Abstract

A new strategy is reported here to monitor the enzymatic reactions in real time by using whispering gallery mode (WGM) lasing. The optical microcavity is formed via the self-assembly of an ultraviolet (UV)-treated nematic liquid crystal (LC) 4-cyano-4’-pentylbiphenyl (5CB). The single UV-treated 5CB microdroplet serves as both optical resonator and sensing reactor. The microdroplet configuration transitions induced wavelength shift in the WGM lasing spectra can be used as an indicator for the enzymatic reaction. The proposed sensor has a sub-microgram detection limit of urease (∼0.5 µg/ml), which is lower than the detection limit of currently available urease sensor based on LC materials. Our experimental results demonstrate that WGM lasing has unique advantages in the real-time monitoring of enzymatic reactions compared, for instance, with observation of the optical appearance under a polarized optical microscope.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets

Rui Duan, Yanzeng Li, Hanyang Li, and Jun Yang
Biomed. Opt. Express 10(12) 6073-6083 (2019)

Fiber Mach–Zehnder-interferometer-based liquid crystal biosensor for detecting enzymatic reactions of penicillinase

Jianyang Hu, Dongying Fu, Chunli Xia, Sibang Long, Chunlian Lu, Weimin Sun, and Yongjun Liu
Appl. Opt. 58(17) 4806-4811 (2019)

Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets

M. Humar and I. Muševič
Opt. Express 19(21) 19836-19844 (2011)

References

  • View by:
  • |
  • |
  • |

  1. X. Niu, Y. Zhong, R. Chen, F. Wang, and D. Luo, “Highly sensitive and selective liquid crystal optical sensor for detection of ammonia,” Opt. Express 25(12), 13549–13556 (2017).
    [Crossref]
  2. D. S. Miller, X. Wang, and N. L. Abbott, “Design of Functional Materials Based on Liquid Crystalline Droplets,” Chem. Mater. 26(1), 496–506 (2014).
    [Crossref]
  3. R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
    [Crossref]
  4. J. M. Brake, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302(5653), 2094–2097 (2003).
    [Crossref]
  5. I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
    [Crossref]
  6. Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals,” J. Am. Chem. Soc. 126(29), 9024–9032 (2004).
    [Crossref]
  7. V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand–receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
    [Crossref]
  8. S. Zhong and C. H. Jang, “Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals,” Biosens. Bioelectron. 59, 293–299 (2014).
    [Crossref]
  9. C. H. Chen, Y. C. Lin, H. H. Chang, and S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
    [Crossref]
  10. M. I. Kinsinger, B. Sun, N. L. Abbott, and D. M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19(23), 4208–4212 (2007).
    [Crossref]
  11. M. I. Kinsinger, M. E. Buck, N. L. Abbot, and D. M. Lynn, “Immobilization of polymerdecorated liquid crystal droplets on chemically tailored surfaces,” Langmuir 26(12), 10234–10242 (2010).
    [Crossref]
  12. D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurjib, and S. Y. Park, “pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers,” Soft Matter 6(9), 1964–1970 (2010).
    [Crossref]
  13. C.-H. Chen and K.-L. Yang, “A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products,” Sens. Actuators, B 181, 368–374 (2013).
    [Crossref]
  14. Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
    [Crossref]
  15. L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
    [Crossref]
  16. M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
    [Crossref]
  17. R. L. Blakeley and B. Zerner, “Jack Bean urease: The first nickel enzyme,” J. Mol. Catal. 23(2-3), 263–292 (1984).
    [Crossref]
  18. M. Khan and S. Y. Park, “General Liquid-crystal droplets produced by microfluidics for urea detection,” Sens. Actuators, B 202, 516–522 (2014).
    [Crossref]
  19. D. Liu and C. H. Jang, “A new strategy for imaging urease activity using liquid crystal droplet patterns formed on solid surfaces,” Sens. Actuators, B 193, 770–773 (2014).
    [Crossref]
  20. D. L. Weeks, S. Eskandari, D. S. Scott, and G. Sachs, “A H+-Gated Urea Channel: The Link Between Helicobacter pylori Urease and Gastric Colonization,” Science 287(5452), 482–485 (2000).
    [Crossref]
  21. M. R. Amieva and E. M. Elomar, “Host-bacterial interactions in Helicobacter pylori infection,” Gastroenterology 134(1), 306–323 (2008).
    [Crossref]
  22. D. A. Lynch, N. P. Mapstone, and F. Lewis, “Serum and gastric luminal epidermal growth factor in Helicobacter pylori-associated gastritis and peptic ulcer disease,” Helicobacter 1(4), 219–226 (1996).
    [Crossref]
  23. J. P. Gisbert and J. M. Pajares, “Review article: 13C-urea breath test in the diagnosis of Helicobacter pylori infection-a critical review,” Aliment. Pharmacol. Ther. 20(10), 1001–1017 (2004).
    [Crossref]
  24. Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
    [Crossref]
  25. J. S. Park, C. H. Jang, M. L. Tingey, A. M. Lowe, and N. L. Abbott, “Influence of 4-cyano-4’-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces,” J. Colloid Interface Sci. 304(2), 459–473 (2006).
    [Crossref]
  26. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref]
  27. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref]
  28. R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
    [Crossref]
  29. Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
    [Crossref]
  30. H. Li, B. Sun, Y. Yuan, and Y. Yang, “Guanidine derivative polymer coated microbubble resonator for high sensitivity detection of CO2 gas concentration,” Opt. Express 27(3), 1991–2000 (2019).
    [Crossref]

