Abstract

A kind of compact all-fiber-optic vector magnetic sensor is proposed and demonstrated. The sensor consists of a side-polished-fiber (SPF)-integrated with singlemode-no core-singlemode (SNS) fiber structure. A section of side-polished fiber breaks the axially symmetry of the composite structure. The as-fabricated sensor supports vector sensing and has a magnetic field strength sensitivity of up to −2370 pm/mT over 2-6 mT range. The physical mechanism is that the modal interference is strongly influenced by the refractive index (RI) near the side-polished surface. The advantages of the proposed sensor lie in low cost, simple structure and easy manufacture, which make it attractive in the field of magnetic field vector sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid

Longfeng Luo, Shengli Pu, Jiali Tang, Xianglong Zeng, and Mahieddine Lahoubi
Opt. Express 23(14) 18133-18142 (2015)

Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing

Shaohua Dong, Shengli Pu, and Haotian Wang
Opt. Express 22(16) 19108-19116 (2014)

Vector optical fiber magnetometer based on capillaries filled with magnetic fluid

Jingang Cui, Dawei Qi, He Tian, and Hanyang Li
Appl. Opt. 58(10) 2754-2760 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Wang, S. L. Pu, N. Wang, S. H. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
    [Crossref]
  2. Y. Zhao, R.-Q. Lv, H. Li, and Q. Wang, “Simulation and experimental measurement of magnetic fluid transmission characteristics subjected to the magnetic field,” IEEE Trans. Magn. 50(5), 1–7 (2014).
    [Crossref]
  3. Y. Zhao, R. Q. Lv, Y. Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50(9), 1177–1184 (2012).
    [Crossref]
  4. Y. F. Chen, Q. Han, T. G. Liu, X. W. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
    [Crossref]
  5. J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
    [Crossref]
  6. X. G. Li, X. Zhou, Y. Zhao, and R. Q. Lv, “Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid,” Opt. Fiber Technol. 41, 1–6 (2018).
    [Crossref]
  7. F. Shi, L. Yan, J. Che, Z. Ren, and B. Peng, “Optical fiber F–P magnetic field sensor based on magnetostrictive effect of magnetic fluid,” Opt. Fiber Technol. 43, 35–40 (2018).
    [Crossref]
  8. J. Rao, S. Pu, T. Yao, and D. Su, “Ultrasensitive magnetic field sensing based on refractive-index-matched coupling,” Sensors 17(7), 1590 (2017).
    [Crossref]
  9. J. Xia, F. Wang, H. Luo, Q. Wang, and S. Xiong, “A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure,” Sensors 16(5), 620 (2016).
    [Crossref]
  10. T. Yao, S. Pu, J. Rao, and J. Zhang, “Investigation of optical force on magnetic nanoparticles with magnetic-fluid-filled Fabry-Perot interferometer,” Sci. Rep. 8(1), 12352 (2018).
    [Crossref]
  11. P. Zu, C. C. Chan, L. W. Siang, Y. X. Jin, Y. F. Zhang, L. H. Fen, L. H. Chen, and X. Y. Dong, “Magneto-optic fiber Sagnac modulator based on magnetic fluids,” Opt. Lett. 36(8), 1425–1427 (2011).
    [Crossref]
  12. Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
    [Crossref]
  13. X. Li, “Investigation of the magnetic field sensing properties of a magnetic fluid clad microfiber knot sensor,” Instrum. Sci. Technol. 47(3), 341–354 (2019).
    [Crossref]
  14. Y. Li, S. Pu, Y. Zhao, and T. Yao, “Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding,” Sensors 18(12), 4358 (2018).
    [Crossref]
  15. Z. P. Jiang, J. L. Dong, S. Q. Hu, Y. X. Zhang, Y. F. Chen, Y. H. Luo, W. G. Zhu, W. T. Qiu, H. H. Lu, H. Y. Guan, Y. C. Zhong, J. H. Yu, J. Zhang, and Z. Chen, “High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid,” Opt. Lett. 43(19), 4743–4746 (2018).
    [Crossref]
  16. E. Rodriguez-Schwendtner, N. Diaz-Herrera, M. C. Navarrete, A. Gonzalez-Cano, and O. Esteban, “Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields,” Sens. Actuators, A 264, 58–62 (2017).
    [Crossref]
  17. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28(5), 1180–1186 (2011).
    [Crossref]
  18. G. Violakis, N. Korakas, and S. Pissadakis, “Differential loss magnetic field sensor using a ferrofluid encapsulated D-shaped optical fiber,” Opt. Lett. 43(1), 142–145 (2018).
    [Crossref]
  19. J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
    [Crossref]
  20. J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
    [Crossref]
  21. H. Chen, Z. Shao, X. Zhang, Y. Hao, and Q. Rong, “Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer,” Opt. Lasers Eng. 107, 78–82 (2018).
    [Crossref]
  22. T. Lu, Y. Sun, Y. Moreno, Q. Sun, K. Zhou, H. Wang, Z. Yan, D. Liu, and L. Zhang, “Excessively tilted fiber grating-based vector magnetometer,” Opt. Lett. 44(10), 2494–2497 (2019).
    [Crossref]
  23. Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
    [Crossref]

