (2017).
[Crossref]

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
[Crossref]

J. Yong, F. Chen, Q. Yang, and X. Hou, “Femtosecond Laser Controlled Wettability of Solid Surfaces,” Soft Matter 11(46), 8897–8906 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
[Crossref]

J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-Scale High Quality Glass Microlens Arrays Fabricated by Laser Enhanced Wet Etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

H. Liu, H. Bian, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile Route to Gapless Microlens Arrays Using Laser-Tunable Wet-Etched Curved Surface,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless Fabrication of Concave Microlens Arrays on Silica Glasses by a Femtosecond-Laser-Enhanced Local Wet Etching Method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref]

X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong, X. Hou, and F. Chen, “Superhydrophobicity-Memory Surfaces Prepared by a Femtosecond Laser,” Chem. Eng. J. doi.org/10.1016/j.cej.2019.123143 (2019).

Huang, Y.

Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of Polymer Microlens Array with Controllable Focal Length by Modifying Surface Wettability,” Opt. Express 26(4), 4172–4182 (2018).
[Crossref]

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Huo, J.

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

J. Yong, F. Chen, Q. Yang, J. Huo, and X. Hou, “Superoleophobic Surfaces,” Chem. Soc. Rev. 46(14), 4168–4217 (2017).
[Crossref]

J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
[Crossref]

Jacobs, T. D. B.

Jiang, C.

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

Jiang, L.

Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang, “Special Wettable Materials for Oil/Water Separation,” J. Mater. Chem. A 2(8), 2445–2460 (2014).
[Crossref]

F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang, “Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation,” Adv. Mater. 25(30), 4192–4198 (2013).
[Crossref]

K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
[Crossref]

L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
[Crossref]

X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
[Crossref]

Z. Xue, M. Liu, and L. Jiang, “Recent Developments in Polymeric Superoleophobic Surfaces,” J. Polym. Sci., Part B: Polym. Phys. 50(17), 1209–1224 (2012).
[Crossref]

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, “Janus Interface Materials: Superhydrophobic Air/Solid Interface and Superoleophobic Water/Solid Interface Inspired by a Lotus Leaf,” Soft Matter 7(13), 5948–5951 (2011).
[Crossref]

M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, “Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface,” Adv. Mater. 21(6), 665–669 (2009).
[Crossref]

Jiang, T.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Jiang, X.

Z. Wang, X. Jiang, X. Cheng, C. H. Lau, and L. Shao, “Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in Water Emulsion Separation,” ACS Appl. Mater. Interfaces 7(18), 9534–9545 (2015).
[Crossref]

Jiao, J.

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Jin, J.

F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang, “Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation,” Adv. Mater. 25(30), 4192–4198 (2013).
[Crossref]

Ju, J.

K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
[Crossref]

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Karim, M. A.

Kim, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Lach, R.

P. Gorzelak, M. A. Salamon, R. Lach, M. Loba, and B. Ferre, “Microlens Arrays in the Complex Visual System of Cretaceous Echinoderms,” Nat. Commun. 5(1), 3576 (2014).
[Crossref]

Lai, H.

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

Lau, C. H.

Z. Wang, X. Jiang, X. Cheng, C. H. Lau, and L. Shao, “Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in Water Emulsion Separation,” ACS Appl. Mater. Interfaces 7(18), 9534–9545 (2015).
[Crossref]

Lee, S.

E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
[Crossref]

Leitel, R.

Leu, P. W.

Li, C.

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

Li, K.

K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
[Crossref]

Li, L.

L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, “Underwater Superoleophobic Porous Membrane Based on Hierarchical TiO2 Nanotubes: Multifunctional Integration of Oil-Water Separation, Flow-through Photocatalysis and Self-Cleaning,” J. Mater. Chem. A 3(3), 1279–1286 (2015).
[Crossref]

E. Zhang, Z. Cheng, T. Lv, L. Li, and Y. Liu, “The Design of Underwater Superoleophobic Ni/NiO Microstructures with Tunable Oil Adhesion,” Nanoscale 7(45), 19293–19299 (2015).
[Crossref]

Li, M.