2019 (1)

2018 (1)

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

2017 (3)

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

X. Niu, Y. Zhong, R. Chen, F. Wang, and D. Luo, “Highly sensitive and selective liquid crystal optical sensor for detection of ammonia,” Opt. Express 25(12), 13549–13556 (2017).
[Crossref]

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

2016 (1)

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

2015 (1)

C. H. Chen, Y. C. Lin, H. H. Chang, and S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

2014 (5)

D. S. Miller, X. Wang, and N. L. Abbott, “Design of Functional Materials Based on Liquid Crystalline Droplets,” Chem. Mater. 26(1), 496–506 (2014).
[Crossref]

M. Khan and S. Y. Park, “General Liquid-crystal droplets produced by microfluidics for urea detection,” Sens. Actuators, B 202, 516–522 (2014).
[Crossref]

D. Liu and C. H. Jang, “A new strategy for imaging urease activity using liquid crystal droplet patterns formed on solid surfaces,” Sens. Actuators, B 193, 770–773 (2014).
[Crossref]

S. Zhong and C. H. Jang, “Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals,” Biosens. Bioelectron. 59, 293–299 (2014).
[Crossref]

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

2013 (2)

C.-H. Chen and K.-L. Yang, “A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products,” Sens. Actuators, B 181, 368–374 (2013).
[Crossref]

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref]

2011 (1)

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]

2010 (2)

M. I. Kinsinger, M. E. Buck, N. L. Abbot, and D. M. Lynn, “Immobilization of polymerdecorated liquid crystal droplets on chemically tailored surfaces,” Langmuir 26(12), 10234–10242 (2010).
[Crossref]

D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurjib, and S. Y. Park, “pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers,” Soft Matter 6(9), 1964–1970 (2010).
[Crossref]

2009 (1)

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

2008 (1)

M. R. Amieva and E. M. Elomar, “Host-bacterial interactions in Helicobacter pylori infection,” Gastroenterology 134(1), 306–323 (2008).
[Crossref]

2007 (2)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

M. I. Kinsinger, B. Sun, N. L. Abbott, and D. M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19(23), 4208–4212 (2007).
[Crossref]

2006 (1)

J. S. Park, C. H. Jang, M. L. Tingey, A. M. Lowe, and N. L. Abbott, “Influence of 4-cyano-4’-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces,” J. Colloid Interface Sci. 304(2), 459–473 (2006).
[Crossref]

2004 (2)

J. P. Gisbert and J. M. Pajares, “Review article: 13C-urea breath test in the diagnosis of Helicobacter pylori infection-a critical review,” Aliment. Pharmacol. Ther. 20(10), 1001–1017 (2004).
[Crossref]

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals,” J. Am. Chem. Soc. 126(29), 9024–9032 (2004).
[Crossref]

2003 (2)

J. M. Brake, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302(5653), 2094–2097 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

2000 (1)

D. L. Weeks, S. Eskandari, D. S. Scott, and G. Sachs, “A H+-Gated Urea Channel: The Link Between Helicobacter pylori Urease and Gastric Colonization,” Science 287(5452), 482–485 (2000).
[Crossref]

1998 (1)

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand–receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

1996 (1)

D. A. Lynch, N. P. Mapstone, and F. Lewis, “Serum and gastric luminal epidermal growth factor in Helicobacter pylori-associated gastritis and peptic ulcer disease,” Helicobacter 1(4), 219–226 (1996).
[Crossref]

1984 (1)

R. L. Blakeley and B. Zerner, “Jack Bean urease: The first nickel enzyme,” J. Mol. Catal. 23(2-3), 263–292 (1984).
[Crossref]

Abbasi, R.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref]

Abbot, N. L.

