Abstract

Taylor’s scheme for photonic quantization and encoding based on Mach-Zehnder modulators (MZMs) requires that the employed MZMs have geometrically scaled half-wave voltages (Vπ), which is impractical even with the state-of-art photonic fabrication techniques when the desired bit resolution is greater than 3 or 4 bits. The approaches based on the phase-shifting of modulation transfer functions eliminate the need of geometrically scaled Vπ, but they realize lower resolution than Taylor’s scheme as the realized resolution is log2(2N), but not N as in Taylor’s scheme, where N is the number of optical channels (or MZMs). In this paper, we propose a novel photonic quantization and encoding scheme based on waveform folding using rectifier circuits, which aims to realize higher resolution with less MZMs (and less Vπ). In our design, a 4-bit quantization can be achieved using 2 MZMs with identical Vπ with the help of two rectifiers. A proof-of-concept experiment is implemented, which fully verifies the correctness of the approach. The scheme is modular extendable, i. e. an 8-bit quantization can be realized by using 4 MZMs (with 2 different Vπ), and 12-bit can be realized by using 6 MZMs (with 3 different Vπ). The impact of the rectifiers’ bandwidth on the system performance is also investigated. As less MZMs are employed and lower requirement on Vπ scaling, the proposed design provides a promising solution for high-performance photonic analog-to-digital conversion.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution

Shuna Yang, Chao Wang, Hao Chi, Xianmin Zhang, Shilie Zheng, Xiaofeng Jin, and Jianping Yao
Appl. Opt. 48(22) 4458-4467 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. Lorente, M. Morant, N. Amiot, and B. Uguen, “Novel photonic analog-to-digital converter architecture for precise localization of Ultra-Wide Band Radio Transmitters,” IEEE J. Sel. Area. Comm. 29(6), 1321–1327 (2011).
    [Crossref]
  2. F. Su, G. Wu, and J. Chen, “Photonic analog-to-digital conversion with equivalent analog prefiltering by shaping sampling pulses,” Opt. Lett. 41(12), 2779–2782 (2016).
    [Crossref]
  3. T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
    [Crossref]
  4. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref]
  5. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. Dilello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. S. Agasker, M. A. Popovic, J. Sun, G. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kartner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
    [Crossref]
  6. G. Yang, W. Zou, L. Yu, K. Wu, and J. Chen, “Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter,” Opt. Express 24(21), 24061–24074 (2016).
    [Crossref]
  7. F. Su, G. Wu, L. Ye, R. Liu, X. Xue, and J. Chen, “Effects of the photonic sampling pulse width and the photodetection bandwidth on the channel response of photonic ADCs,” Opt. Express 24(2), 924–934 (2016).
    [Crossref]
  8. Z. Jin, G. Wu, C. Wang, and J. Chen, “Mismatches analysis based on channel response and an amplitude correction method for time interleaved photonic analog-to-digital converters,” Opt. Express 26(14), 17859–17871 (2018).
    [Crossref]
  9. Y. Jiang, S. Zhao, and B. Jalali, “Invited Article: Optical dynamic range compression,” APL Photonics 3(11), 110806 (2018).
    [Crossref]
  10. D. Peng, Z. Zhang, Y. Ma, Y. Zhang, S. Zhang, and Y. Liu, “Broadband linearization in photonic time-stretch analog-to-digital converters employing an asymmetrical dual-parallel Mach-Zehnder modulator and a balanced detector,” Opt. Express 24(11), 11546–11557 (2016).
    [Crossref]
  11. Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
    [Crossref]
  12. M. Hasegawa, T. Satoh, T. Nagashima, M. Mendez, and T. Konishi, “Below 100-fs timing jitter seamless operations in 10-Gsample/s 3-bit photonic analog-to-digital conversion,” IEEE Photonics J. 7(3), 1–7 (2015).
    [Crossref]
  13. Y. Xu, T. Jin, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Time-frequency uncertainty in the photonic A/D converters based on spectral encoding,” IEEE Photonics Technol. Lett. 28(8), 841–844 (2016).
    [Crossref]
  14. H. F. Taylor, “An optical analog to digital converter-design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
    [Crossref]
  15. H. Chi and J. Yao, “A photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Express 16(2), 567–572 (2008).
    [Crossref]
  16. B. Jalali and Y. M. Xie, “Optical folding-flash analog-to-digital converter with analog encoding,” Opt. Lett. 20(18), 1901–1903 (1995).
    [Crossref]
  17. M. Currie, “Optical quantization of microwave signals via distributed phase modulation,” J. Lightwave Technol. 23(2), 827–833 (2005).
    [Crossref]
  18. J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17(2), 468–470 (2005).
    [Crossref]
  19. W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All optical analog to digital conversion based on polarization-differental interference and phase modulation,” IEEE Photonics Technol. Lett. 19(8), 625–627 (2007).
    [Crossref]
  20. H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Proposal for photonic quantization with differential encoding using a phase modulator and delay-line interferometers,” Opt. Lett. 36(9), 1629–1631 (2011).
    [Crossref]
  21. C. H. Sarantos and N. Dagli, “A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer,” Opt. Express 18(14), 14598–14603 (2010).
    [Crossref]
  22. Y. Peng, H. Zhang, Q. Wu, X. Fu, Y. Zhang, and M. Yao, “A novel proposal of all-optical analog-to-digital conversion with unbalanced MZM and filter array,” Proc. APCC 15, 485–486 (2009).
    [Crossref]
  23. S. Yang, C. Wang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution,” Appl. Opt. 48(22), 4458–4467 (2009).
    [Crossref]
  24. Y. Chen, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Photonic analog-to-digital converter based on the robust symmetrical number system,” Opt. Commun. 285(24), 4966–4970 (2012).
    [Crossref]
  25. H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
    [Crossref]
  26. Z. Kang, X. Zhang, J. Yuan, X. Sang, Q. Wu, G. Farrell, and C. Xu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22(18), 21441–21453 (2014).
    [Crossref]
  27. F. Tan and C. Liu, “Theoretical and experimental development of a high-conversion-efficiency rectifier at X-band,” Int. J. Microw. Wireless Technol. 9(5), 985–994 (2017).
    [Crossref]