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
[Crossref]

Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, “Janus Interface Materials: Superhydrophobic Air/Solid Interface and Superoleophobic Water/Solid Interface Inspired by a Lotus Leaf,” Soft Matter 7(13), 5948–5951 (2011).
[Crossref]

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Li, W.

Z. Wang, L. Zhu, W. Li, and H. Liu, “Bioinspired in Situ Growth of Conversion Films with Underwater Superoleophobicity and Excellent Self-Cleaning Performance,” ACS Appl. Mater. Interfaces 5(21), 10904–10911 (2013).
[Crossref]

Li, X.

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

Liang, W.

Liu, H.

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

Z. Wang, L. Zhu, W. Li, and H. Liu, “Bioinspired in Situ Growth of Conversion Films with Underwater Superoleophobicity and Excellent Self-Cleaning Performance,” ACS Appl. Mater. Interfaces 5(21), 10904–10911 (2013).
[Crossref]

H. Liu, H. Bian, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile Route to Gapless Microlens Arrays Using Laser-Tunable Wet-Etched Curved Surface,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless Fabrication of Concave Microlens Arrays on Silica Glasses by a Femtosecond-Laser-Enhanced Local Wet Etching Method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref]

Liu, L.

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

Liu, M.

Z. Xue, M. Liu, and L. Jiang, “Recent Developments in Polymeric Superoleophobic Surfaces,” J. Polym. Sci., Part B: Polym. Phys. 50(17), 1209–1224 (2012).
[Crossref]

M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, “Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface,” Adv. Mater. 21(6), 665–669 (2009).
[Crossref]

Liu, N.

Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang, “Special Wettable Materials for Oil/Water Separation,” J. Mater. Chem. A 2(8), 2445–2460 (2014).
[Crossref]

Liu, X.

X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
[Crossref]

Liu, Y.

E. Zhang, Z. Cheng, T. Lv, L. Li, and Y. Liu, “The Design of Underwater Superoleophobic Ni/NiO Microstructures with Tunable Oil Adhesion,” Nanoscale 7(45), 19293–19299 (2015).
[Crossref]

L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
[Crossref]

Liu, Z.

L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, “Underwater Superoleophobic Porous Membrane Based on Hierarchical TiO2 Nanotubes: Multifunctional Integration of Oil-Water Separation, Flow-through Photocatalysis and Self-Cleaning,” J. Mater. Chem. A 3(3), 1279–1286 (2015).
[Crossref]

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Loba, M.

P. Gorzelak, M. A. Salamon, R. Lach, M. Loba, and B. Ferre, “Microlens Arrays in the Complex Visual System of Cretaceous Echinoderms,” Nat. Commun. 5(1), 3576 (2014).
[Crossref]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Luo, Y.

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

Lv, C.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Lv, T.

E. Zhang, Z. Cheng, T. Lv, L. Li, and Y. Liu, “The Design of Underwater Superoleophobic Ni/NiO Microstructures with Tunable Oil Adhesion,” Nanoscale 7(45), 19293–19299 (2015).
[Crossref]

Ma, J.

K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
[Crossref]

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Maniyara, R. A.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Mazumder, P.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Meng, C.

L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, “Underwater Superoleophobic Porous Membrane Based on Hierarchical TiO2 Nanotubes: Multifunctional Integration of Oil-Water Separation, Flow-through Photocatalysis and Self-Cleaning,” J. Mater. Chem. A 3(3), 1279–1286 (2015).
[Crossref]

Meng, J.

X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
[Crossref]

Mohamed, E.

J. L. Yong, S. C. Singh, Z. Zhan, E. Mohamed, F. Chen, and C. Guo, “Femtosecond Laser-Produced Underwater “Superpolymphobic” Nanorippled Surfaces: Repelling Liquid Polymers in Water for Application of Controlling Polymer Shape and Adhesion,” ACS Appl. Nano Mater. doi.org/10.1021/acsanm.9b01869 (2019).

Osmond, J.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Pafchek, B.

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Paturzo, M.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref]

Peng, J.