M. I. Kinsinger, M. E. Buck, N. L. Abbot, and D. M. Lynn, “Immobilization of polymerdecorated liquid crystal droplets on chemically tailored surfaces,” Langmuir 26(12), 10234–10242 (2010).
[Crossref]

Abbott, N. L.

D. S. Miller, X. Wang, and N. L. Abbott, “Design of Functional Materials Based on Liquid Crystalline Droplets,” Chem. Mater. 26(1), 496–506 (2014).
[Crossref]

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]

M. I. Kinsinger, B. Sun, N. L. Abbott, and D. M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19(23), 4208–4212 (2007).
[Crossref]

J. S. Park, C. H. Jang, M. L. Tingey, A. M. Lowe, and N. L. Abbott, “Influence of 4-cyano-4’-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces,” J. Colloid Interface Sci. 304(2), 459–473 (2006).
[Crossref]

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals,” J. Am. Chem. Soc. 126(29), 9024–9032 (2004).
[Crossref]

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand–receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Amieva, M. R.

M. R. Amieva and E. M. Elomar, “Host-bacterial interactions in Helicobacter pylori infection,” Gastroenterology 134(1), 306–323 (2008).
[Crossref]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Bertics, P. J.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]

Blakeley, R. L.

R. L. Blakeley and B. Zerner, “Jack Bean urease: The first nickel enzyme,” J. Mol. Catal. 23(2-3), 263–292 (1984).
[Crossref]

Brake, J. M.

J. M. Brake, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302(5653), 2094–2097 (2003).
[Crossref]

Buck, M. E.

M. I. Kinsinger, M. E. Buck, N. L. Abbot, and D. M. Lynn, “Immobilization of polymerdecorated liquid crystal droplets on chemically tailored surfaces,” Langmuir 26(12), 10234–10242 (2010).
[Crossref]

Cai, Z. P.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Carlton, R. J.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref]

Chang, H. H.

C. H. Chen, Y. C. Lin, H. H. Chang, and S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

Che, K. J.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Chen, C. H.

C. H. Chen, Y. C. Lin, H. H. Chang, and S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

Chen, C.-H.

C.-H. Chen and K.-L. Yang, “A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products,” Sens. Actuators, B 181, 368–374 (2013).
[Crossref]

Chen, L. J.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Chen, R.

X. Niu, Y. Zhong, R. Chen, F. Wang, and D. Luo, “Highly sensitive and selective liquid crystal optical sensor for detection of ammonia,” Opt. Express 25(12), 13549–13556 (2017).
[Crossref]

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

Chu, C. X.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

De Pablo, J. J.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]

Dickson, K. A.

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals,” J. Am. Chem. Soc. 126(29), 9024–9032 (2004).
[Crossref]

Dubrovsky, T. B.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand–receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Elomar, E. M.

M. R. Amieva and E. M. Elomar, “Host-bacterial interactions in Helicobacter pylori infection,” Gastroenterology 134(1), 306–323 (2008).
[Crossref]

Eskandari, S.

D. L. Weeks, S. Eskandari, D. S. Scott, and G. Sachs, “A H+-Gated Urea Channel: The Link Between Helicobacter pylori Urease and Gastric Colonization,” Science 287(5452), 482–485 (2000).
[Crossref]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Gisbert, J. P.

J. P. Gisbert and J. M. Pajares, “Review article: 13C-urea breath test in the diagnosis of Helicobacter pylori infection-a critical review,” Aliment. Pharmacol. Ther. 20(10), 1001–1017 (2004).
[Crossref]

Gong, L. L.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Gupta, V. K.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand–receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Humar, M.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Hunter, J. T.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref]

Jang, C. H.

