Abstract

Conventional optofluidic lens usually has only one interface, which means that the zoom range is small, and the ability to correct aberrations is poor. In this paper, we propose a hybrid driving variable-focus optofluidic lens. It has one water-oil interface shifted by an applied voltage and one tunable Polydimethylsiloxane (PDMS) lens deformed by pumping liquid in or out of the cavity. The proposed lens combines the advantages of electrowetting lens and mechanical lens. Therefore, it can provide a large focal length tuning range with good image quality. The shortest positive and negative focal length are ∼6.02 mm and ∼−11.15 mm, respectively. The maximum resolution of our liquid lens can be reached 18 lp/mm. We also designed and fabricated a zoom system using the hybrid driving variable-focus optofluidic lens. In the experiment, the zoom range of the system is 14 mm∼30 mm and the zoom ratio is ∼2.14× without any mechanical moving parts. Its applications for zoom telescope system and zoom microscope and so on are foreseeable.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Displaceable and focus-tunable electrowetting optofluidic lens

Lei Li, Jin-Hui Wang, Qiong-Hua Wang, and Shin-Tson Wu
Opt. Express 26(20) 25839-25848 (2018)

Electrically optofluidic zoom system with a large zoom range and high-resolution image

Lei Li, Rong-Ying Yuan, Jin-Hui Wang, and Qiong-Hua Wang
Opt. Express 25(19) 22280-22291 (2017)

All-liquid dual-lens optofluidic zoom system

Daniel Kopp, Tamara Brender, and Hans Zappe
Appl. Opt. 56(13) 3758-3763 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
    [Crossref]
  2. C. Liu and D. Wang, “A light intensity and FOV controlled adaptive fluidic iris,” Appl. Opt. 57(18), D27–D31 (2018).
    [Crossref]
  3. L. Liang, Y. F. Zuo, W. Wu, X. Q. Zhu, and Y. Yang, “Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids,” Lab Chip 16(16), 3007–3014 (2016).
    [Crossref]
  4. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [Crossref]
  5. L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref]
  6. X. F. Zeng and H. R. Jiang, “Tunable liquid microlens actuated by infrared light responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
    [Crossref]
  7. B. Jin, H. Ren, and W. K. Choi, “Dielectric liquid lens with chevron-patterned electrode,” Opt. Express 25(26), 32411 (2017).
    [Crossref]
  8. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
    [Crossref]
  9. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [Crossref]
  10. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [Crossref]
  11. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
    [Crossref]
  12. D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758 (2017).
    [Crossref]
  13. H. Choi and Y. Won, “Fluidic lens of floating oil using round-pot chamber based on electrowetting,” Opt. Lett. 38(13), 2197–2199 (2013).
    [Crossref]
  14. C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
    [Crossref]
  15. L. Li, C. Liu, H. Ren, H. Deng, and Q. H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
    [Crossref]
  16. P. M. Moran, S. Dharmatilleke, A. H. Khaw, and K. W. Tan, “Fluid lenses with variable focal length,” Appl. Phys. Lett. 88(4), 041120 (2006).
    [Crossref]
  17. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
    [Crossref]
  18. F. Schneider, J. Draheim, C. Muller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators, A 154(2), 316–321 (2009).
    [Crossref]
  19. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [Crossref]
  20. W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light: Sci. Appl. 3(2), e145 (2014).
    [Crossref]
  21. H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18(10), 9945–9954 (2010).
    [Crossref]
  22. S. H. Oh, K. Rhee, and K. C. Sang, “Electromagnetically driven liquid lens,” Sens. Actuators, A 240, 153–159 (2016).
    [Crossref]
  23. M. Xu, H. Ren, and Y. H. Lin, “Electrically actuated liquid iris,” Opt. Lett. 40(5), 831–834 (2015).
    [Crossref]
  24. H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
    [Crossref]
  25. K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photonics Technol. Lett. 13(6), 609–611 (2001).
    [Crossref]
  26. P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
    [Crossref]
  27. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
    [Crossref]
  28. P. Sebastian, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
    [Crossref]
  29. L. Li, D. Bryant, T. van Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt. 52(9), 1978–1986 (2013).
    [Crossref]
  30. S. Xu, Y. Li, Y. F. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
    [Crossref]
  31. S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
    [Crossref]
  32. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [Crossref]
  33. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref]
  34. R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, M. Friends, and T. M. Leslie, “Highresolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes,” Opt. Lett. 19(9), 670–672 (1994).
    [Crossref]
  35. S. T. Choi, B. S. Son, G. W. Seo, S.-Y. Park, and K.-S. Lee, “Optomechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses,” Opt. Express 22(5), 6133–6146 (2014).
    [Crossref]
  36. S. H. Jo and S. C. Park, “Design and analysis of an 8x four-group zoom system using focus tunable lenses,” Opt. Express 26(10), 13370–13382 (2018).
    [Crossref]
  37. L. Li, R. Y. Yuan, J. H. Wang, and Q. H. Wang, “Electrically optofluidic zoom system with a large zoom range and high-resolution image,” Opt. Express 25(19), 22280–22291 (2017).
    [Crossref]