2018 (3)

Y. Jiang, S. Zhao, and B. Jalali, “Invited Article: Optical dynamic range compression,” APL Photonics 3(11), 110806 (2018).
[Crossref]

H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
[Crossref]

Z. Jin, G. Wu, C. Wang, and J. Chen, “Mismatches analysis based on channel response and an amplitude correction method for time interleaved photonic analog-to-digital converters,” Opt. Express 26(14), 17859–17871 (2018).
[Crossref]

2017 (3)

F. Tan and C. Liu, “Theoretical and experimental development of a high-conversion-efficiency rectifier at X-band,” Int. J. Microw. Wireless Technol. 9(5), 985–994 (2017).
[Crossref]

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
[Crossref]

2016 (5)

2015 (1)

M. Hasegawa, T. Satoh, T. Nagashima, M. Mendez, and T. Konishi, “Below 100-fs timing jitter seamless operations in 10-Gsample/s 3-bit photonic analog-to-digital conversion,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

2014 (1)

2012 (2)

2011 (2)

R. Lorente, M. Morant, N. Amiot, and B. Uguen, “Novel photonic analog-to-digital converter architecture for precise localization of Ultra-Wide Band Radio Transmitters,” IEEE J. Sel. Area. Comm. 29(6), 1321–1327 (2011).
[Crossref]

H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Proposal for photonic quantization with differential encoding using a phase modulator and delay-line interferometers,” Opt. Lett. 36(9), 1629–1631 (2011).
[Crossref]

2010 (1)

2009 (2)

S. Yang, C. Wang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution,” Appl. Opt. 48(22), 4458–4467 (2009).
[Crossref]

Y. Peng, H. Zhang, Q. Wu, X. Fu, Y. Zhang, and M. Yao, “A novel proposal of all-optical analog-to-digital conversion with unbalanced MZM and filter array,” Proc. APCC 15, 485–486 (2009).
[Crossref]

2008 (1)

2007 (2)

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All optical analog to digital conversion based on polarization-differental interference and phase modulation,” IEEE Photonics Technol. Lett. 19(8), 625–627 (2007).
[Crossref]

2005 (2)

M. Currie, “Optical quantization of microwave signals via distributed phase modulation,” J. Lightwave Technol. 23(2), 827–833 (2005).
[Crossref]

J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17(2), 468–470 (2005).
[Crossref]

1995 (1)

1979 (1)

H. F. Taylor, “An optical analog to digital converter-design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
[Crossref]

Agasker, C. M. S.

Amiot, N.

