Abstract

We propose a thermo-optic switch based on a symmetric directional coupler formed with two parallel identical two-mode waveguides, where the two modes in one waveguide can be simultaneously switched to the corresponding modes in the other waveguide. We design and fabricate such a device with polymer materials. Our fabricated device has a total length of 22.5 mm and operates at a switching power of 128 mW. The extinction ratios measured across the C-band are higher than ∼18 dB and ∼13 dB for the fundamental mode and the higher-order mode, respectively. The switching time is ∼1 ms. The performance of the device is insensitive to the polarization state of light. Our proposed mode-independent switch could find applications in reconfigurable mode-division-multiplexing transmission systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
2 × 2 single-mode zero-gap directional-coupler thermo-optic waveguide switch on glass

Chin C. Lee and Tzu J. Su
Appl. Opt. 33(30) 7016-7022 (1994)

Electro-optic mode switch based on lithium-niobate Mach–Zehnder interferometer

Mengruo Zhang, Kaixin Chen, Wei Jin, and Kin Seng Chiang
Appl. Opt. 55(16) 4418-4422 (2016)

Broadband mode switch based on a three-dimensional waveguide Mach–Zehnder interferometer

Quandong Huang, Wei Jin, and Kin Seng Chiang
Opt. Lett. 42(23) 4877-4880 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Shi, O. Eknoyan, and H. F. Taylor, “Polarization dependence of the coupling ratio in LiTaO3 directional couplers,” Appl. Opt. 44(7), 1156–1159 (2005).
    [Crossref]
  2. X. Wang, J. Sun, Y. Liu, J. Sun, C. Chen, X. Sun, F. Wang, and D. Zhang, “650-nm 1 × 2 polymeric thermo-optic switch with low power consumption,” Opt. Express 22(9), 11119–11128 (2014).
    [Crossref]
  3. M. Davanco, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron. 39(4), 608–613 (2003).
    [Crossref]
  4. F. Zhang, H. Yu, Y. Wang, Z. Lu, L. Chrostowski, and N. A. F. Jaeger, “Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends,” Opt. Lett. 42(2), 235–238 (2017).
    [Crossref]
  5. Q. Huang and K. S. Chiang, “High-order-mode-pass mode (de)multiplexer with a hybrid-core vertical directional coupler,” J. Lightwave Technol. 37(16), 3932–3938 (2019).
    [Crossref]
  6. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013).
    [Crossref]
  7. K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
    [Crossref]
  8. D. Dai and S. Wang, “Asymmetric directional couplers based on silicon nanophotonic waveguides and applications,” Front. Optoelectron. 9(3), 450–465 (2016).
    [Crossref]
  9. N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
    [Crossref]
  10. J. Dong, K. S. Chiang, and W. Jin, “Compact three-dimensional polymer waveguide mode multiplexer,” J. Lightwave Technol. 33(22), 4580–4588 (2015).
    [Crossref]
  11. T. Watanabe and Y. Kokubun, “Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide,” IEEE Photonics J. 7(6), 1–11 (2015).
    [Crossref]
  12. W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photonics J. 9(5), 1–9 (2017).
    [Crossref]
  13. Q. Huang, Y. Wu, W. Jin, and K. S. Chiang, “Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers,” J. Lightwave Technol. 36(14), 2903–2911 (2018).
    [Crossref]
  14. X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30(7), 618–621 (2018).
    [Crossref]
  15. Q. Huang, K. S. Chiang, and W. Jin, “Thermo-optically controlled vertical waveguide directional couplers for mode-selective switching,” IEEE Photonics J. 9(5), 1–9 (2017).
    [Crossref]
  16. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  17. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]
  18. T. Mizuno and Y. Miyamoto, “Optical fiber technology high-capacity dense space division multiplexing transmission,” Opt. Fiber Technol. 35, 108–117 (2017).
    [Crossref]
  19. Q. Xu, M. Jiang, D. Niu, X. Wang, L. Wang, K. S. Chiang, and D. Zhang, “Fast and low-power thermo-optic switch based on organic-inorganic hybrid strip-loaded waveguides,” Opt. Lett. 43(20), 5102–5105 (2018).
    [Crossref]
  20. X. Wang, W. Jin, Z. Chang, and K. S. Chiang, “Buried graphene electrode heater for polymer-waveguide thermo-optic device,” Opt. Lett. 44(6), 1480–1483 (2019).
    [Crossref]

2019 (2)

2018 (3)

2017 (5)

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Q. Huang, K. S. Chiang, and W. Jin, “Thermo-optically controlled vertical waveguide directional couplers for mode-selective switching,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