L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
[Crossref]

Piersol, J. A.

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Pruneri, V.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Qu, P.

Quesada, M. A.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Rombaut, J.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Salamon, M. A.

P. Gorzelak, M. A. Salamon, R. Lach, M. Loba, and B. Ferre, “Microlens Arrays in the Complex Visual System of Cretaceous Echinoderms,” Nat. Commun. 5(1), 3576 (2014).
[Crossref]

Senaratne, W.

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Shan, C.

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

Shao, J.

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

Shao, L.

Z. Wang, X. Jiang, X. Cheng, C. H. Lau, and L. Shao, “Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in Water Emulsion Separation,” ACS Appl. Mater. Interfaces 7(18), 9534–9545 (2015).
[Crossref]

Shi, Z.

F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang, “Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation,” Adv. Mater. 25(30), 4192–4198 (2013).
[Crossref]

Si, J.

Singh, S. C.

J. L. Yong, S. C. Singh, Z. Zhan, F. Chen, and C. Guo, “Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water,” ACS Appl. Mater. Interfaces 11(8), 8667–8675 (2019).
[Crossref]

J. L. Yong, S. C. Singh, Z. Zhan, E. Mohamed, F. Chen, and C. Guo, “Femtosecond Laser-Produced Underwater “Superpolymphobic” Nanorippled Surfaces: Repelling Liquid Polymers in Water for Application of Controlling Polymer Shape and Adhesion,” ACS Appl. Nano Mater. doi.org/10.1021/acsanm.9b01869 (2019).

Song, Y.

M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, “Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface,” Adv. Mater. 21(6), 665–669 (2009).
[Crossref]

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Su, B.

Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, “Janus Interface Materials: Superhydrophobic Air/Solid Interface and Superoleophobic Water/Solid Interface Inspired by a Lotus Leaf,” Soft Matter 7(13), 5948–5951 (2011).
[Crossref]

Sun, H.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Sun, H. B.

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Sun, K.

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

Sun, Y.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Tian, H.

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

Tian, Z.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Todino, M.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref]

Tong, S.

Tünnermann, A.

Vecchis, R. T. R. D.

Vespini, V.

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref]

Wang, D.

F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang, “Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation,” Adv. Mater. 25(30), 4192–4198 (2013).
[Crossref]

Wang, H.

Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of Polymer Microlens Array with Controllable Focal Length by Modifying Surface Wettability,” Opt. Express 26(4), 4172–4182 (2018).
[Crossref]

H. Wang and Z. Guo, “Design of Underwater Superoleophobic TiO2 Coatings with Additional Photo-Induced Self-Cleaning Properties by One-Step Route Bio-Inspired from Fish Scales,” Appl. Phys. Lett. 104(18), 183703 (2014).
[Crossref]

Wang, J.

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Wang, K.

Wang, L.

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

Wang, P.

L. Zhang, Y. Zhong, D. K. Cha, and P. Wang, “Self-Cleaning Underwater Superoleophobic Mesh for Oil-Water Separation,” Sci. Rep. 3(1), 2326 (2013).
[Crossref]

Wang, S.

L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
[Crossref]

X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
[Crossref]

Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, “Janus Interface Materials: Superhydrophobic Air/Solid Interface and Superoleophobic Water/Solid Interface Inspired by a Lotus Leaf,” Soft Matter 7(13), 5948–5951 (2011).
[Crossref]

M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, “Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface,” Adv. Mater. 21(6), 665–669 (2009).
[Crossref]

Wang, X.

Wang, Y.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Wang, Z.

Z. Wang, X. Jiang, X. Cheng, C. H. Lau, and L. Shao, “Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in Water Emulsion Separation,” ACS Appl. Mater. Interfaces 7(18), 9534–9545 (2015).
[Crossref]

Z. Wang, L. Zhu, W. Li, and H. Liu, “Bioinspired in Situ Growth of Conversion Films with Underwater Superoleophobicity and Excellent Self-Cleaning Performance,” ACS Appl. Mater. Interfaces 5(21), 10904–10911 (2013).
[Crossref]

Wei, Y.