2019 (3)

X. Li, “Investigation of the magnetic field sensing properties of a magnetic fluid clad microfiber knot sensor,” Instrum. Sci. Technol. 47(3), 341–354 (2019).
[Crossref]

T. Lu, Y. Sun, Y. Moreno, Q. Sun, K. Zhou, H. Wang, Z. Yan, D. Liu, and L. Zhang, “Excessively tilted fiber grating-based vector magnetometer,” Opt. Lett. 44(10), 2494–2497 (2019).
[Crossref]

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

2018 (7)

G. Violakis, N. Korakas, and S. Pissadakis, “Differential loss magnetic field sensor using a ferrofluid encapsulated D-shaped optical fiber,” Opt. Lett. 43(1), 142–145 (2018).
[Crossref]

H. Chen, Z. Shao, X. Zhang, Y. Hao, and Q. Rong, “Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer,” Opt. Lasers Eng. 107, 78–82 (2018).
[Crossref]

Y. Li, S. Pu, Y. Zhao, and T. Yao, “Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding,” Sensors 18(12), 4358 (2018).
[Crossref]

Z. P. Jiang, J. L. Dong, S. Q. Hu, Y. X. Zhang, Y. F. Chen, Y. H. Luo, W. G. Zhu, W. T. Qiu, H. H. Lu, H. Y. Guan, Y. C. Zhong, J. H. Yu, J. Zhang, and Z. Chen, “High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid,” Opt. Lett. 43(19), 4743–4746 (2018).
[Crossref]

T. Yao, S. Pu, J. Rao, and J. Zhang, “Investigation of optical force on magnetic nanoparticles with magnetic-fluid-filled Fabry-Perot interferometer,” Sci. Rep. 8(1), 12352 (2018).
[Crossref]

X. G. Li, X. Zhou, Y. Zhao, and R. Q. Lv, “Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid,” Opt. Fiber Technol. 41, 1–6 (2018).
[Crossref]

F. Shi, L. Yan, J. Che, Z. Ren, and B. Peng, “Optical fiber F–P magnetic field sensor based on magnetostrictive effect of magnetic fluid,” Opt. Fiber Technol. 43, 35–40 (2018).
[Crossref]

2017 (4)

J. Rao, S. Pu, T. Yao, and D. Su, “Ultrasensitive magnetic field sensing based on refractive-index-matched coupling,” Sensors 17(7), 1590 (2017).
[Crossref]

E. Rodriguez-Schwendtner, N. Diaz-Herrera, M. C. Navarrete, A. Gonzalez-Cano, and O. Esteban, “Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields,” Sens. Actuators, A 264, 58–62 (2017).
[Crossref]

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
[Crossref]

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
[Crossref]

2016 (1)