R. Lorente, M. Morant, N. Amiot, and B. Uguen, “Novel photonic analog-to-digital converter architecture for precise localization of Ultra-Wide Band Radio Transmitters,” IEEE J. Sel. Area. Comm. 29(6), 1321–1327 (2011).
[Crossref]

Byun, H.

Chen, J.

Chen, Y.

Y. Chen, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Photonic analog-to-digital converter based on the robust symmetrical number system,” Opt. Commun. 285(24), 4966–4970 (2012).
[Crossref]

Chi, H.

H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
[Crossref]

Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
[Crossref]

Y. Xu, T. Jin, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Time-frequency uncertainty in the photonic A/D converters based on spectral encoding,” IEEE Photonics Technol. Lett. 28(8), 841–844 (2016).
[Crossref]

Y. Chen, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Photonic analog-to-digital converter based on the robust symmetrical number system,” Opt. Commun. 285(24), 4966–4970 (2012).
[Crossref]

H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Proposal for photonic quantization with differential encoding using a phase modulator and delay-line interferometers,” Opt. Lett. 36(9), 1629–1631 (2011).
[Crossref]

S. Yang, C. Wang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution,” Appl. Opt. 48(22), 4458–4467 (2009).
[Crossref]

H. Chi and J. Yao, “A photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Express 16(2), 567–572 (2008).
[Crossref]

Currie, M.

Dagli, N.

Dahlem, M. S.

Dilello, N. A.

Farrell, G.

Fu, X.

Y. Peng, H. Zhang, Q. Wu, X. Fu, Y. Zhang, and M. Yao, “A novel proposal of all-optical analog-to-digital conversion with unbalanced MZM and filter array,” Proc. APCC 15, 485–486 (2009).
[Crossref]

Galt, S.

J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17(2), 468–470 (2005).
[Crossref]

Geis, M. W.

Grein, M. E.

Hasegawa, M.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

M. Hasegawa, T. Satoh, T. Nagashima, M. Mendez, and T. Konishi, “Below 100-fs timing jitter seamless operations in 10-Gsample/s 3-bit photonic analog-to-digital conversion,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

He, H.

H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
[Crossref]

Holzwarth, C. W.

Hoyt, J. L.

Ippen, E. P.

Jalali, B.

Y. Jiang, S. Zhao, and B. Jalali, “Invited Article: Optical dynamic range compression,” APL Photonics 3(11), 110806 (2018).
[Crossref]

B. Jalali and Y. M. Xie, “Optical folding-flash analog-to-digital converter with analog encoding,” Opt. Lett. 20(18), 1901–1903 (1995).
[Crossref]

Jiang, Y.

Y. Jiang, S. Zhao, and B. Jalali, “Invited Article: Optical dynamic range compression,” APL Photonics 3(11), 110806 (2018).
[Crossref]

Jin, T.

H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
[Crossref]

Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
[Crossref]

Y. Xu, T. Jin, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Time-frequency uncertainty in the photonic A/D converters based on spectral encoding,” IEEE Photonics Technol. Lett. 28(8), 841–844 (2016).
[Crossref]

Jin, X.

H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
[Crossref]

Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
[Crossref]

Y. Xu, T. Jin, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Time-frequency uncertainty in the photonic A/D converters based on spectral encoding,” IEEE Photonics Technol. Lett. 28(8), 841–844 (2016).
[Crossref]

Y. Chen, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Photonic analog-to-digital converter based on the robust symmetrical number system,” Opt. Commun. 285(24), 4966–4970 (2012).
[Crossref]

H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Proposal for photonic quantization with differential encoding using a phase modulator and delay-line interferometers,” Opt. Lett. 36(9), 1629–1631 (2011).
[Crossref]

S. Yang, C. Wang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution,” Appl. Opt. 48(22), 4458–4467 (2009).
[Crossref]

Jin, Z.

Kang, Z.

Kartner, F. X.

Khilo, A.

Konishi, T.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

M. Hasegawa, T. Satoh, T. Nagashima, M. Mendez, and T. Konishi, “Below 100-fs timing jitter seamless operations in 10-Gsample/s 3-bit photonic analog-to-digital conversion,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Li, W.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All optical analog to digital conversion based on polarization-differental interference and phase modulation,” IEEE Photonics Technol. Lett. 19(8), 625–627 (2007).
[Crossref]

Liu, C.

F. Tan and C. Liu, “Theoretical and experimental development of a high-conversion-efficiency rectifier at X-band,” Int. J. Microw. Wireless Technol. 9(5), 985–994 (2017).
[Crossref]

Liu, R.