2018 (2)

2017 (3)

2016 (4)

L. Liang, Y. F. Zuo, W. Wu, X. Q. Zhu, and Y. Yang, “Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids,” Lab Chip 16(16), 3007–3014 (2016).
[Crossref]

S. H. Oh, K. Rhee, and K. C. Sang, “Electromagnetically driven liquid lens,” Sens. Actuators, A 240, 153–159 (2016).
[Crossref]

P. Sebastian, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]

2015 (2)

2014 (3)

S. T. Choi, B. S. Son, G. W. Seo, S.-Y. Park, and K.-S. Lee, “Optomechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses,” Opt. Express 22(5), 6133–6146 (2014).
[Crossref]

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light: Sci. Appl. 3(2), e145 (2014).
[Crossref]

S. Xu, Y. Li, Y. F. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

2013 (3)

2012 (2)

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref]

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]

2011 (1)

2010 (3)

2009 (2)

F. Schneider, J. Draheim, C. Muller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators, A 154(2), 316–321 (2009).
[Crossref]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[Crossref]

2008 (2)

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref]

X. F. Zeng and H. R. Jiang, “Tunable liquid microlens actuated by infrared light responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
[Crossref]

2007 (1)

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

2006 (4)

P. M. Moran, S. Dharmatilleke, A. H. Khaw, and K. W. Tan, “Fluid lenses with variable focal length,” Appl. Phys. Lett. 88(4), 041120 (2006).
[Crossref]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref]

2003 (2)

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[Crossref]

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref]

2001 (1)

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photonics Technol. Lett. 13(6), 609–611 (2001).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

1994 (1)

Abeysinghe, D. C.

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Amano, C.

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photonics Technol. Lett. 13(6), 609–611 (2001).
[Crossref]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

Bos, P. J.

Brender, T.

Bryant, D.

Chang, C. A.

Chau, F. S.

Cheng, C. C.

Choi, H.

Choi, S. T.

Choi, W. K.

Chronis, N.

Deng, H.

Dharmatilleke, S.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, and K. W. Tan, “Fluid lenses with variable focal length,” Appl. Phys. Lett. 88(4), 041120 (2006).
[Crossref]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Draheim, J.

F. Schneider, J. Draheim, C. Muller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators, A 154(2), 316–321 (2009).
[Crossref]

Dreesen, L.

P. Sebastian, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref]

Friends, M.

Haus, J. W.

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref]

Heikenfeld, J.

Hirabayashi, K.

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photonics Technol. Lett. 13(6), 609–611 (2001).
[Crossref]

Jarem, J. M.

Jeong, K. H.

Jiang, H.

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]

Jiang, H. R.

X. F. Zeng and H. R. Jiang, “Tunable liquid microlens actuated by infrared light responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
[Crossref]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Jin, B.

Jo, S. H.

Khaw, A. H.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, and K. W. Tan, “Fluid lenses with variable focal length,” Appl. Phys. Lett. 88(4), 041120 (2006).
[Crossref]

Kopp, D.

Kowel, S. T.

Kulick, J. H.

Lee, K.-S.

Lee, L. P.

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

Leslie, T. M.

Leung, H. M.

Li, C.

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]

Li, L.

Li, Y.

S. Xu, Y. Li, Y. F. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref]

Liang, L.

L. Liang, Y. F. Zuo, W. Wu, X. Q. Zhu, and Y. Yang, “Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids,” Lab Chip 16(16), 3007–3014 (2016).
[Crossref]

Lin, H. C.

Lin, Y. H.

Lin, Y. J.

Lindquist, R. G.

Liu, C.

Liu, G. L.

Liu, Y. F.

S. Xu, Y. Li, Y. F. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

Monch, W.

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Moran, P. M.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, and K. W. Tan, “Fluid lenses with variable focal length,” Appl. Phys. Lett. 88(4), 041120 (2006).
[Crossref]

Muller, C.