J. Xia, F. Wang, H. Luo, Q. Wang, and S. Xiong, “A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure,” Sensors 16(5), 620 (2016).
[Crossref]

2014 (3)

Y. Zhao, R.-Q. Lv, H. Li, and Q. Wang, “Simulation and experimental measurement of magnetic fluid transmission characteristics subjected to the magnetic field,” IEEE Trans. Magn. 50(5), 1–7 (2014).
[Crossref]

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

2013 (2)

2012 (1)

Y. Zhao, R. Q. Lv, Y. Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50(9), 1177–1184 (2012).
[Crossref]

2011 (2)

Bo, L.

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

Brambilla, G.

Chan, C. C.

Che, J.

F. Shi, L. Yan, J. Che, Z. Ren, and B. Peng, “Optical fiber F–P magnetic field sensor based on magnetostrictive effect of magnetic fluid,” Opt. Fiber Technol. 43, 35–40 (2018).
[Crossref]

Chen, H.

H. Chen, Z. Shao, X. Zhang, Y. Hao, and Q. Rong, “Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer,” Opt. Lasers Eng. 107, 78–82 (2018).
[Crossref]

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
[Crossref]

Chen, L. H.

Chen, Y.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Chen, Y. F.

Chen, Z.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Z. P. Jiang, J. L. Dong, S. Q. Hu, Y. X. Zhang, Y. F. Chen, Y. H. Luo, W. G. Zhu, W. T. Qiu, H. H. Lu, H. Y. Guan, Y. C. Zhong, J. H. Yu, J. Zhang, and Z. Chen, “High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid,” Opt. Lett. 43(19), 4743–4746 (2018).
[Crossref]

Chi, C. C.

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

Diaz-Herrera, N.

E. Rodriguez-Schwendtner, N. Diaz-Herrera, M. C. Navarrete, A. Gonzalez-Cano, and O. Esteban, “Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields,” Sens. Actuators, A 264, 58–62 (2017).
[Crossref]

Ding, M.

Dong, J.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Dong, J. L.

Dong, S. H.

Dong, X.

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

Dong, X. Y.

Esteban, O.

E. Rodriguez-Schwendtner, N. Diaz-Herrera, M. C. Navarrete, A. Gonzalez-Cano, and O. Esteban, “Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields,” Sens. Actuators, A 264, 58–62 (2017).
[Crossref]

Farrell, G.

Fen, L. H.

Gonzalez-Cano, A.

E. Rodriguez-Schwendtner, N. Diaz-Herrera, M. C. Navarrete, A. Gonzalez-Cano, and O. Esteban, “Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields,” Sens. Actuators, A 264, 58–62 (2017).
[Crossref]

Guan, H. Y.

Guo, W. K.

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

Han, Q.

Hao, Y.

H. Chen, Z. Shao, X. Zhang, Y. Hao, and Q. Rong, “Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer,” Opt. Lasers Eng. 107, 78–82 (2018).
[Crossref]

Hao, Z.

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

Hu, S. Q.

Huang, J.

Jiang, J.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
[Crossref]

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
[Crossref]

Jiang, Z. P.

Jin, Y.

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

Jin, Y. X.

Korakas, N.

Lan, X. W.

Li, H.

Y. Zhao, R.-Q. Lv, H. Li, and Q. Wang, “Simulation and experimental measurement of magnetic fluid transmission characteristics subjected to the magnetic field,” IEEE Trans. Magn. 50(5), 1–7 (2014).
[Crossref]

Li, X.

X. Li, “Investigation of the magnetic field sensing properties of a magnetic fluid clad microfiber knot sensor,” Instrum. Sci. Technol. 47(3), 341–354 (2019).
[Crossref]

Li, X. G.

X. G. Li, X. Zhou, Y. Zhao, and R. Q. Lv, “Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid,” Opt. Fiber Technol. 41, 1–6 (2018).
[Crossref]

Li, Y.