D. Liu and C. H. Jang, “A new strategy for imaging urease activity using liquid crystal droplet patterns formed on solid surfaces,” Sens. Actuators, B 193, 770–773 (2014).
[Crossref]

S. Zhong and C. H. Jang, “Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals,” Biosens. Bioelectron. 59, 293–299 (2014).
[Crossref]

J. S. Park, C. H. Jang, M. L. Tingey, A. M. Lowe, and N. L. Abbott, “Influence of 4-cyano-4’-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces,” J. Colloid Interface Sci. 304(2), 459–473 (2006).
[Crossref]

Khan, M.

M. Khan and S. Y. Park, “General Liquid-crystal droplets produced by microfluidics for urea detection,” Sens. Actuators, B 202, 516–522 (2014).
[Crossref]

Khan, W.

D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurjib, and S. Y. Park, “pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers,” Soft Matter 6(9), 1964–1970 (2010).
[Crossref]

Kinsinger, M. I.

M. I. Kinsinger, M. E. Buck, N. L. Abbot, and D. M. Lynn, “Immobilization of polymerdecorated liquid crystal droplets on chemically tailored surfaces,” Langmuir 26(12), 10234–10242 (2010).
[Crossref]

M. I. Kinsinger, B. Sun, N. L. Abbott, and D. M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19(23), 4208–4212 (2007).
[Crossref]

Kornfield, J. A.

D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurjib, and S. Y. Park, “pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers,” Soft Matter 6(9), 1964–1970 (2010).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Kurjib, Z.

D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurjib, and S. Y. Park, “pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers,” Soft Matter 6(9), 1964–1970 (2010).
[Crossref]

Lee, D. Y.

D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurjib, and S. Y. Park, “pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers,” Soft Matter 6(9), 1964–1970 (2010).
[Crossref]

Lee, S. Y.

C. H. Chen, Y. C. Lin, H. H. Chang, and S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

Lewis, F.

D. A. Lynch, N. P. Mapstone, and F. Lewis, “Serum and gastric luminal epidermal growth factor in Helicobacter pylori-associated gastritis and peptic ulcer disease,” Helicobacter 1(4), 219–226 (1996).
[Crossref]

Li, H.

H. Li, B. Sun, Y. Yuan, and Y. Yang, “Guanidine derivative polymer coated microbubble resonator for high sensitivity detection of CO2 gas concentration,” Opt. Express 27(3), 1991–2000 (2019).
[Crossref]

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Li, S. S.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Lin, I. H.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]

Lin, Y. C.

C. H. Chen, Y. C. Lin, H. H. Chang, and S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

Lin, Y. L.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Liu, D.

D. Liu and C. H. Jang, “A new strategy for imaging urease activity using liquid crystal droplet patterns formed on solid surfaces,” Sens. Actuators, B 193, 770–773 (2014).
[Crossref]

Liu, S.

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Liu, Y.

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Lowe, A. M.

J. S. Park, C. H. Jang, M. L. Tingey, A. M. Lowe, and N. L. Abbott, “Influence of 4-cyano-4’-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces,” J. Colloid Interface Sci. 304(2), 459–473 (2006).
[Crossref]

Luk, Y. Y.

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals,” J. Am. Chem. Soc. 126(29), 9024–9032 (2004).
[Crossref]

Luo, D.

Lynch, D. A.

D. A. Lynch, N. P. Mapstone, and F. Lewis, “Serum and gastric luminal epidermal growth factor in Helicobacter pylori-associated gastritis and peptic ulcer disease,” Helicobacter 1(4), 219–226 (1996).
[Crossref]

Lynn, D. M.

M. I. Kinsinger, M. E. Buck, N. L. Abbot, and D. M. Lynn, “Immobilization of polymerdecorated liquid crystal droplets on chemically tailored surfaces,” Langmuir 26(12), 10234–10242 (2010).
[Crossref]

M. I. Kinsinger, B. Sun, N. L. Abbott, and D. M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19(23), 4208–4212 (2007).
[Crossref]

Mapstone, N. P.

D. A. Lynch, N. P. Mapstone, and F. Lewis, “Serum and gastric luminal epidermal growth factor in Helicobacter pylori-associated gastritis and peptic ulcer disease,” Helicobacter 1(4), 219–226 (1996).
[Crossref]

Miller, D. S.