T. Mizuno and Y. Miyamoto, “Optical fiber technology high-capacity dense space division multiplexing transmission,” Opt. Fiber Technol. 35, 108–117 (2017).
[Crossref]

F. Zhang, H. Yu, Y. Wang, Z. Lu, L. Chrostowski, and N. A. F. Jaeger, “Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends,” Opt. Lett. 42(2), 235–238 (2017).
[Crossref]

2016 (1)

D. Dai and S. Wang, “Asymmetric directional couplers based on silicon nanophotonic waveguides and applications,” Front. Optoelectron. 9(3), 450–465 (2016).
[Crossref]

2015 (2)

T. Watanabe and Y. Kokubun, “Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide,” IEEE Photonics J. 7(6), 1–11 (2015).
[Crossref]

J. Dong, K. S. Chiang, and W. Jin, “Compact three-dimensional polymer waveguide mode multiplexer,” J. Lightwave Technol. 33(22), 4580–4588 (2015).
[Crossref]

2014 (3)

2013 (2)

2005 (1)

2003 (1)

M. Davanco, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron. 39(4), 608–613 (2003).
[Crossref]

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Blumenthal, D. J.

M. Davanco, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron. 39(4), 608–613 (2003).
[Crossref]

Chang, Z.

Chen, C.

Chen, K.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30(7), 618–621 (2018).
[Crossref]

Chen, K. X.

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Chiang, K. S.

X. Wang, W. Jin, Z. Chang, and K. S. Chiang, “Buried graphene electrode heater for polymer-waveguide thermo-optic device,” Opt. Lett. 44(6), 1480–1483 (2019).
[Crossref]

Q. Huang and K. S. Chiang, “High-order-mode-pass mode (de)multiplexer with a hybrid-core vertical directional coupler,” J. Lightwave Technol. 37(16), 3932–3938 (2019).
[Crossref]

Q. Huang, Y. Wu, W. Jin, and K. S. Chiang, “Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers,” J. Lightwave Technol. 36(14), 2903–2911 (2018).
[Crossref]

Q. Xu, M. Jiang, D. Niu, X. Wang, L. Wang, K. S. Chiang, and D. Zhang, “Fast and low-power thermo-optic switch based on organic-inorganic hybrid strip-loaded waveguides,” Opt. Lett. 43(20), 5102–5105 (2018).
[Crossref]

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30(7), 618–621 (2018).
[Crossref]

Q. Huang, K. S. Chiang, and W. Jin, “Thermo-optically controlled vertical waveguide directional couplers for mode-selective switching,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

J. Dong, K. S. Chiang, and W. Jin, “Compact three-dimensional polymer waveguide mode multiplexer,” J. Lightwave Technol. 33(22), 4580–4588 (2015).
[Crossref]

Chrostowski, L.

Dai, D.

D. Dai and S. Wang, “Asymmetric directional couplers based on silicon nanophotonic waveguides and applications,” Front. Optoelectron. 9(3), 450–465 (2016).
[Crossref]

Davanco, M.

M. Davanco, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron. 39(4), 608–613 (2003).
[Crossref]

Dong, J.

Eknoyan, O.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fujisawa, T.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

Gross, S.

Hanzawa, N.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013).
[Crossref]

Holmström, P.

M. Davanco, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron. 39(4), 608–613 (2003).
[Crossref]

Huang, Q.

Jaeger, N. A. F.

Jiang, M.

Jin, W.

Kokubun, Y.

T. Watanabe and Y. Kokubun, “Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide,” IEEE Photonics J. 7(6), 1–11 (2015).
[Crossref]

Koshiba, M.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Liu, Y.

Love, J. D.

Lu, Z.

Matsui, T.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013).
[Crossref]

Miyamoto, Y.

T. Mizuno and Y. Miyamoto, “Optical fiber technology high-capacity dense space division multiplexing transmission,” Opt. Fiber Technol. 35, 108–117 (2017).
[Crossref]

Mizuno, T.

T. Mizuno and Y. Miyamoto, “Optical fiber technology high-capacity dense space division multiplexing transmission,” Opt. Fiber Technol. 35, 108–117 (2017).
[Crossref]

Nakajima, K.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Niu, D.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Riesen, N.

Saitoh, K.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013).
[Crossref]

Sakamoto, T.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013).
[Crossref]

Shi, Y.

Sun, J.

Sun, X.

Taylor, H. F.

Thylén, L.

M. Davanco, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron. 39(4), 608–613 (2003).
[Crossref]

Tsujikawa, K.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013).
[Crossref]

Wang, F.