F. Schneider, J. Draheim, C. Muller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators, A 154(2), 316–321 (2009).
[Crossref]

Muller, P.

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Nordin, G. P.

Oh, S. H.

S. H. Oh, K. Rhee, and K. C. Sang, “Electromagnetically driven liquid lens,” Sens. Actuators, A 240, 153–159 (2016).
[Crossref]

Park, S. C.

Park, S.-Y.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

Ren, H.

Rhee, K.

S. H. Oh, K. Rhee, and K. C. Sang, “Electromagnetically driven liquid lens,” Sens. Actuators, A 240, 153–159 (2016).
[Crossref]

Sang, K. C.

S. H. Oh, K. Rhee, and K. C. Sang, “Electromagnetically driven liquid lens,” Sens. Actuators, A 240, 153–159 (2016).
[Crossref]

Schneider, F.

F. Schneider, J. Draheim, C. Muller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators, A 154(2), 316–321 (2009).
[Crossref]

Schuhladen, S.

P. Sebastian, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Sebastian, P.

P. Sebastian, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

Seifert, A.

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light: Sci. Appl. 3(2), e145 (2014).
[Crossref]

Seo, G. W.

Smith, N. R.

Son, B. S.

Spengler, N.

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Sun, J.

S. Xu, Y. Li, Y. F. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

Tan, K. W.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, and K. W. Tan, “Fluid lenses with variable focal length,” Appl. Phys. Lett. 88(4), 041120 (2006).
[Crossref]

van Heugten, T.

Wada, M.

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photonics Technol. Lett. 13(6), 609–611 (2001).
[Crossref]

Wallrabe, U.

F. Schneider, J. Draheim, C. Muller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators, A 154(2), 316–321 (2009).
[Crossref]

Wang, D.

Wang, J. H.

Wang, Q. H.

Won, Y.

Wu, S. T.

Wu, W.

L. Liang, Y. F. Zuo, W. Wu, X. Q. Zhu, and Y. Yang, “Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids,” Lab Chip 16(16), 3007–3014 (2016).
[Crossref]

Xianyu, H.

Xu, M.

Xu, S.

S. Xu, Y. Li, Y. F. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[Crossref]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref]

Yang, Y.

L. Liang, Y. F. Zuo, W. Wu, X. Q. Zhu, and Y. Yang, “Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids,” Lab Chip 16(16), 3007–3014 (2016).
[Crossref]

Yeh, J. A.

Yu, H.

Yuan, R. Y.

Zappe, H.

D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758 (2017).
[Crossref]

P. Sebastian, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light: Sci. Appl. 3(2), e145 (2014).
[Crossref]

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Zeng, X. F.

X. F. Zeng and H. R. Jiang, “Tunable liquid microlens actuated by infrared light responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
[Crossref]

Zhang, W.

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light: Sci. Appl. 3(2), e145 (2014).
[Crossref]

Zhou, G.

Zhu, X. Q.

L. Liang, Y. F. Zuo, W. Wu, X. Q. Zhu, and Y. Yang, “Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids,” Lab Chip 16(16), 3007–3014 (2016).
[Crossref]

Zuo, Y. F.

L. Liang, Y. F. Zuo, W. Wu, X. Q. Zhu, and Y. Yang, “Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids,” Lab Chip 16(16), 3007–3014 (2016).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]

P. M. Moran, S. Dharmatilleke, A. H. Khaw, and K. W. Tan, “Fluid lenses with variable focal length,” Appl. Phys. Lett. 88(4), 041120 (2006).
[Crossref]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[Crossref]

X. F. Zeng and H. R. Jiang, “Tunable liquid microlens actuated by infrared light responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008).
[Crossref]

Eur. Phys. J. E: Soft Matter Biol. Phys. (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuators integrated on planar lightwave circuits,” IEEE Photonics Technol. Lett. 13(6), 609–611 (2001).
[Crossref]

J. Microelectromech. Syst. (1)

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Lab Chip (1)

L. Liang, Y. F. Zuo, W. Wu, X. Q. Zhu, and Y. Yang, “Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids,” Lab Chip 16(16), 3007–3014 (2016).
[Crossref]

Light: Sci. Appl. (2)

P. Sebastian, S. Schuhladen, L. Dreesen, and H. Zappe, “The engineered eyeball, a tunable imaging system using soft-matter micro-optics,” Light: Sci. Appl. 5(7), e16068 (2016).
[Crossref]