Y. Li, S. Pu, Y. Zhao, and T. Yao, “Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding,” Sensors 18(12), 4358 (2018).
[Crossref]

Liew, H. F.

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

Liu, D.

Liu, G.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Liu, T.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
[Crossref]

Liu, T. G.

Lu, H. H.

Lu, T.

Luo, H.

J. Xia, F. Wang, H. Luo, Q. Wang, and S. Xiong, “A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure,” Sensors 16(5), 620 (2016).
[Crossref]

Luo, Y.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Luo, Y. H.

Lv, R. Q.

X. G. Li, X. Zhou, Y. Zhao, and R. Q. Lv, “Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid,” Opt. Fiber Technol. 41, 1–6 (2018).
[Crossref]

Y. Zhao, R. Q. Lv, Y. Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50(9), 1177–1184 (2012).
[Crossref]

Lv, R.-Q.

Y. Zhao, R.-Q. Lv, H. Li, and Q. Wang, “Simulation and experimental measurement of magnetic fluid transmission characteristics subjected to the magnetic field,” IEEE Trans. Magn. 50(5), 1–7 (2014).
[Crossref]

Miao, Y.

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

Moreno, Y.

Navarrete, M. C.

E. Rodriguez-Schwendtner, N. Diaz-Herrera, M. C. Navarrete, A. Gonzalez-Cano, and O. Esteban, “Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields,” Sens. Actuators, A 264, 58–62 (2017).
[Crossref]

Peng, B.

F. Shi, L. Yan, J. Che, Z. Ren, and B. Peng, “Optical fiber F–P magnetic field sensor based on magnetostrictive effect of magnetic fluid,” Opt. Fiber Technol. 43, 35–40 (2018).
[Crossref]

Peng, Z.

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

Pissadakis, S.

Pu, S.

T. Yao, S. Pu, J. Rao, and J. Zhang, “Investigation of optical force on magnetic nanoparticles with magnetic-fluid-filled Fabry-Perot interferometer,” Sci. Rep. 8(1), 12352 (2018).
[Crossref]

Y. Li, S. Pu, Y. Zhao, and T. Yao, “Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding,” Sensors 18(12), 4358 (2018).
[Crossref]

J. Rao, S. Pu, T. Yao, and D. Su, “Ultrasensitive magnetic field sensing based on refractive-index-matched coupling,” Sensors 17(7), 1590 (2017).
[Crossref]

Pu, S. L.

Qiu, W. T.

Rao, J.

T. Yao, S. Pu, J. Rao, and J. Zhang, “Investigation of optical force on magnetic nanoparticles with magnetic-fluid-filled Fabry-Perot interferometer,” Sci. Rep. 8(1), 12352 (2018).
[Crossref]

J. Rao, S. Pu, T. Yao, and D. Su, “Ultrasensitive magnetic field sensing based on refractive-index-matched coupling,” Sensors 17(7), 1590 (2017).
[Crossref]

Ren, Z.

F. Shi, L. Yan, J. Che, Z. Ren, and B. Peng, “Optical fiber F–P magnetic field sensor based on magnetostrictive effect of magnetic fluid,” Opt. Fiber Technol. 43, 35–40 (2018).
[Crossref]

Rodriguez-Schwendtner, E.

E. Rodriguez-Schwendtner, N. Diaz-Herrera, M. C. Navarrete, A. Gonzalez-Cano, and O. Esteban, “Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields,” Sens. Actuators, A 264, 58–62 (2017).
[Crossref]

Rong, Q.

H. Chen, Z. Shao, X. Zhang, Y. Hao, and Q. Rong, “Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer,” Opt. Lasers Eng. 107, 78–82 (2018).
[Crossref]

Ruan, S.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
[Crossref]

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
[Crossref]

Semenova, Y.

Shao, Z.

H. Chen, Z. Shao, X. Zhang, Y. Hao, and Q. Rong, “Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer,” Opt. Lasers Eng. 107, 78–82 (2018).
[Crossref]

Shi, F.

F. Shi, L. Yan, J. Che, Z. