Abstract

The Terahertz or millimeter wave frequency band (300 GHz - 3 THz) is spectrally located between microwaves and infrared light and has attracted significant interest for applications in broadband wireless communications, space-borne radiometers for Earth remote sensing, astrophysics, and imaging. In particular optically generated THz waves are of high interest for low-noise signal generation. Here, we propose and demonstrate stabilized terahertz wave generation using a microresonator-based frequency comb (microcomb). A unitravelling-carrier photodiode (UTC-PD) converts low-noise optical soliton pulses from the microcomb to a terahertz wave at the soliton’s repetition rate (331 GHz). With a free-running microcomb, the Allan deviation of the Terahertz signal is 4.5×10−9 at 1 s measurement time with a phase noise of -72 dBc/Hz (-118 dBc/Hz) at 10 kHz (10 MHz) offset frequency. By locking the repetition rate to an in-house hydrogen maser, in-loop fractional frequency stabilities of 9.6×10−15 and 1.9×10−17 are obtained at averaging times of 1 s and 2000 s respectively, indicating that the stability of the generated THz wave is limited by the maser reference signal. Moreover, the terahertz signal is successfully used to perform a proof-of-principle demonstration of terahertz imaging of peanuts. Combining the monolithically integrated UTC-PD with an on-chip microcomb, the demonstrated technique could provide a route towards highly stable continuous terahertz wave generation in chip-scale packages for out-of-the-lab applications. In particular, such systems would be useful as compact tools for high-capacity wireless communication, spectroscopy, imaging, remote sensing, and astrophysical applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise

Stefan Preußler, Norman Wenzel, Ralf-Peter Braun, Nina Owschimikow, Carlo Vogel, Anselm Deninger, Avi Zadok, Ulrike Woggon, and Thomas Schneider
Opt. Express 21(20) 23950-23962 (2013)

Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser

Shuangyou Zhang, Jonathan M. Silver, Leonardo Del Bino, Francois Copie, Michael T. M. Woodley, George N. Ghalanos, Andreas Ø. Svela, Niall Moroney, and Pascal Del’Haye
Optica 6(2) 206-212 (2019)

Ultralow-power chip-based soliton microcombs for photonic integration

Junqiu Liu, Arslan S. Raja, Maxim Karpov, Bahareh Ghadiani, Martin H. P. Pfeiffer, Botao Du, Nils J. Engelsen, Hairun Guo, Michael Zervas, and Tobias J. Kippenberg
Optica 5(10) 1347-1353 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. Lightwave Technol. 23(12), 4016–4021 (2005).
    [Crossref]
  2. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  3. A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
    [Crossref]
  4. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  5. Y. Li, A. Rolland, K. Iwamoto, N. Kuse, M. Fermann, and T. Nagatsuma, “Low-noise millimeter-wave synthesis from a dual-wavelength fiber Brillouin cavity,” Opt. Lett. 44(2), 359–362 (2019).
    [Crossref]
  6. L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  7. J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
    [Crossref]
  8. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
    [Crossref]
  9. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  10. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
    [Crossref]
  11. T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
    [Crossref]
  12. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett. 30(23), 3231–3233 (2005).
    [Crossref]
  13. H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma, “Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications,” J. Lightwave Technol. 26(15), 2521–2530 (2008).
    [Crossref]
  14. S. Preußler, N. Wenzel, R.-P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter-and terahertz-waves with very low phase noise,” Opt. Express 21(20), 23950–23962 (2013).
    [Crossref]
  15. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref]
  16. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref]
  17. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
    [Crossref]
  18. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
    [Crossref]
  19. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
    [Crossref]
  20. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
    [Crossref]
  21. S. Zhang, J. M. Silver, L. Del Bino, F. Copie, M. T. Woodley, G. N. Ghalanos, AØ Svela, N. Moroney, and P. Del’Haye, “Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser,” Optica 6(2), 206–212 (2019).
    [Crossref]
  22. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
    [Crossref]
  23. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
    [Crossref]
  24. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
    [Crossref]
  25. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
    [Crossref]
  26. X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2(12), 1078–1085 (2015).
    [Crossref]
  27. K. Saleh and Y. K. Chembo, “On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs,” Opt. Express 24(22), 25043–25056 (2016).
    [Crossref]
  28. J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).
  29. W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122(1), 013902 (2019).
    [Crossref]
  30. S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
    [Crossref]
  31. T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
    [Crossref]
  32. T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
    [Crossref]
  33. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref]
  34. R. Boudot and E. Rubiola, “Phase noise in RF and microwave amplifiers,” IEEE Trans. Sonics Ultrason. 59(12), 2613–2624 (2012).
    [Crossref]
  35. X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41(9), 2037–2040 (2016).
    [Crossref]
  36. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
    [Crossref]
  37. G.-Y. Chen, Y.-S. Wu, H.-Y. Chang, Y.-M. Hsin, and C.-C. Chiong, “A 60–110 GHz low conversion loss tripler in 0.15-µm MHEMT process,” in 2009 Asia Pacific Microwave Conference, IEEE, 377–380 (2009).
  38. J. Wang, K. Alharbi, A. Ofiare, H. Zhou, A. Khalid, D. Cumming, and E. Wasige, “High performance resonant tunneling diode oscillators for THz applications,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1–4 (2015).
  39. S. Withington, “Terahertz astronomical telescopes and instrumentation,” Philos. Trans. R. Soc., A 362(1815), 395–402 (2004).
    [Crossref]
  40. S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
    [Crossref]
  41. M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).
  42. S. U. Hwu and C. T. Jih, “Terahertz (THz) wireless systems for space applications,” in 2013 IEEE Sensors Applications Symposium Proceedings, 171–175 (2013).
  43. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  44. H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” EEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
    [Crossref]