Wang, L.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30(7), 618–621 (2018).
[Crossref]

Q. Xu, M. Jiang, D. Niu, X. Wang, L. Wang, K. S. Chiang, and D. Zhang, “Fast and low-power thermo-optic switch based on organic-inorganic hybrid strip-loaded waveguides,” Opt. Lett. 43(20), 5102–5105 (2018).
[Crossref]

Wang, S.

D. Dai and S. Wang, “Asymmetric directional couplers based on silicon nanophotonic waveguides and applications,” Front. Optoelectron. 9(3), 450–465 (2016).
[Crossref]

Wang, X.

Wang, Y.

Watanabe, T.

T. Watanabe and Y. Kokubun, “Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide,” IEEE Photonics J. 7(6), 1–11 (2015).
[Crossref]

Withford, M. J.

Wu, J. Y.

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Wu, Y.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Xu, Q.

Yamamoto, F.

Yamashita, Y.

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

Yu, H.

Zhang, D.

Zhang, F.

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Zhao, W. K.

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Zi, X.

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30(7), 618–621 (2018).
[Crossref]

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Appl. Opt. (1)

Front. Optoelectron. (1)

D. Dai and S. Wang, “Asymmetric directional couplers based on silicon nanophotonic waveguides and applications,” Front. Optoelectron. 9(3), 450–465 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Davanco, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” IEEE J. Quantum Electron. 39(4), 608–613 (2003).
[Crossref]

IEEE Photonics J. (3)

T. Watanabe and Y. Kokubun, “Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide,” IEEE Photonics J. 7(6), 1–11 (2015).
[Crossref]

W. K. Zhao, K. X. Chen, J. Y. Wu, and K. S. Chiang, “Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Q. Huang, K. S. Chiang, and W. Jin, “Thermo-optically controlled vertical waveguide directional couplers for mode-selective switching,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Zi, L. Wang, K. Chen, and K. S. Chiang, “Mode-selective switch based on thermo-optic asymmetric directional coupler,” IEEE Photonics Technol. Lett. 30(7), 618–621 (2018).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (2)

K. Saitoh, N. Hanzawa, T. Sakamoto, T. Fujisawa, Y. Yamashita, T. Matsui, K. Tsujikawa, and K. Nakajima, “PLC-based mode multi/demultiplexers for mode division multiplexing,” Opt. Fiber Technol. 35, 80–92 (2017).
[Crossref]

T. Mizuno and Y. Miyamoto, “Optical fiber technology high-capacity dense space division multiplexing transmission,” Opt. Fiber Technol. 35, 108–117 (2017).
[Crossref]

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic diagram of the proposed mode-independent thermo-optic switch and (b) cross-sectional view of the device in the coupling region, which shows the waveguide dimensions.
Fig. 2.
Fig. 2. Variations of the normalized output powers of the two modes from Core 1 and Core 2 at the wavelength 1550 nm with the core separation for the (a) TE and (b) TM polarizations, when both modes are launched into Core 1 and both heaters are turned off.
Fig. 3.
Fig. 3. Variations of the normalized output powers of the two modes from Core 1 and Core 2 at the wavelength 1550 nm with the electric power applied only to Heater 1 for the (a) TE and (b) TM polarizations, when both modes are launched into Core 1.
Fig. 4.
Fig. 4. (a) Coupling ratios and (b) extinction ratios for the E11 and E21 modes calculated for the TE and TM polarizations.
Fig. 5.
Fig. 5. Steps in the fabrication of the proposed mode-independent thermo-optic switch.
Fig. 6.
Fig. 6. (a) Photograph of a fabricated device with (b) a magnified view of the heaters; microscopic images of (c) an end face of the device and (d) a top view and a cross-sectional view of the cores in the coupling region.
Fig. 7.
Fig. 7. Output near-field images taken at the wavelength 1550 nm with different electric powers applied to Heater 1, when (a) TE-polarized and (b) TM-polarized E11 and E21 modes were launched into Core 1, respectively.
Fig. 8.
Fig. 8. Variations of the normalized output powers of the E11 and E21 modes from Core 1 at the wavelength 1550 nm with the electric power applied to Heater 1 measured for the TE and TM polarizations.
Fig. 9.
Fig. 9. (a) Coupling ratios and (b) extinction ratios for the E11 and E21 modes measured for the TE and TM polarizations.
Fig. 10.
Fig. 10. Temporal responses of the device measured at the wavelength 1550 nm for the (a) E11 and (b) E21 modes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

CR=P2Ptotal.
ER=10logP2|OFFP2|ON, in dB.

Metrics