Abstract

We demonstrate a 21.2 W continuous-wave single frequency 780 nm laser by utilizing single-pass frequency doubling of a 49.8 W 1560 nm fiber amplifier in a periodically-poled magnesium-oxide-doped lithium niobate (MgO: PPLN) crystal. The conversion efficiency of the frequency doubling reaches up to 42.6%. The high power 1560 nm Erbium-doped fiber amplifier (EDFA) is in-band pumped by a 1480 nm Raman fiber laser. Maximum output power of 49.8 W is obtained at an incident 1480 nm laser of 60.6 W, corresponding to an amplification efficiency of 79.7%. To the best of our knowledge, this is the highest reported continuous-wave single frequency 780 nm laser, which is developed for advanced quantum technology with Rb cold atoms.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency generation of a continuous-wave single-frequency 780 nm laser by external-cavity frequency doubling

Jinxia Feng, Yongmin Li, Qin Liu, Jianli Liu, and Kuanshou Zhang
Appl. Opt. 46(17) 3593-3596 (2007)

Generation of high-power 780  nm femtosecond pulses by an all-polarization-maintaining Er-doped fiber amplification system

Xiaogang Jiang, Feihong Chen, Taoce Yin, Erik Forsberg, and Sailing He
Appl. Opt. 58(16) 4492-4496 (2019)

11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium

S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins
Opt. Express 20(8) 8915-8919 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B: Lasers Opt. 89(2-3), 177–180 (2007).
    [Crossref]
  2. Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams, “Cold collision frequency shifts in a 87Rb atomic fountain,” Phys. Rev. Lett. 85(15), 3117–3120 (2000).
    [Crossref]
  3. M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B: Lasers Opt. 102(1), 11–18 (2011).
    [Crossref]
  4. D. J. Maas, C. W. Rella, P. Antoine, E. S. Toma, and L. D. Noordam, “Population transfer via adiabatic passage in the rubidium quantum ladder system,” Phys. Rev. A 59(2), 1374–1381 (1999).
    [Crossref]
  5. A. Mugnier, M. Jacquemet, E. L. Mercier, R. Lebref, and D. Pureur, “High power single-frequency 780-nm fiber laser source for Rb trapping and cooling applications,” Proc. SPIE 8237, 82371F (2012).
    [Crossref]
  6. R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11(14), 1709–1713 (2003).
    [Crossref]
  7. J. Feng, Y. Li, Q. Liu, J. Liu, and K. Zhang, “High-efficiency generation of a continuous-wave single-frequency 780 nm laser by external-cavity frequency doubling,” Appl. Opt. 46(17), 3593–3596 (2007).
    [Crossref]
  8. Y. Ge, S. Guo, Y. Han, and J. Wang, “Realization of 1.5 W 780 nm single-frequency laser by using cavity-enhanced frequency doubling of an EDFA boosted 1560 nm diode laser,” Opt. Commun. 334, 74–78 (2015).
    [Crossref]
  9. S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915–8919 (2012).
    [Crossref]
  10. C. S. Wey, K. Tim, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37(18), 3861–3863 (2012).
    [Crossref]
  11. C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
    [Crossref]
  12. T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3(8), 721–723 (1991).
    [Crossref]
  13. Y. Emori, K. Tanaka, C. Headley, and A. Fujisaki, “High-power Cascaded Raman Fiber Laser with 41-W output power at 1480-nm band,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper CFI2.
  14. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35(18), 3069–3071 (2010).
    [Crossref]
  15. V. R. Supradeepa, J. W. Nicholson, C. Headley, Y. W. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE 8237, 82370J (2012).
    [Crossref]
  16. V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 mum cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
    [Crossref]
  17. E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
    [Crossref]
  18. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [Crossref]
  19. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  20. V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
    [Crossref]
  21. J. Dong, L. Zhang, J. Zhou, W. Pan, X. Gu, and Y. Feng, “More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber,” Opt. Lett. 44(7), 1801–1804 (2019).
    [Crossref]
  22. O. A. Louchev, E. Y. Nan, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
    [Crossref]
  23. S. V. Tovstonog, K. Sunao, S. Ikue, T. Kohei, M. Shigenori, O. Noriaki, M. Norikatsu, and K. Toshio, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
    [Crossref]

2019 (1)

2015 (1)

Y. Ge, S. Guo, Y. Han, and J. Wang, “Realization of 1.5 W 780 nm single-frequency laser by using cavity-enhanced frequency doubling of an EDFA boosted 1560 nm diode laser,” Opt. Commun. 334, 74–78 (2015).
[Crossref]

2013 (2)

2012 (4)

S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915–8919 (2012).
[Crossref]

C. S. Wey, K. Tim, J. M. Hogan, and M. A. Kasevich, “Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37(18), 3861–3863 (2012).
[Crossref]

A. Mugnier, M. Jacquemet, E. L. Mercier, R. Lebref, and D. Pureur, “High power single-frequency 780-nm fiber laser source for Rb trapping and cooling applications,” Proc. SPIE 8237, 82371F (2012).
[Crossref]

V. R. Supradeepa, J. W. Nicholson, C. Headley, Y. W. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE 8237, 82370J (2012).
[Crossref]

2011 (1)

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B: Lasers Opt. 102(1), 11–18 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2007 (2)

J. Feng, Y. Li, Q. Liu, J. Liu, and K. Zhang, “High-efficiency generation of a continuous-wave single-frequency 780 nm laser by external-cavity frequency doubling,” Appl. Opt. 46(17), 3593–3596 (2007).
[Crossref]

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B: Lasers Opt. 89(2-3), 177–180 (2007).
[Crossref]

2005 (1)

O. A. Louchev, E. Y. Nan, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

2003 (1)

2000 (2)

Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams, “Cold collision frequency shifts in a 87Rb atomic fountain,” Phys. Rev. Lett. 85(15), 3117–3120 (2000).
[Crossref]

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
[Crossref]

1999 (1)

D. J. Maas, C. W. Rella, P. Antoine, E. S. Toma, and L. D. Noordam, “Population transfer via adiabatic passage in the rubidium quantum ladder system,” Phys. Rev. A 59(2), 1374–1381 (1999).
[Crossref]

1991 (1)

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3(8), 721–723 (1991).
[Crossref]

1977 (1)

V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Altin, P. A.

Antoine, P.

D. J. Maas, C. W. Rella, P. Antoine, E. S. Toma, and L. D. Noordam, “Population transfer via adiabatic passage in the rubidium quantum ladder system,” Phys. Rev. A 59(2), 1374–1381 (1999).
[Crossref]

Aveline, D.

Bennetts, S.

Bidel, Y.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B: Lasers Opt. 89(2-3), 177–180 (2007).
[Crossref]

Bize, S.

Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams, “Cold collision frequency shifts in a 87Rb atomic fountain,” Phys. Rev. Lett. 85(15), 3117–3120 (2000).
[Crossref]

Boussen, S.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B: Lasers Opt. 89(2-3), 177–180 (2007).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Bresson, A.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B: Lasers Opt. 89(2-3), 177–180 (2007).
[Crossref]

Calia, D. B.

Carraz, O.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B: Lasers Opt. 89(2-3), 177–180 (2007).
[Crossref]

Chamorovski, Y. K.

V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
[Crossref]

Chen, D.

Clairon, A.

Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams, “Cold collision frequency shifts in a 87Rb atomic fountain,” Phys. Rev. Lett. 85(15), 3117–3120 (2000).
[Crossref]

Close, J. D.

Davydov, B. L.

V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
[Crossref]

Debs, J. E.

Dianov, E. M.

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
[Crossref]

DiGiovanni, D. J.

DiMarcello, F.

Dong, J.

Emori, Y.

Y. Emori, K. Tanaka, C. Headley, and A. Fujisaki, “High-power Cascaded Raman Fiber Laser with 41-W output power at 1480-nm band,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper CFI2.

Feng, J.

Feng, Y.

Feng, Z.

Fleming, J.

Fujisaki, A.

Y. Emori, K. Tanaka, C. Headley, and A. Fujisaki, “High-power Cascaded Raman Fiber Laser with 41-W output power at 1480-nm band,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper CFI2.

Ge, Y.

Y. Ge, S. Guo, Y. Han, and J. Wang, “Realization of 1.5 W 780 nm single-frequency laser by using cavity-enhanced frequency doubling of an EDFA boosted 1560 nm diode laser,” Opt. Commun. 334, 74–78 (2015).
[Crossref]

Giorgini, A.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B: Lasers Opt. 102(1), 11–18 (2011).
[Crossref]

Grigoryants, V. V.

V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
[Crossref]

Gu, X.

Guo, S.

Y. Ge, S. Guo, Y. Han, and J. Wang, “Realization of 1.5 W 780 nm single-frequency laser by using cavity-enhanced frequency doubling of an EDFA boosted 1560 nm diode laser,” Opt. Commun. 334, 74–78 (2015).
[Crossref]

Han, Y.

Y. Ge, S. Guo, Y. Han, and J. Wang, “Realization of 1.5 W 780 nm single-frequency laser by using cavity-enhanced frequency doubling of an EDFA boosted 1560 nm diode laser,” Opt. Commun. 334, 74–78 (2015).
[Crossref]

Headley, C.

V. R. Supradeepa, J. W. Nicholson, C. Headley, Y. W. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE 8237, 82370J (2012).
[Crossref]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35(18), 3069–3071 (2010).
[Crossref]

Y. Emori, K. Tanaka, C. Headley, and A. Fujisaki, “High-power Cascaded Raman Fiber Laser with 41-W output power at 1480-nm band,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper CFI2.

Hogan, J. M.

Ikue, S.

Ivanov, G. A.

V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
[Crossref]

Jacquemet, M.

A. Mugnier, M. Jacquemet, E. L. Mercier, R. Lebref, and D. Pureur, “High power single-frequency 780-nm fiber laser source for Rb trapping and cooling applications,” Proc. SPIE 8237, 82371F (2012).
[Crossref]

Jakobsen, D.

V. R. Supradeepa, J. W. Nicholson, C. Headley, Y. W. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE 8237, 82370J (2012).
[Crossref]

Jiang, Z.

Kanamori, H.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3(8), 721–723 (1991).
[Crossref]

Kasevich, M. A.

Kashiwada, T.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3(8), 721–723 (1991).
[Crossref]

Kitamura, K.

O. A. Louchev, E. Y. Nan, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Kohei, T.

Kougo, T.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3(8), 721–723 (1991).
[Crossref]

Kuhn, C. C. N.

Kurimura, S.

O. A. Louchev, E. Y. Nan, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Lebref, R.

A. Mugnier, M. Jacquemet, E. L. Mercier, R. Lebref, and D. Pureur, “High power single-frequency 780-nm fiber laser source for Rb trapping and cooling applications,” Proc. SPIE 8237, 82371F (2012).
[Crossref]

Lee, Y. W.

V. R. Supradeepa, J. W. Nicholson, C. Headley, Y. W. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE 8237, 82370J (2012).
[Crossref]

Li, C.

Li, Y.

Lienhart, F.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B: Lasers Opt. 89(2-3), 177–180 (2007).
[Crossref]

Liu, J.

Liu, Q.

Louchev, O. A.

O. A. Louchev, E. Y. Nan, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Lundblad, N.

Maas, D. J.

D. J. Maas, C. W. Rella, P. Antoine, E. S. Toma, and L. D. Noordam, “Population transfer via adiabatic passage in the rubidium quantum ladder system,” Phys. Rev. A 59(2), 1374–1381 (1999).
[Crossref]

Maleki, L.

McDonald, G. D.

Mercier, E. L.

A. Mugnier, M. Jacquemet, E. L. Mercier, R. Lebref, and D. Pureur, “High power single-frequency 780-nm fiber laser source for Rb trapping and cooling applications,” Proc. SPIE 8237, 82371F (2012).
[Crossref]

Mo, S.

Monberg, E.

Mugnier, A.

A. Mugnier, M. Jacquemet, E. L. Mercier, R. Lebref, and D. Pureur, “High power single-frequency 780-nm fiber laser source for Rb trapping and cooling applications,” Proc. SPIE 8237, 82371F (2012).
[Crossref]

Nan, E. Y.

O. A. Louchev, E. Y. Nan, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Nicholson, J. W.

Nicolas, C.

Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams, “Cold collision frequency shifts in a 87Rb atomic fountain,” Phys. Rev. Lett. 85(15), 3117–3120 (2000).
[Crossref]

Nishimura, M.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3(8), 721–723 (1991).
[Crossref]

Noordam, L. D.

D. J. Maas, C. W. Rella, P. Antoine, E. S. Toma, and L. D. Noordam, “Population transfer via adiabatic passage in the rubidium quantum ladder system,” Phys. Rev. A 59(2), 1374–1381 (1999).
[Crossref]

Noriaki, O.

Norikatsu, M.

Palsdottir, B.

V. R. Supradeepa, J. W. Nicholson, C. Headley, Y. W. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE 8237, 82370J (2012).
[Crossref]

Pan, W.

Peters, A.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B: Lasers Opt. 102(1), 11–18 (2011).
[Crossref]

Prevedelli, M.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B: Lasers Opt. 102(1), 11–18 (2011).
[Crossref]

Prokhorov, A. M.

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
[Crossref]

Pureur, D.

A. Mugnier, M. Jacquemet, E. L. Mercier, R. Lebref, and D. Pureur, “High power single-frequency 780-nm fiber laser source for Rb trapping and cooling applications,” Proc. SPIE 8237, 82371F (2012).
[Crossref]

Rella, C. W.

D. J. Maas, C. W. Rella, P. Antoine, E. S. Toma, and L. D. Noordam, “Population transfer via adiabatic passage in the rubidium quantum ladder system,” Phys. Rev. A 59(2), 1374–1381 (1999).
[Crossref]

Robins, N. P.

Salomon, C.

Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams, “Cold collision frequency shifts in a 87Rb atomic fountain,” Phys. Rev. Lett. 85(15), 3117–3120 (2000).
[Crossref]

Sané, S. S.

Schmidt, M.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B: Lasers Opt. 102(1), 11–18 (2011).
[Crossref]

Shigematsu, M.

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3(8), 721–723 (1991).
[Crossref]

Shigenori, M.

Smirnov, V. I.

V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
[Crossref]

Sortais, Y.

Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams, “Cold collision frequency shifts in a 87Rb atomic fountain,” Phys. Rev. Lett. 85(15), 3117–3120 (2000).
[Crossref]

Sunao, K.

Supradeepa, V. R.

V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 mum cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
[Crossref]

V. R. Supradeepa, J. W. Nicholson, C. Headley, Y. W. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE 8237, 82370J (2012).
[Crossref]

Tanaka, K.

Y. Emori, K. Tanaka, C. Headley, and A. Fujisaki, “High-power Cascaded Raman Fiber Laser with 41-W output power at 1480-nm band,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper CFI2.

Taunay, T.

Taylor, L. R.

Thompson, R.

Tim, K.

Tino, G. M.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B: Lasers Opt. 102(1), 11–18 (2011).
[Crossref]

Toma, E. S.

D. J. Maas, C. W. Rella, P. Antoine, E. S. Toma, and L. D. Noordam, “Population transfer via adiabatic passage in the rubidium quantum ladder system,” Phys. Rev. A 59(2), 1374–1381 (1999).
[Crossref]

Toshio, K.

Tovstonog, S. V.