2019 (3)

2018 (3)

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

2017 (3)

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

2016 (4)

X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Active capture and stabilization of temporal solitons in microresonators,” Opt. Lett. 41(9), 2037–2040 (2016).
[Crossref]

K. Saleh and Y. K. Chembo, “On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs,” Opt. Express 24(22), 25043–25056 (2016).
[Crossref]

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

2015 (3)

2014 (3)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref]

2013 (3)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

S. Preußler, N. Wenzel, R.-P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter-and terahertz-waves with very low phase noise,” Opt. Express 21(20), 23950–23962 (2013).
[Crossref]

2012 (4)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref]

R. Boudot and E. Rubiola, “Phase noise in RF and microwave amplifiers,” IEEE Trans. Sonics Ultrason. 59(12), 2613–2624 (2012).
[Crossref]

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” EEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

2011 (5)

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
[Crossref]

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

2008 (2)

2007 (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2005 (2)

2004 (2)

S. Withington, “Terahertz astronomical telescopes and instrumentation,” Philos. Trans. R. Soc., A 362(1815), 395–402 (2004).
[Crossref]

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

2003 (1)

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

Ajito, K.

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” EEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Alexandre, C.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Alharbi, K.

J. Wang, K. Alharbi, A. Ofiare, H. Zhou, A. Khalid, D. Cumming, and E. Wasige, “High performance resonant tunneling diode oscillators for THz applications,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1–4 (2015).

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Araki, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

Ashley, M.

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Baynes, F.

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

Bergquist, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Bouchand, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

Boudot, R.

R. Boudot and E. Rubiola, “Phase noise in RF and microwave amplifiers,” IEEE Trans. Sonics Ultrason. 59(12), 2613–2624 (2012).
[Crossref]

Brasch, V.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Bratschitsch, R.

Braun, R.-P.

Chang, H.-Y.

G.-Y. Chen, Y.-S. Wu, H.-Y. Chang, Y.-M. Hsin, and C.-C. Chiong, “A 60–110 GHz low conversion loss tripler in 0.15-µm MHEMT process,” in 2009 Asia Pacific Microwave Conference, IEEE, 377–380 (2009).

Chembo, Y. K.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

K. Saleh and Y. K. Chembo, “On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs,” Opt. Express 24(22), 25043–25056 (2016).
[Crossref]

Chen, G.-Y.

G.-Y. Chen, Y.-S. Wu, H.-Y. Chang, Y.-M. Hsin, and C.-C. Chiong, “A 60–110 GHz low conversion loss tripler in 0.15-µm MHEMT process,” in 2009 Asia Pacific Microwave Conference, IEEE, 377–380 (2009).

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref]

Chiong, C.-C.

G.-Y. Chen, Y.-S. Wu, H.-Y. Chang, Y.-M. Hsin, and C.-C. Chiong, “A 60–110 GHz low conversion loss tripler in 0.15-µm MHEMT process,” in 2009 Asia Pacific Microwave Conference, IEEE, 377–380 (2009).

Coen, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Copie, F.

Cumming, D.

J. Wang, K. Alharbi, A. Ofiare, H. Zhou, A. Khalid, D. Cumming, and E. Wasige, “High performance resonant tunneling diode oscillators for THz applications,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1–4 (2015).

Datta, S.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Del Bino, L.

Del’Haye, P.

S. Zhang, J. M. Silver, L. Del Bino, F. Copie, M. T. Woodley, G. N. Ghalanos, AØ Svela, N. Moroney, and P. Del’Haye, “Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser,” Optica 6(2), 206–212 (2019).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Deninger, A.

Diddams, S. A.

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
[Crossref]

Duan, W.-Y.

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Erkintalo, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Fermann, M.

Fice, M. J.

Fitch, M. J.

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Fortier, T.

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Furuta, T.

Gaeta, A. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

Ghalanos, G. N.

Giunta, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Gorodetsky, M. L.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122(1), 013902 (2019).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Griebel, M.

Guo, H.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122(1), 013902 (2019).
[Crossref]

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

Hänsel, W.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Hansson, T.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Hati, A.

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

He, J.

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Herr, T.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hinkley, N.

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Hsin, Y.-M.

G.-Y. Chen, Y.-S. Wu, H.-Y. Chang, Y.-M. Hsin, and C.-C. Chiong, “A 60–110 GHz low conversion loss tripler in 0.15-µm MHEMT process,” in 2009 Asia Pacific Microwave Conference, IEEE, 377–380 (2009).

Huang, S.-W.

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

Hwu, S. U.

S. U. Hwu and C. T. Jih, “Terahertz (THz) wireless systems for space applications,” in 2013 IEEE Sensors Applications Symposium Proceedings, 171–175 (2013).

Ilchenko, V. S.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Inaba, H.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Ishibashi, T.

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. Lightwave Technol. 23(12), 4016–4021 (2005).
[Crossref]

Ito, H.

Iwamoto, K.

Jarrahi, M.

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Ji, X.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Jih, C. T.

S. U. Hwu and C. T. Jih, “Terahertz (THz) wireless systems for space applications,” in 2013 IEEE Sensors Applications Symposium Proceedings, 171–175 (2013).

Joshi, A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Karpov, M.

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

Khalid, A.

J. Wang, K. Alharbi, A. Ofiare, H. Zhou, A. Khalid, D. Cumming, and E. Wasige, “High performance resonant tunneling diode oscillators for THz applications,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1–4 (2015).

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

Kippenberg, T. J.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122(1), 013902 (2019).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Kleine-Ostmann, T.

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Kukutsu, N.

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” EEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Kuse, N.

Kwong, D.-L.

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

Lee, H.

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Lezius, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Li, J.

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Li, X.-X.

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Li, Y.

Liang, W.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Lihachev, G.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122(1), 013902 (2019).
[Crossref]

Lin, Z.-H.

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Lipson, M.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Liu, J.

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

Lobanov, V. E.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122(1), 013902 (2019).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Lours, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Lucas, E.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122(1), 013902 (2019).
[Crossref]

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

Ludlow, A.

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Maleki, L.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

Matsko, A. B.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Matsuo, H.

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Metcalf, A.

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

Minoshima, K.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Moroney, N.

Moss, D. J.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Muramoto, Y.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” EEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Nagatsuma, T.

Y. Li, A. Rolland, K. Iwamoto, N. Kuse, M. Fermann, and T. Nagatsuma, “Low-noise millimeter-wave synthesis from a dual-wavelength fiber Brillouin cavity,” Opt. Lett. 44(2), 359–362 (2019).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” EEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma, “Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications,” J. Lightwave Technol. 26(15), 2521–2530 (2008).
[Crossref]

Nakajima, F.

Nicolodi, D.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Oates, C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Ofiare, A.

J. Wang, K. Alharbi, A. Ofiare, H. Zhou, A. Khalid, D. Cumming, and E. Wasige, “High performance resonant tunneling diode oscillators for THz applications,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1–4 (2015).

Okawachi, Y.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

Osiander, R.

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Owschimikow, N.

Paine, S.

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Papp, S. B.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
[Crossref]

Pasquazi, A.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Peccianti, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Preußler, S.

Quinlan, F.

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Quraishi, Q.

Raja, A. S.

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

Razzari, L.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
[Crossref]

Rolland, A.

Y. Li, A. Rolland, K. Iwamoto, N. Kuse, M. Fermann, and T. Nagatsuma, “Low-noise millimeter-wave synthesis from a dual-wavelength fiber Brillouin cavity,” Opt. Lett. 44(2), 359–362 (2019).
[Crossref]

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Rubiola, E.

R. Boudot and E. Rubiola, “Phase noise in RF and microwave amplifiers,” IEEE Trans. Sonics Ultrason. 59(12), 2613–2624 (2012).
[Crossref]

Saleh, K.

Savchenkov, A. A.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Schliesser, A.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Schneider, T.

Seeds, A. J.

Seidel, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Shams, H.

Shi, S.-C.

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Shimizu, M.

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

Shimizu, N.

Silver, J. M.

Song, H.-J.

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” EEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma, “Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications,” J. Lightwave Technol. 26(15), 2521–2530 (2008).
[Crossref]

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

Stern, B.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

Suh, M.-G.

Suizu, K.

Svela, AØ

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Vahala, K.

Vahala, K. J.

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Vogel, C.

Wabnitz, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Wakatsuki, A.

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” EEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Wang, J.

J. Wang, K. Alharbi, A. Ofiare, H. Zhou, A. Khalid, D. Cumming, and E. Wasige, “High performance resonant tunneling diode oscillators for THz applications,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1–4 (2015).

Wang, R. N.

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

Wasige, E.

J. Wang, K. Alharbi, A. Ofiare, H. Zhou, A. Khalid, D. Cumming, and E. Wasige, “High performance resonant tunneling diode oscillators for THz applications,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1–4 (2015).

Weng, W.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122(1), 013902 (2019).
[Crossref]

Wenzel, N.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Withington, S.

S. Withington, “Terahertz astronomical telescopes and instrumentation,” Philos. Trans. R. Soc., A 362(1815), 395–402 (2004).
[Crossref]

Woggon, U.

Wong, C. W.

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

Woodley, M. T.

Wu, Y.-S.

G.-Y. Chen, Y.-S. Wu, H.-Y. Chang, Y.-M. Hsin, and C.-C. Chiong, “A 60–110 GHz low conversion loss tripler in 0.15-µm MHEMT process,” in 2009 Asia Pacific Microwave Conference, IEEE, 377–380 (2009).

Xie, X.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Yang, J.

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Yang, K. Y.

Yang, Q.-F.

Yang, S.-H.

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

Yao, Q.-J.

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Yasui, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Yi, X.

Yokoyama, S.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Yoshimatsu, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

Yoshino, K.

Yu, M.

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

Zadok, A.

Zelevinsky, T.

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

Zhang, Q.

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Zhang, S.

Zhou, H.

J. Wang, K. Alharbi, A. Ofiare, H. Zhou, A. Khalid, D. Cumming, and E. Wasige, “High performance resonant tunneling diode oscillators for THz applications,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1–4 (2015).

EEE Microw. Wirel. Compon. Lett. (1)

H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” EEE Microw. Wirel. Compon. Lett. 22(7), 363–365 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[Crossref]

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

R. Boudot and E. Rubiola, “Phase noise in RF and microwave amplifiers,” IEEE Trans. Sonics Ultrason. 59(12), 2613–2624 (2012).
[Crossref]

J. Lightwave Technol. (3)

Johns Hopkins APL Tech. Dig. (1)

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Laser Photonics Rev. (1)

T. Fortier, A. Rolland, F. Quinlan, F. Baynes, A. Metcalf, A. Hati, A. Ludlow, N. Hinkley, M. Shimizu, and T. Ishibashi, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photonics Rev. 10(5), 780–790 (2016).
[Crossref]

Nat. Commun. (2)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(1), 2097 (2013).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Nat. Photonics (8)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, and C. Oates, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, and M. Lours, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, and R. Palmer, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (3)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

Nature Astron. (1)

S.-C. Shi, S. Paine, Q.-J. Yao, Z.-H. Lin, X.-X. Li, W.-Y. Duan, H. Matsuo, Q. Zhang, J. Yang, and M. Ashley, “Terahertz and far-infrared windows opened at Dome A in Antarctica,” Nature Astron. 1(1), 0001 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (2)

Philos. Trans. R. Soc., A (1)

S. Withington, “Terahertz astronomical telescopes and instrumentation,” Philos. Trans. R. Soc., A 362(1815), 395–402 (2004).
[Crossref]

Phys. Rep. (1)

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, and P. Del’Haye, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Phys. Rev. A (1)

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833 (2011).
[Crossref]

Phys. Rev. Lett. (3)

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109(23), 233901 (2012).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref]

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122(1), 013902 (2019).
[Crossref]

Phys. Rev. X (1)

S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, and C. W. Wong, “Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip,” Phys. Rev. X 7(4), 041002 (2017).
[Crossref]

Science (3)

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Other (4)

G.-Y. Chen, Y.-S. Wu, H.-Y. Chang, Y.-M. Hsin, and C.-C. Chiong, “A 60–110 GHz low conversion loss tripler in 0.15-µm MHEMT process,” in 2009 Asia Pacific Microwave Conference, IEEE, 377–380 (2009).