Liu, Y.

Lorente, R.

R. Lorente, M. Morant, N. Amiot, and B. Uguen, “Novel photonic analog-to-digital converter architecture for precise localization of Ultra-Wide Band Radio Transmitters,” IEEE J. Sel. Area. Comm. 29(6), 1321–1327 (2011).
[Crossref]

Lyszczarz, T. M.

Ma, Y.

Mei, Y.

Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
[Crossref]

Mendez, M.

M. Hasegawa, T. Satoh, T. Nagashima, M. Mendez, and T. Konishi, “Below 100-fs timing jitter seamless operations in 10-Gsample/s 3-bit photonic analog-to-digital conversion,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Morant, M.

R. Lorente, M. Morant, N. Amiot, and B. Uguen, “Novel photonic analog-to-digital converter architecture for precise localization of Ultra-Wide Band Radio Transmitters,” IEEE J. Sel. Area. Comm. 29(6), 1321–1327 (2011).
[Crossref]

Motamedi, A.

Nagashima, T.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

M. Hasegawa, T. Satoh, T. Nagashima, M. Mendez, and T. Konishi, “Below 100-fs timing jitter seamless operations in 10-Gsample/s 3-bit photonic analog-to-digital conversion,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Nejadmalayeri, A. H.

Orcutt, J. S.

Peng, D.

Peng, M. Y.

Peng, Y.

Y. Peng, H. Zhang, Q. Wu, X. Fu, Y. Zhang, and M. Yao, “A novel proposal of all-optical analog-to-digital conversion with unbalanced MZM and filter array,” Proc. APCC 15, 485–486 (2009).
[Crossref]

Perrott, M.

Popovic, M. A.

Ram, R. J.

Sander, M. Y.

Sang, X.

Sarantos, C. H.

Satoh, T.

M. Hasegawa, T. Satoh, T. Nagashima, M. Mendez, and T. Konishi, “Below 100-fs timing jitter seamless operations in 10-Gsample/s 3-bit photonic analog-to-digital conversion,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

Smith, H. I.

Spector, S. J.

Stigwall, J.

J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17(2), 468–470 (2005).
[Crossref]

Su, F.

Sun, J.

Tan, F.

F. Tan and C. Liu, “Theoretical and experimental development of a high-conversion-efficiency rectifier at X-band,” Int. J. Microw. Wireless Technol. 9(5), 985–994 (2017).
[Crossref]

Taylor, H. F.

H. F. Taylor, “An optical analog to digital converter-design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
[Crossref]

Uguen, B.

R. Lorente, M. Morant, N. Amiot, and B. Uguen, “Novel photonic analog-to-digital converter architecture for precise localization of Ultra-Wide Band Radio Transmitters,” IEEE J. Sel. Area. Comm. 29(6), 1321–1327 (2011).
[Crossref]

Valley, G. C.

Wang, C.

Wang, J. P.

Wu, G.

Wu, K.

Wu, Q.

Z. Kang, X. Zhang, J. Yuan, X. Sang, Q. Wu, G. Farrell, and C. Xu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22(18), 21441–21453 (2014).
[Crossref]

Y. Peng, H. Zhang, Q. Wu, X. Fu, Y. Zhang, and M. Yao, “A novel proposal of all-optical analog-to-digital conversion with unbalanced MZM and filter array,” Proc. APCC 15, 485–486 (2009).
[Crossref]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All optical analog to digital conversion based on polarization-differental interference and phase modulation,” IEEE Photonics Technol. Lett. 19(8), 625–627 (2007).
[Crossref]

Xie, Y. M.

Xu, C.

Xu, Y.

Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
[Crossref]

Y. Xu, T. Jin, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Time-frequency uncertainty in the photonic A/D converters based on spectral encoding,” IEEE Photonics Technol. Lett. 28(8), 841–844 (2016).
[Crossref]

Xue, X.

Yang, G.

Yang, S.

Yao, J.

Yao, M.

Y. Peng, H. Zhang, Q. Wu, X. Fu, Y. Zhang, and M. Yao, “A novel proposal of all-optical analog-to-digital conversion with unbalanced MZM and filter array,” Proc. APCC 15, 485–486 (2009).
[Crossref]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All optical analog to digital conversion based on polarization-differental interference and phase modulation,” IEEE Photonics Technol. Lett. 19(8), 625–627 (2007).
[Crossref]

Ye, L.