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

Wei, Z.

M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, “Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface,” Adv. Mater. 21(6), 665–669 (2009).
[Crossref]

Wen, Y.

L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
[Crossref]

Wrzesniewski, E.

E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
[Crossref]

Wu, D.

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Wu, S.

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Xia, H.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Xu, L.

L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
[Crossref]

Xu, Q.

Xue, J.

E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
[Crossref]

Xue, Z.

Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang, “Special Wettable Materials for Oil/Water Separation,” J. Mater. Chem. A 2(8), 2445–2460 (2014).
[Crossref]

K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
[Crossref]

X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
[Crossref]

Z. Xue, M. Liu, and L. Jiang, “Recent Developments in Polymeric Superoleophobic Surfaces,” J. Polym. Sci., Part B: Polym. Phys. 50(17), 1209–1224 (2012).
[Crossref]

Yang, Q.

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

J. Yong, F. Chen, Q. Yang, J. Huo, and X. Hou, “Superoleophobic Surfaces,” Chem. Soc. Rev. 46(14), 4168–4217 (2017).
[Crossref]

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
[Crossref]

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, and X. Hou, “Femtosecond Laser Controlled Wettability of Solid Surfaces,” Soft Matter 11(46), 8897–8906 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
[Crossref]

J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-Scale High Quality Glass Microlens Arrays Fabricated by Laser Enhanced Wet Etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

H. Liu, H. Bian, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile Route to Gapless Microlens Arrays Using Laser-Tunable Wet-Etched Curved Surface,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless Fabrication of Concave Microlens Arrays on Silica Glasses by a Femtosecond-Laser-Enhanced Local Wet Etching Method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref]

X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong, X. Hou, and F. Chen, “Superhydrophobicity-Memory Surfaces Prepared by a Femtosecond Laser,” Chem. Eng. J. doi.org/10.1016/j.cej.2019.123143 (2019).

Yang, Z.

Yong, J.

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

J. Yong, F. Chen, Q. Yang, J. Huo, and X. Hou, “Superoleophobic Surfaces,” Chem. Soc. Rev. 46(14), 4168–4217 (2017).
[Crossref]

J. Yong, F. Chen, Q. Yang, and X. Hou, “Femtosecond Laser Controlled Wettability of Solid Surfaces,” Soft Matter 11(46), 8897–8906 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
[Crossref]

X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong, X. Hou, and F. Chen, “Superhydrophobicity-Memory Surfaces Prepared by a Femtosecond Laser,” Chem. Eng. J. doi.org/10.1016/j.cej.2019.123143 (2019).

Yong, J. L.

J. L. Yong, S. C. Singh, Z. Zhan, F. Chen, and C. Guo, “Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water,” ACS Appl. Mater. Interfaces 11(8), 8667–8675 (2019).
[Crossref]

J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
[Crossref]

J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
[Crossref]

J. L. Yong, S. C. Singh, Z. Zhan, E. Mohamed, F. Chen, and C. Guo, “Femtosecond Laser-Produced Underwater “Superpolymphobic” Nanorippled Surfaces: Repelling Liquid Polymers in Water for Application of Controlling Polymer Shape and Adhesion,” ACS Appl. Nano Mater. doi.org/10.1021/acsanm.9b01869 (2019).

Yu, J.

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

Yu, Y.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Zhai, J.

L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, “Underwater Superoleophobic Porous Membrane Based on Hierarchical TiO2 Nanotubes: Multifunctional Integration of Oil-Water Separation, Flow-through Photocatalysis and Self-Cleaning,” J. Mater. Chem. A 3(3), 1279–1286 (2015).
[Crossref]

Zhan, Z.

J. L. Yong, S. C. Singh, Z. Zhan, F. Chen, and C. Guo, “Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water,” ACS Appl. Mater. Interfaces 11(8), 8667–8675 (2019).
[Crossref]

J. L. Yong, S. C. Singh, Z. Zhan, E. Mohamed, F. Chen, and C. Guo, “Femtosecond Laser-Produced Underwater “Superpolymphobic” Nanorippled Surfaces: Repelling Liquid Polymers in Water for Application of Controlling Polymer Shape and Adhesion,” ACS Appl. Nano Mater. doi.org/10.1021/acsanm.9b01869 (2019).