Tu, M.

Wang, J.

Y. Ge, S. Guo, Y. Han, and J. Wang, “Realization of 1.5 W 780 nm single-frequency laser by using cavity-enhanced frequency doubling of an EDFA boosted 1560 nm diode laser,” Opt. Commun. 334, 74–78 (2015).
[Crossref]

Wey, C. S.

Williams, C.

Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams, “Cold collision frequency shifts in a 87Rb atomic fountain,” Phys. Rev. Lett. 85(15), 3117–3120 (2000).
[Crossref]

Wisk, P.

Xu, S.

Yan, M. F.

Yang, C.

Yang, Z.

Zahzam, N.

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B: Lasers Opt. 89(2-3), 177–180 (2007).
[Crossref]

Zhabotinski, M. E.

V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
[Crossref]

Zhang, K.

Zhang, L.

Zhou, J.

Zolin, V. F.

V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (2)

F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B: Lasers Opt. 89(2-3), 177–180 (2007).
[Crossref]

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B: Lasers Opt. 102(1), 11–18 (2011).
[Crossref]

Appl. Phys. Lett. (1)

O. A. Louchev, E. Y. Nan, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Kashiwada, M. Shigematsu, T. Kougo, H. Kanamori, and M. Nishimura, “Erbium-doped fiber amplifier pumped at 1.48 µm with extremely high efficiency,” IEEE Photonics Technol. Lett. 3(8), 721–723 (1991).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Opt. Commun. (1)

Y. Ge, S. Guo, Y. Han, and J. Wang, “Realization of 1.5 W 780 nm single-frequency laser by using cavity-enhanced frequency doubling of an EDFA boosted 1560 nm diode laser,” Opt. Commun. 334, 74–78 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

V. V. Grigoryants, B. L. Davydov, M. E. Zhabotinski, V. F. Zolin, G. A. Ivanov, V. I. Smirnov, and Y. K. Chamorovski, “Spectra of stimulated Raman scattering in silica-fiber waveguides,” Opt. Quantum Electron. 9(4), 351–352 (1977).
[Crossref]

Phys. Rev. A (1)

D. J. Maas, C. W. Rella, P. Antoine, E. S. Toma, and L. D. Noordam, “Population transfer via adiabatic passage in the rubidium quantum ladder system,” Phys. Rev. A 59(2), 1374–1381 (1999).
[Crossref]

Phys. Rev. Lett. (1)

Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams, “Cold collision frequency shifts in a 87Rb atomic fountain,” Phys. Rev. Lett. 85(15), 3117–3120 (2000).
[Crossref]

Proc. SPIE (2)

A. Mugnier, M. Jacquemet, E. L. Mercier, R. Lebref, and D. Pureur, “High power single-frequency 780-nm fiber laser source for Rb trapping and cooling applications,” Proc. SPIE 8237, 82371F (2012).
[Crossref]

V. R. Supradeepa, J. W. Nicholson, C. Headley, Y. W. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber laser at 1480 nm with output power of 104 W,” Proc. SPIE 8237, 82370J (2012).
[Crossref]

Other (1)

Y. Emori, K. Tanaka, C. Headley, and A. Fujisaki, “High-power Cascaded Raman Fiber Laser with 41-W output power at 1480-nm band,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper CFI2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram of the high power 780 nm laser system.
Fig. 2.
Fig. 2. (a) Output power of the 1480 nm oscillator as a function of the 1064 nm pump laser power. (b) Output spectrum of the 1480 nm oscillator at maximum output power level.
Fig. 3.
Fig. 3. (a) The output power of 1560 nm laser versus pump power. (b) The output spectrum of 1560 nm at maximum output power level.
Fig. 4.
Fig. 4. The output power (a) and conversion efficiency (b) of the 780 nm versus 1560 nm power.
Fig. 5.
Fig. 5. The (a) output spectrum and (b) fine spectrum of 780 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω = (Lλ5.68πn)1/122