Yoon, J. U.

Yu, L.

Yu, X.

H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
[Crossref]

Yuan, J.

Zhang, H.

Y. Peng, H. Zhang, Q. Wu, X. Fu, Y. Zhang, and M. Yao, “A novel proposal of all-optical analog-to-digital conversion with unbalanced MZM and filter array,” Proc. APCC 15, 485–486 (2009).
[Crossref]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All optical analog to digital conversion based on polarization-differental interference and phase modulation,” IEEE Photonics Technol. Lett. 19(8), 625–627 (2007).
[Crossref]

Zhang, S.

Zhang, X.

H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
[Crossref]

Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
[Crossref]

Y. Xu, T. Jin, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Time-frequency uncertainty in the photonic A/D converters based on spectral encoding,” IEEE Photonics Technol. Lett. 28(8), 841–844 (2016).
[Crossref]

Z. Kang, X. Zhang, J. Yuan, X. Sang, Q. Wu, G. Farrell, and C. Xu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22(18), 21441–21453 (2014).
[Crossref]

Y. Chen, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Photonic analog-to-digital converter based on the robust symmetrical number system,” Opt. Commun. 285(24), 4966–4970 (2012).
[Crossref]

H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Proposal for photonic quantization with differential encoding using a phase modulator and delay-line interferometers,” Opt. Lett. 36(9), 1629–1631 (2011).
[Crossref]

S. Yang, C. Wang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution,” Appl. Opt. 48(22), 4458–4467 (2009).
[Crossref]

Zhang, Y.

Zhang, Z.

D. Peng, Z. Zhang, Y. Ma, Y. Zhang, S. Zhang, and Y. Liu, “Broadband linearization in photonic time-stretch analog-to-digital converters employing an asymmetrical dual-parallel Mach-Zehnder modulator and a balanced detector,” Opt. Express 24(11), 11546–11557 (2016).
[Crossref]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All optical analog to digital conversion based on polarization-differental interference and phase modulation,” IEEE Photonics Technol. Lett. 19(8), 625–627 (2007).
[Crossref]

Zhao, S.

Y. Jiang, S. Zhao, and B. Jalali, “Invited Article: Optical dynamic range compression,” APL Photonics 3(11), 110806 (2018).
[Crossref]

Zheng, S.

H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
[Crossref]

Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
[Crossref]

Y. Xu, T. Jin, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Time-frequency uncertainty in the photonic A/D converters based on spectral encoding,” IEEE Photonics Technol. Lett. 28(8), 841–844 (2016).
[Crossref]

Y. Chen, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Photonic analog-to-digital converter based on the robust symmetrical number system,” Opt. Commun. 285(24), 4966–4970 (2012).
[Crossref]

H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Proposal for photonic quantization with differential encoding using a phase modulator and delay-line interferometers,” Opt. Lett. 36(9), 1629–1631 (2011).
[Crossref]

S. Yang, C. Wang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution,” Appl. Opt. 48(22), 4458–4467 (2009).
[Crossref]

Zhou, G.

Zou, W.

APL Photonics (1)

Y. Jiang, S. Zhao, and B. Jalali, “Invited Article: Optical dynamic range compression,” APL Photonics 3(11), 110806 (2018).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

H. F. Taylor, “An optical analog to digital converter-design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979).
[Crossref]

IEEE J. Sel. Area. Comm. (1)

R. Lorente, M. Morant, N. Amiot, and B. Uguen, “Novel photonic analog-to-digital converter architecture for precise localization of Ultra-Wide Band Radio Transmitters,” IEEE J. Sel. Area. Comm. 29(6), 1321–1327 (2011).
[Crossref]

IEEE Photonics J. (1)

M. Hasegawa, T. Satoh, T. Nagashima, M. Mendez, and T. Konishi, “Below 100-fs timing jitter seamless operations in 10-Gsample/s 3-bit photonic analog-to-digital conversion,” IEEE Photonics J. 7(3), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (5)

Y. Xu, T. Jin, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Time-frequency uncertainty in the photonic A/D converters based on spectral encoding,” IEEE Photonics Technol. Lett. 28(8), 841–844 (2016).
[Crossref]

Y. Mei, Y. Xu, H. Chi, T. Jin, S. Zheng, X. Jin, and X. Zhang, “Spurious-free dynamic range of the photonic time-stretch system,” IEEE Photonics Technol. Lett. 29(10), 794–797 (2017).
[Crossref]