D. S. Miller, X. Wang, and N. L. Abbott, “Design of Functional Materials Based on Liquid Crystalline Droplets,” Chem. Mater. 26(1), 496–506 (2014).
[Crossref]

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]

Murphy, C. J.

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]

Musevic, I.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Mushenheim, P. C.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref]

Niu, X.

Pajares, J. M.

J. P. Gisbert and J. M. Pajares, “Review article: 13C-urea breath test in the diagnosis of Helicobacter pylori infection-a critical review,” Aliment. Pharmacol. Ther. 20(10), 1001–1017 (2004).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Park, J. S.

J. S. Park, C. H. Jang, M. L. Tingey, A. M. Lowe, and N. L. Abbott, “Influence of 4-cyano-4’-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces,” J. Colloid Interface Sci. 304(2), 459–473 (2006).
[Crossref]

Park, S. Y.

M. Khan and S. Y. Park, “General Liquid-crystal droplets produced by microfluidics for urea detection,” Sens. Actuators, B 202, 516–522 (2014).
[Crossref]

D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurjib, and S. Y. Park, “pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers,” Soft Matter 6(9), 1964–1970 (2010).
[Crossref]

Raines, R. T.

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals,” J. Am. Chem. Soc. 126(29), 9024–9032 (2004).
[Crossref]

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Sachs, G.

D. L. Weeks, S. Eskandari, D. S. Scott, and G. Sachs, “A H+-Gated Urea Channel: The Link Between Helicobacter pylori Urease and Gastric Colonization,” Science 287(5452), 482–485 (2000).
[Crossref]

Scott, D. S.

D. L. Weeks, S. Eskandari, D. S. Scott, and G. Sachs, “A H+-Gated Urea Channel: The Link Between Helicobacter pylori Urease and Gastric Colonization,” Science 287(5452), 482–485 (2000).
[Crossref]

Seo, J. M.

D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurjib, and S. Y. Park, “pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers,” Soft Matter 6(9), 1964–1970 (2010).
[Crossref]

Skaife, J. J.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand–receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

Sun, B.

H. Li, B. Sun, Y. Yuan, and Y. Yang, “Guanidine derivative polymer coated microbubble resonator for high sensitivity detection of CO2 gas concentration,” Opt. Express 27(3), 1991–2000 (2019).
[Crossref]

M. I. Kinsinger, B. Sun, N. L. Abbott, and D. M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19(23), 4208–4212 (2007).
[Crossref]

Sun, H.

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

Sun, W.

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

Ta, V. D.

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

Tan, L. N.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref]

Tingey, M. L.

J. S. Park, C. H. Jang, M. L. Tingey, A. M. Lowe, and N. L. Abbott, “Influence of 4-cyano-4’-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces,” J. Colloid Interface Sci. 304(2), 459–473 (2006).
[Crossref]

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals,” J. Am. Chem. Soc. 126(29), 9024–9032 (2004).
[Crossref]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Wang, F.

Wang, L.

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

Wang, X.

D. S. Miller, X. Wang, and N. L. Abbott, “Design of Functional Materials Based on Liquid Crystalline Droplets,” Chem. Mater. 26(1), 496–506 (2014).
[Crossref]

Wang, Y.

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Weeks, D. L.

D. L. Weeks, S. Eskandari, D. S. Scott, and G. Sachs, “A H+-Gated Urea Channel: The Link Between Helicobacter pylori Urease and Gastric Colonization,” Science 287(5452), 482–485 (2000).
[Crossref]

Xu, A.

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

Yang, C. J.

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Yang, J.

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Yang, K.-L.

C.-H. Chen and K.-L. Yang, “A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products,” Sens. Actuators, B 181, 368–374 (2013).
[Crossref]

Yang, Y.

Yuan, Y.

H. Li, B. Sun, Y. Yuan, and Y. Yang, “Guanidine derivative polymer coated microbubble resonator for high sensitivity detection of CO2 gas concentration,” Opt. Express 27(3), 1991–2000 (2019).
[Crossref]

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

Zerner, B.

R. L. Blakeley and B. Zerner, “Jack Bean urease: The first nickel enzyme,” J. Mol. Catal. 23(2-3), 263–292 (1984).
[Crossref]

Zhang, L.

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

Zhao, L.

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Zhong, S.

S. Zhong and C. H. Jang, “Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals,” Biosens. Bioelectron. 59, 293–299 (2014).
[Crossref]

Zhong, Y.