Zhang, D.

Q. Xu, B. Dai, Y. Huang, H. Wang, Z. Yang, K. Wang, S. Zhuang, and D. Zhang, “Fabrication of Polymer Microlens Array with Controllable Focal Length by Modifying Surface Wettability,” Opt. Express 26(4), 4172–4182 (2018).
[Crossref]

J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
[Crossref]

J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
[Crossref]

Zhang, E.

E. Zhang, Z. Cheng, T. Lv, L. Li, and Y. Liu, “The Design of Underwater Superoleophobic Ni/NiO Microstructures with Tunable Oil Adhesion,” Nanoscale 7(45), 19293–19299 (2015).
[Crossref]

Zhang, F.

F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang, “Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation,” Adv. Mater. 25(30), 4192–4198 (2013).
[Crossref]

Zhang, H.

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Zhang, J.

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong, X. Hou, and F. Chen, “Superhydrophobicity-Memory Surfaces Prepared by a Femtosecond Laser,” Chem. Eng. J. doi.org/10.1016/j.cej.2019.123143 (2019).

Zhang, L.

L. Zhang, Y. Zhong, D. K. Cha, and P. Wang, “Self-Cleaning Underwater Superoleophobic Mesh for Oil-Water Separation,” Sci. Rep. 3(1), 2326 (2013).
[Crossref]

Zhang, M.

M. Zhang, T. Zhang, and T. Cui, “Wettability Conversion from Superoleophobic to Superhydrophilic on Titania/Single-Walled Carbon Nanotube Composite Coatings,” Langmuir 27(15), 9295–9301 (2011).
[Crossref]

Zhang, N.

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

Zhang, Q.

L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, “Underwater Superoleophobic Porous Membrane Based on Hierarchical TiO2 Nanotubes: Multifunctional Integration of Oil-Water Separation, Flow-through Photocatalysis and Self-Cleaning,” J. Mater. Chem. A 3(3), 1279–1286 (2015).
[Crossref]

Zhang, T.

L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, “Underwater Superoleophobic Porous Membrane Based on Hierarchical TiO2 Nanotubes: Multifunctional Integration of Oil-Water Separation, Flow-through Photocatalysis and Self-Cleaning,” J. Mater. Chem. A 3(3), 1279–1286 (2015).
[Crossref]

M. Zhang, T. Zhang, and T. Cui, “Wettability Conversion from Superoleophobic to Superhydrophilic on Titania/Single-Walled Carbon Nanotube Composite Coatings,” Langmuir 27(15), 9295–9301 (2011).
[Crossref]

Zhang, W.

F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang, “Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation,” Adv. Mater. 25(30), 4192–4198 (2013).
[Crossref]

Zhang, X.

L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
[Crossref]

Zhang, Y.

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Zhao, S.

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Zheng, Y.

Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, “Janus Interface Materials: Superhydrophobic Air/Solid Interface and Superoleophobic Water/Solid Interface Inspired by a Lotus Leaf,” Soft Matter 7(13), 5948–5951 (2011).
[Crossref]

Zhong, Y.

L. Zhang, Y. Zhong, D. K. Cha, and P. Wang, “Self-Cleaning Underwater Superoleophobic Mesh for Oil-Water Separation,” Sci. Rep. 3(1), 2326 (2013).
[Crossref]

Zhou, J.

X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
[Crossref]

Zhu, L.

Z. Wang, L. Zhu, W. Li, and H. Liu, “Bioinspired in Situ Growth of Conversion Films with Underwater Superoleophobicity and Excellent Self-Cleaning Performance,” ACS Appl. Mater. Interfaces 5(21), 10904–10911 (2013).
[Crossref]

Zhuang, S.