J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17(2), 468–470 (2005).
[Crossref]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All optical analog to digital conversion based on polarization-differental interference and phase modulation,” IEEE Photonics Technol. Lett. 19(8), 625–627 (2007).
[Crossref]

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all optical analog to digital conversion with resolution degradation prevention,” IEEE Photonics Technol. Lett. 29(1), 74–77 (2017).
[Crossref]

Int. J. Microw. Wireless Technol. (1)

F. Tan and C. Liu, “Theoretical and experimental development of a high-conversion-efficiency rectifier at X-band,” Int. J. Microw. Wireless Technol. 9(5), 985–994 (2017).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (2)

Y. Chen, H. Chi, S. Zheng, X. Jin, and X. Zhang, “Photonic analog-to-digital converter based on the robust symmetrical number system,” Opt. Commun. 285(24), 4966–4970 (2012).
[Crossref]

H. He, H. Chi, X. Yu, T. Jin, S. Zheng, X. Jin, and X. Zhang, “An improved photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Commun. 425, 157–160 (2018).
[Crossref]

Opt. Express (9)

Z. Kang, X. Zhang, J. Yuan, X. Sang, Q. Wu, G. Farrell, and C. Xu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22(18), 21441–21453 (2014).
[Crossref]

C. H. Sarantos and N. Dagli, “A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer,” Opt. Express 18(14), 14598–14603 (2010).
[Crossref]

H. Chi and J. Yao, “A photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Express 16(2), 567–572 (2008).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. Dilello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. S. Agasker, M. A. Popovic, J. Sun, G. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kartner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
[Crossref]

G. Yang, W. Zou, L. Yu, K. Wu, and J. Chen, “Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter,” Opt. Express 24(21), 24061–24074 (2016).
[Crossref]

F. Su, G. Wu, L. Ye, R. Liu, X. Xue, and J. Chen, “Effects of the photonic sampling pulse width and the photodetection bandwidth on the channel response of photonic ADCs,” Opt. Express 24(2), 924–934 (2016).
[Crossref]

Z. Jin, G. Wu, C. Wang, and J. Chen, “Mismatches analysis based on channel response and an amplitude correction method for time interleaved photonic analog-to-digital converters,” Opt. Express 26(14), 17859–17871 (2018).
[Crossref]

D. Peng, Z. Zhang, Y. Ma, Y. Zhang, S. Zhang, and Y. Liu, “Broadband linearization in photonic time-stretch analog-to-digital converters employing an asymmetrical dual-parallel Mach-Zehnder modulator and a balanced detector,” Opt. Express 24(11), 11546–11557 (2016).
[Crossref]

Opt. Lett. (3)

Proc. APCC (1)

Y. Peng, H. Zhang, Q. Wu, X. Fu, Y. Zhang, and M. Yao, “A novel proposal of all-optical analog-to-digital conversion with unbalanced MZM and filter array,” Proc. APCC 15, 485–486 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the proposed 4-bit quantization and encoding module, MZM: Mach-Zehnder modulator, PD: photodetector, Rect.: rectifier, Comp.: comparator.
Fig. 2.
Fig. 2. Waveform shaping by the two rectifiers.
Fig. 3.
Fig. 3. Principle of 4-bit quantization and encoding.
Fig. 4.
Fig. 4. Experimental results. (a) the recorded and emulated waveforms of four channels; (b) the quantized signal (solid) and the fitted sinusoidal signal (dashed); (c) Errors between the quantized and the fitted signals.
Fig. 5.
Fig. 5. A 4n-bit photonic ADC scheme based on the 4-bit quantization and encoding module.
Fig. 6.
Fig. 6. The dependence of ENOB of a 4-bit module on the bandwidth of rectifiers.

Tables (1)

Tables Icon

Table 1. Comparison of the number of MZMs and minimum normalized $\textrm{V}_{\pi }$ among this work, Taylor’s approach, a typical phase-shifting based ADC scheme in [15].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I j = I i n 2 [ 1 + cos ( φ s + φ b j ) ]
I 3 = 1 2 I 2 | cos ( φ s + φ b 2 ) |
I 4 = | I 3 2 2 I 3 m a x | = 2 2 4 I i n | cos ( φ s + φ b 2 ) |
M = 2 sin ( 3 π / 3 π 8 8 ) sin ( π / π 8 8 ) + sin ( 3 π / 3 π 8 8 ) 1 = 0.4142

Metrics