ACS Photonics (1)

R. Chen, V. D. Ta, and H. Sun, “Bending-Induced Bidirectional Tuning of whispering gallery mode lasing from flexible polymer fibers,” ACS Photonics 1(1), 11–16 (2014).
[Crossref]

Adv. Mater. (1)

M. I. Kinsinger, B. Sun, N. L. Abbott, and D. M. Lynn, “Reversible control of ordering transitions at aqueous/liquid crystal interfaces using functional amphiphilic polymers,” Adv. Mater. 19(23), 4208–4212 (2007).
[Crossref]

Aliment. Pharmacol. Ther. (1)

J. P. Gisbert and J. M. Pajares, “Review article: 13C-urea breath test in the diagnosis of Helicobacter pylori infection-a critical review,” Aliment. Pharmacol. Ther. 20(10), 1001–1017 (2004).
[Crossref]

Anal. Chem. (1)

C. H. Chen, Y. C. Lin, H. H. Chang, and S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Anal. Chem. 87(8), 4546–4551 (2015).
[Crossref]

Appl. Phys. Lett. (2)

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets,” Appl. Phys. Lett. 109(23), 231906 (2016).
[Crossref]

Y. L. Lin, L. L. Gong, K. J. Che, S. S. Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, “Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells,” Appl. Phys. Lett. 110(22), 223301 (2017).
[Crossref]

Biosens. Bioelectron. (1)

S. Zhong and C. H. Jang, “Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals,” Biosens. Bioelectron. 59, 293–299 (2014).
[Crossref]

Chem. Mater. (1)

D. S. Miller, X. Wang, and N. L. Abbott, “Design of Functional Materials Based on Liquid Crystalline Droplets,” Chem. Mater. 26(1), 496–506 (2014).
[Crossref]

Gastroenterology (1)

M. R. Amieva and E. M. Elomar, “Host-bacterial interactions in Helicobacter pylori infection,” Gastroenterology 134(1), 306–323 (2008).
[Crossref]

Helicobacter (1)

D. A. Lynch, N. P. Mapstone, and F. Lewis, “Serum and gastric luminal epidermal growth factor in Helicobacter pylori-associated gastritis and peptic ulcer disease,” Helicobacter 1(4), 219–226 (1996).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Y. Luk, M. L. Tingey, K. A. Dickson, R. T. Raines, and N. L. Abbott, “Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals,” J. Am. Chem. Soc. 126(29), 9024–9032 (2004).
[Crossref]

J. Colloid Interface Sci. (1)

J. S. Park, C. H. Jang, M. L. Tingey, A. M. Lowe, and N. L. Abbott, “Influence of 4-cyano-4’-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces,” J. Colloid Interface Sci. 304(2), 459–473 (2006).
[Crossref]

J. Mol. Catal. (1)

R. L. Blakeley and B. Zerner, “Jack Bean urease: The first nickel enzyme,” J. Mol. Catal. 23(2-3), 263–292 (1984).
[Crossref]

Langmuir (1)

M. I. Kinsinger, M. E. Buck, N. L. Abbot, and D. M. Lynn, “Immobilization of polymerdecorated liquid crystal droplets on chemically tailored surfaces,” Langmuir 26(12), 10234–10242 (2010).
[Crossref]

Liq. Cryst. Rev. (1)

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref]

Nat. Photonics (1)

M. Humar, M. Ravnik, S. Pajk, and I. Musevic, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Opt. Commun. (1)

L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, J. Yang, and H. Li, “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Opt. Commun. 402, 181–185 (2017).
[Crossref]

Opt. Express (2)

Science (5)

J. M. Brake, “Biomolecular Interactions at Phospholipid-Decorated Surfaces of Liquid Crystals,” Science 302(5653), 2094–2097 (2003).
[Crossref]

I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. De Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[Crossref]

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand–receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref]

D. L. Weeks, S. Eskandari, D. S. Scott, and G. Sachs, “A H+-Gated Urea Channel: The Link Between Helicobacter pylori Urease and Gastric Colonization,” Science 287(5452), 482–485 (2000).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref]

Sens. Actuators, B (4)

Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, Y. Liu, and H. Li, “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sens. Actuators, B 258, 1090–1098 (2018).
[Crossref]

C.-H. Chen and K.-L. Yang, “A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products,” Sens. Actuators, B 181, 368–374 (2013).
[Crossref]