ACS Appl. Mater. Interfaces (6)

Z. Cheng, H. Lai, Y. Du, K. Fu, R. Hou, C. Li, N. Zhang, and K. Sun, “pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity,” ACS Appl. Mater. Interfaces 6(1), 636–641 (2014).
[Crossref]

Z. Cheng, H. Liu, H. Lai, Y. Du, K. Fu, C. Li, J. Yu, N. Zhang, and K. Sun, “Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling N-Alkanoic Acids,” ACS Appl. Mater. Interfaces 7(36), 20410–20417 (2015).
[Crossref]

J. Rombaut, R. A. Maniyara, R. A. Bellman, D. F. Acquard, A. S. Baca, J. Osmond, W. Senaratne, M. A. Quesada, D. Baker, P. Mazumder, and V. Pruneri, “Antireflective Transparent Oleophobic Surfaces by Noninteracting Cavities,” ACS Appl. Mater. Interfaces 10(49), 43230–43235 (2018).
[Crossref]

Z. Wang, L. Zhu, W. Li, and H. Liu, “Bioinspired in Situ Growth of Conversion Films with Underwater Superoleophobicity and Excellent Self-Cleaning Performance,” ACS Appl. Mater. Interfaces 5(21), 10904–10911 (2013).
[Crossref]

Z. Wang, X. Jiang, X. Cheng, C. H. Lau, and L. Shao, “Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in Water Emulsion Separation,” ACS Appl. Mater. Interfaces 7(18), 9534–9545 (2015).
[Crossref]

J. L. Yong, S. C. Singh, Z. Zhan, F. Chen, and C. Guo, “Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water,” ACS Appl. Mater. Interfaces 11(8), 8667–8675 (2019).
[Crossref]

ACS Nano (1)

L. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, and S. Wang, “Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity,” ACS Nano 7(6), 5077–5083 (2013).
[Crossref]

Adv. Eng. Mater. (1)

M. Li, Q. Yang, F. Chen, J. Yong, H. Bian, Y. Wei, Y. Fang, and X. Hou, “Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication,” Adv. Eng. Mater. 21(3), 1800994 (2019).
[Crossref]

Adv. Mater. (3)

F. Zhang, W. Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang, “Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation,” Adv. Mater. 25(30), 4192–4198 (2013).
[Crossref]

M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, “Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface,” Adv. Mater. 21(6), 665–669 (2009).
[Crossref]

X. Liu, J. Zhou, Z. Xue, J. Gao, J. Meng, S. Wang, and L. Jiang, “Clam’s Shell Inspired High-Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity,” Adv. Mater. 24(25), 3401–3405 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Wang and Z. Guo, “Design of Underwater Superoleophobic TiO2 Coatings with Additional Photo-Induced Self-Cleaning Properties by One-Step Route Bio-Inspired from Fish Scales,” Appl. Phys. Lett. 104(18), 183703 (2014).
[Crossref]

Appl. Surf. Sci. (1)

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of High Integrated Microlens Arrays on a Glass Substrate for 3D Micro-Optical Systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

Chem. Soc. Rev. (1)

J. Yong, F. Chen, Q. Yang, J. Huo, and X. Hou, “Superoleophobic Surfaces,” Chem. Soc. Rev. 46(14), 4168–4217 (2017).
[Crossref]

J. Mater. Chem. A (6)

L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, “Underwater Superoleophobic Porous Membrane Based on Hierarchical TiO2 Nanotubes: Multifunctional Integration of Oil-Water Separation, Flow-through Photocatalysis and Self-Cleaning,” J. Mater. Chem. A 3(3), 1279–1286 (2015).
[Crossref]

J. L. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, and X. Hou, “Remarkably Simple Achievement of Superhydrophobicity, Superhydrophilicity, Underwater Superoleophobicity, Underwater Superoleophilicity, Underwater Superaerophobicity, and Underwater Superaerophilicity on Femtosecond Laser Ablated PDMS Surfaces,” J. Mater. Chem. A 5(48), 25249–25257 (2017).
[Crossref]

J. L. Yong, Q. Yang, F. Chen, D. Zhang, U. Farooq, G. Du, and X. Hou, “A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces,” J. Mater. Chem. A 2(15), 5499–5507 (2014).
[Crossref]