J. Wang, K. Alharbi, A. Ofiare, H. Zhou, A. Khalid, D. Cumming, and E. Wasige, “High performance resonant tunneling diode oscillators for THz applications,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1–4 (2015).

J. Liu, E. Lucas, J. He, A. S. Raja, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Photonic microwave oscillators based on integrated soliton microcombs,” arXiv preprint arXiv:1901.10372 (2019).

S. U. Hwu and C. T. Jih, “Terahertz (THz) wireless systems for space applications,” in 2013 IEEE Sensors Applications Symposium Proceedings, 171–175 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup and THz soliton frequency comb spectrum. (a) Schematic of the setup for microcomb-based THz wave generation. The 1.3 µm auxiliary laser is used to stabilize the THz signal. ECDL: external cavity diode laser; WDM: wavelength division multiplexer; PC: polarization controller; FBG: fiber Bragg grating; EDFA: Erbium-doped fiber amplifier; UTC-PD: unitravelling-carrier photodiode; PD: photodetector; HM: harmonic mixer; AMP: RF amplifier; LO: local oscillator; OSA: optical spectrum analyzer; ESA: electronic spectrum analyzer. (b) Scanning electron microscope image of a 200-µm-diameter microtoroid. (c) Optical spectrum of the generated single-soliton state pumped with 100 mW optical power and thermally stabilized with ∼50mW auxiliary laser power. The generated single soliton frequency comb has a 3-dB optical bandwidth of ∼ 4.7 THz, corresponding to a 67 fs optical pulse. The red dashed line shows a fitted sech2 envelope.
Fig. 2.
Fig. 2. Performance of the generated THz wave with a free-running soliton microcomb. (a) RF spectrum of the generated THz signal with a 1 kHz resolution bandwidth (RBW). The red line shows a Lorentzian fit. (b) Single sideband (SSB) phase noise spectra of the generated THz signal. The graph shows data for the free-running single-soliton microcomb (red line) and data with frep being stabilized to a hydrogen maser (blue line). The red line with squares is the measurement noise floor of the ESA. The brown dashed line is the white noise floor from the RF amplifier. The purple line with triangles is the phase noise of the LO reference (scaled to 331 GHz). (c) Allan deviation of the free-drifting THz signal. (d) Recorded frequency drift of the THz signal at 1 ms gate time. (e) Frequency dependence of the generated THz signal on the 1550 nm pump laser frequency. The slope is around 46 kHz/MHz.
Fig. 3.
Fig. 3. THz wave stabilized to a hydrogen maser frequency reference. (a) Dependence of the THz signal frequency on the 1330 nm auxiliary power launched into the microresonator. (b) Electronic spectrum of the stabilized THz signal with a 5 kHz RBW. The inset shows the resolution bandwidth limited electronic spectrum (1 Hz RBW). (c) Time series measurement of the variation of the stabilized THz signal (red, left axis) and the free-running THz signal (blue, right axis) at 1 s gate time. (d) Histogram of the stabilized THz signal with a standard deviation (SD) of 2.8 mHz at 1 s gate time and a standard error of the mean (SEM) of 27 µHz. (e) Allan deviations of the in-loop THz signal (black circles), of the out-of-loop THz signal (blue triangles) and of the used hydrogen maser (red squares).
Fig. 4.
Fig. 4. Experimental setup for out-of-loop measurement of the generated THz wave. fb1, fb2 are beat note signals between the microcomb (pump mode and first sideband) with a fiber laser reference frequency comb. frepM, frepFC are the repetition rates of microcomb and fiber frequency comb, respectively.
Fig. 5.
Fig. 5. Non-destructive THz imaging system based on a soliton microcomb. (a) Experimental setup for the THz imaging system using a THz camera. (b) Photograph of the imaging setup. Samples are placed in front of the camera. (c) (d) Photographs of the peanuts with two and one nuts inside, respectively. The insets show the same peanuts without nutshells. The red foam is used as sample holder, and is transparent for the THz wave. (e) (f) THz images of the corresponding peanuts with two nuts (e) and only one nut (f) inside. These THz images are recorded from the THz transmission through the samples. The colour bar shows the THz attenuation ratio.