M. Khan and S. Y. Park, “General Liquid-crystal droplets produced by microfluidics for urea detection,” Sens. Actuators, B 202, 516–522 (2014).
[Crossref]

D. Liu and C. H. Jang, “A new strategy for imaging urease activity using liquid crystal droplet patterns formed on solid surfaces,” Sens. Actuators, B 193, 770–773 (2014).
[Crossref]

Soft Matter (1)

D. Y. Lee, J. M. Seo, W. Khan, J. A. Kornfield, Z. Kurjib, and S. Y. Park, “pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers,” Soft Matter 6(9), 1964–1970 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic illustration of the structural transition of UV-treated 5CB microdroplet from planar alignment (a) to homeotropic alignment (b).
Fig. 2.
Fig. 2. (a) Schematic diagram for the formation of 5CB microdroplets, SEM image of the tapered glass capillary microtube (top left inset), and micrographs of generated 5CB microdroplets in PBS (top right inset). (b) POM images of UV-treated 5CB microdroplet (60-µm-diameter) in PBS at different pH. Inset: Schematic illustrations of the director configurations for the UV-treated 5CB microdroplets in PBS at different pH.
Fig. 3.
Fig. 3. (a) Schematic diagram of WGM lasing experimental setup. (b) WGM lasing spectrum of a 35-µm diameter UV-treated 5CB microdroplet in PBS (pH = 7). The calculated mode number agree with the experimental peak position. Inset: PL micrograph of lasing microdroplet, (c) PL emission of the UV-treated 5CB microdroplet with 60-µm diameter immersed in PBS (pH = 7) as a function of PPE. Scale bars, 20 µm. (d) Integrated PL intensity as a function of PPE.
Fig. 4.
Fig. 4. (a) WGM lasing spectra of a UV-treated 5CB microdroplet with 60-µm diameter with bipolar (blue line) and radial (red line) configurations. Schematic illustrations of the corresponding configurations within 5CB microdroplets are shown in insets (1) and (2), respectively. POM images of the corresponding configurations are shown in insets (3) and (4), respectively. Scale bars, 20 µm. (b) Schematic view of the electric field oscillation in TE (left) and TM (right) WGMs under 5CB molecules planar alignment. The yellow prolate objects represent the 5CB molecules.
Fig. 5.
Fig. 5. POM images of 60-µm UV-treated 5CB microdroplets in pure PBS (pH = 7) (a), in a urea solution (0.5M) (e), and in a urease solution (50 µg/ml) (f). Evolution of the POM images of 60-µm UV-treated 5CB microdroplets in pre-incubated mixed solution of 0.5M urea and 50 µg/ml (b), 5 µg/ml (c), 0.5 µg/ml (d) urease. Scale bars, 20 µm.
Fig. 6.
Fig. 6. (a) Temporal dependence of WGM wavelength shift for different concentrations of urease. (b) Portion of WGM lasing spectra as a function of time. The spectra were collected from a 60-µm-diameter UV-treated 5CB microdroplet in pre-incubated solution of 0.5M urea and 0.5 µg/ml urease.
Fig. 7.
Fig. 7. (a) POM images (recorded after 25 min) of 60-µm-diameter UV-treated 5CB microdroplets in DI water (1), pre-incubated solution of 0.5M urea and 50 µg/ml pectinase (2), 50 µg/ml cellulose (3), 50 µg/ml lipase (4), 50 µg/ml AChE (5), and 5 µg/ml urease (6). Scale bars, 20 µm. (b) WGM lasing wavelength shift of UV-treated 5CB microdroplets in different solutions. (c) WGM lasing spectra of UV-treated 5CB microdroplets in different solutions. The spectra were recorded at the 25th min after the formation of microdroplets.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ 1 ( R , n 1 , n r , q , m ) = 1 2 π R n 1 [ m + 1 2 + 2 1 / 3 α ( q ) ( m + 1 2 ) 1 / 3 L ( n r 2 1 ) 1 / 2 + 3 10 2 2 / 3 α 2 ( q ) ( m + 1 2 ) 1 / 3 2 1 / 3 L ( n r 2 2 3 L 2 ) α ( q ) ( m + 1 2 ) 2 / 3 ( n r 2 1 ) 3 / 2 ]
Δ λ = Δ n n e f f λ r e s Γ

Metrics