J. Yong, F. Chen, Q. Yang, D. Zhang, U. Farooq, G. Du, and X. Hou, “Bioinspired Underwater Superoleophobic Surface with Ultralow Oil-Adhesion Achieved by Femtosecond Laser Microfabrication,” J. Mater. Chem. A 2(23), 8790–8795 (2014).
[Crossref]

Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang, “Special Wettable Materials for Oil/Water Separation,” J. Mater. Chem. A 2(8), 2445–2460 (2014).
[Crossref]

J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, and X. Hou, “Bioinspired Transparent Underwater Superoleophobic and Anti-Oil Surfaces,” J. Mater. Chem. A 3(18), 9379–9384 (2015).
[Crossref]

J. Mater. Chem. C (1)

X. Li, X. Li, J. Shao, H. Tian, C. Jiang, Y. Luo, L. Wang, and Y. Ding, “Shape-Controllable Plano-Convex Lenses with Enhanced Transmittance via Electrowetting on a Nanotextured Dielectric,” J. Mater. Chem. C 4(39), 9162–9166 (2016).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (1)

Z. Xue, M. Liu, and L. Jiang, “Recent Developments in Polymeric Superoleophobic Surfaces,” J. Polym. Sci., Part B: Polym. Phys. 50(17), 1209–1224 (2012).
[Crossref]

Lab Chip (2)

V. Vespini, S. Coppola, M. Todino, M. Paturzo, V. Bianco, S. Grilli, and P. Ferraro, “Forward Electrohydrodynamic Inkjet Printing of Optical Microlenses on Microfluidic Devices,” Lab Chip 16(2), 326–333 (2016).
[Crossref]

D. Wu, S. Wu, Q. Chen, S. Zhao, H. Zhang, J. Jiao, J. A. Piersol, J. Wang, H. B. Sun, and L. Jiang, “Facile Creation of Hierarchical PDMS Microstructures with Extreme Underwater Superoleophobicity for Anti-Oil Application in Microfluidic Channels,” Lab Chip 11(22), 3873–3879 (2011).
[Crossref]

Langmuir (2)

J. Huo, Q. Yang, F. Chen, J. Yong, Y. Fang, J. Zhang, L. Liu, and X. Hou, “Underwater Transparent Miniature “Mechanical Hand” Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation,” Langmuir 33(15), 3659–3665 (2017).
[Crossref]

M. Zhang, T. Zhang, and T. Cui, “Wettability Conversion from Superoleophobic to Superhydrophilic on Titania/Single-Walled Carbon Nanotube Composite Coatings,” Langmuir 27(15), 9295–9301 (2011).
[Crossref]

Nanoscale (1)

E. Zhang, Z. Cheng, T. Lv, L. Li, and Y. Liu, “The Design of Underwater Superoleophobic Ni/NiO Microstructures with Tunable Oil Adhesion,” Nanoscale 7(45), 19293–19299 (2015).
[Crossref]

Nat. Commun. (2)

K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, and L. Jiang, “Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water,” Nat. Commun. 4(1), 2276 (2013).
[Crossref]

P. Gorzelak, M. A. Salamon, R. Lach, M. Loba, and B. Ferre, “Microlens Arrays in the Complex Visual System of Cretaceous Echinoderms,” Nat. Commun. 5(1), 3576 (2014).
[Crossref]

Nature (1)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital Cameras with Designs Inspired by the Arthropod Eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Opt. Express (5)

Optica (1)

Sci. Rep. (2)

L. Zhang, Y. Zhong, D. K. Cha, and P. Wang, “Self-Cleaning Underwater Superoleophobic Mesh for Oil-Water Separation,” Sci. Rep. 3(1), 2326 (2013).
[Crossref]

C. Lv, H. Xia, W. Guan, Y. Sun, Z. Tian, T. Jiang, Y. Wang, Y. Zhang, Q. Chen, K. Ariga, Y. Yu, and H. Sun, “Integrated Optofluidic-Microfluidic Twin Channels: toward Diverse Application of Lab-on-a-Chip Systems,” Sci. Rep. 6(1), 19801 (2016).
[Crossref]