W. Zhang, H. Zappe, and A. Seifert, “Wafer-scale fabricated thermo-pneumatically tunable microlenses,” Light: Sci. Appl. 3(2), e145 (2014).
[Crossref]

Micromachines (1)

S. Xu, Y. Li, Y. F. Liu, J. Sun, H. Ren, and S. T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

Nature (2)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]

Opt. Express (13)

L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref]

B. Jin, H. Ren, and W. K. Choi, “Dielectric liquid lens with chevron-patterned electrode,” Opt. Express 25(26), 32411 (2017).
[Crossref]

C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[Crossref]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[Crossref]

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[Crossref]

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18(10), 9945–9954 (2010).
[Crossref]

S. T. Choi, B. S. Son, G. W. Seo, S.-Y. Park, and K.-S. Lee, “Optomechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses,” Opt. Express 22(5), 6133–6146 (2014).
[Crossref]

S. H. Jo and S. C. Park, “Design and analysis of an 8x four-group zoom system using focus tunable lenses,” Opt. Express 26(10), 13370–13382 (2018).
[Crossref]

L. Li, R. Y. Yuan, J. H. Wang, and Q. H. Wang, “Electrically optofluidic zoom system with a large zoom range and high-resolution image,” Opt. Express 25(19), 22280–22291 (2017).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref]

Opt. Lett. (5)

Sens. Actuators, A (2)

F. Schneider, J. Draheim, C. Muller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators, A 154(2), 316–321 (2009).
[Crossref]

S. H. Oh, K. Rhee, and K. C. Sang, “Electromagnetically driven liquid lens,” Sens. Actuators, A 240, 153–159 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic cross-section and optical operating mechanism of our optofluidic lens. (a) Lens structure and its components. (b) Initial state. (c) Only PDMS lens is driven by current. (d) Only EW lens is driven by voltage. (e) Hybrid driving.
Fig. 2.
Fig. 2. Fabricated prototype of the hybrid driving variable-focus optofluidic lens. (a) All the elements of the device. The Bottom tube has a channel which connects the actuator of PDMS lens. (b) Assembled prototype.
Fig. 3.
Fig. 3. 2D layout of the proposed lens.
Fig. 4.
Fig. 4. Blur spots of the proposed lens. (a) f=7.5mm. (b) f=10mm. (c) f=12.5mm. (d) f=15mm. (e) f=20mm. (f) f=30mm.
Fig. 5.
Fig. 5. Captured images of different magnification degree by the (a) magnifying and (b) lessening.
Fig. 6.
Fig. 6. The experimental setup for measuring the focal length of the varifocal liquid lens. (a)Measuring device for positive focal length. (b)Measuring device for negative focal length.
Fig. 7.
Fig. 7. The focal length of the proposed lens. (a) Positive focal length region. (b) Negative focal length region.
Fig. 8.
Fig. 8. Image of the resolution target of proposed lens. (a) Negative focal length state. (b) Positive focal length state.
Fig. 9.
Fig. 9. Optofluidic zoom system using a hybrid driving variable-focus optofluidic lens.
Fig. 10.
Fig. 10. Zoom system using the hybrid driving variable-focus optofluidic lens. (a)f=14mm. (b)f=20mm. (c)f=30mm.
Fig. 11.
Fig. 11. Optical performances of zoom system using the hybrid driving variable-focus optofluidic lens. (a)f=14mm. (b)f=20mm. (c)f=30mm.
Fig. 12.
Fig. 12. Captured images of different magnification of zoom system. (a) Initial state, U1=0, I1=0. (b)1.3×, U2=60 V, I2=−0.75 mA. (c)2.1×,U3=65 V, I3=−0.85 mA.

Tables (2)

Tables Icon

Table 1. Properties of the materials we used

Tables Icon

Table 2. The profile of the refractive surface

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ε gra v i t y = A p ( 1 υ 2 ) ρ d 5 E t 3
F = V ( M ) B d V
cos θ = cos θ 0 + ε 0 ε 2 d γ o w U 2
f = 1 / 1 ϕ ϕ
ϕ  =  ϕ 1 + ϕ 2 d ϕ 1 ϕ 2
ϕ 1  =  ( n 1 1 ) ( 1 r 1 1 r 2 )
ϕ 2 = ( n 1 n 2 ) / ( n 1 n 2 ) r 3 r 3
f  =  ( f s d ) × f 0 / ( f s f 0 )
f = f 1 ( r 1 , r 2 )
R M S = f 2 ( r 1 , r 2 )

Metrics