Small (1)

E. Wrzesniewski, S. Eom, W. Cao, W. T. Hammond, S. Lee, E. P. Douglas, and J. Xue, “Enhancing Light Extraction in Top-Emitting Organic Light-Emitting Devices Using Molded Transparent Polymer Microlens Arrays,” Small 8(17), 2647–2651 (2012).
[Crossref]

Soft Matter (2)

Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, “Janus Interface Materials: Superhydrophobic Air/Solid Interface and Superoleophobic Water/Solid Interface Inspired by a Lotus Leaf,” Soft Matter 7(13), 5948–5951 (2011).
[Crossref]

J. Yong, F. Chen, Q. Yang, and X. Hou, “Femtosecond Laser Controlled Wettability of Solid Surfaces,” Soft Matter 11(46), 8897–8906 (2015).
[Crossref]

Other (2)

J. L. Yong, S. C. Singh, Z. Zhan, E. Mohamed, F. Chen, and C. Guo, “Femtosecond Laser-Produced Underwater “Superpolymphobic” Nanorippled Surfaces: Repelling Liquid Polymers in Water for Application of Controlling Polymer Shape and Adhesion,” ACS Appl. Nano Mater. doi.org/10.1021/acsanm.9b01869 (2019).

X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong, X. Hou, and F. Chen, “Superhydrophobicity-Memory Surfaces Prepared by a Femtosecond Laser,” Chem. Eng. J. doi.org/10.1016/j.cej.2019.123143 (2019).

Supplementary Material (1)

NameDescription
» Visualization 1       The process of a 10 µL oil droplet sliding off on the laser-treated MLA surface with a tilting angle of around 2°

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Fabrication process of micro/nano-structured MLA. (a,d) An array of ablated craters was formed by femtosecond laser irradiation. (b,e) Chemical etching process for forming normal MLA. (c,f) Micro/nanoscale structures were generated on the MLA surface via femtosecond laser ablation.
Fig. 2.
Fig. 2. Morphologies of different kinds of MLA. (a,b) SEM images of the smooth MLA. (c) SEM images of the micro/nano-structured MLA (AD = 4 µm). (d) 3D profile of the micro/nanoscale textured MLA.
Fig. 3.
Fig. 3. Optical imaging performance of the resultant MLA. (a) Experimental setup of the underwater imaging system. (b,c) Images of an array of (b) letter “A” and (c) “fish” pattern captured through the textured MLA.
Fig. 4.
Fig. 4. (a) Schematic diagram of the experimental setup for measuring the PSF of the device. (b) The PSF of the textured MLA. (c) The calculated MTF of a single microlens.
Fig. 5.
Fig. 5. Optical transmission spectrum of the smooth MLA and the textured MLA in water medium.
Fig. 6.
Fig. 6. Wettability of the fabricated MLAs. (a,b) Optical images of an oil droplet on different MLA surfaces in water: (a) textured MLA and (b) smooth MLA. (c) A 10 µL oil droplet sliding off the textured MLA surface with a tilting angle of 2° (see Visualization 1 for more details). (d) The contact model of an oil droplet on the micro/nano-structured MLA surface in water. (e) Relationship between the OCAs/OSAs and the AD.
Fig. 7.
Fig. 7. Excellent underwater superoleophobicity and ultralow oil adhesion of the textured MLA (AD = 4 µm) to various oils.
Fig. 8.
Fig. 8. Self-cleaning ability of the laser-treated MLA. (a) Schematic illustration of the self-cleaning process of the underwater superoleophobic MLA. (b) A series of digital photographs of dripping an oil-polluted superoleophobic MLA into water. (c) The top-view photographs of the self-cleaning process.
Fig. 9.
Fig. 9. Mechanical durability of the textured MLA. (a) Underwater oil wettability of the sample after different abrasion cycles. (b) Underwater oil wettability of the sample after heated at different temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f = h 2 + r 2 2 h ( n 1 )
N A = D 2 f

Metrics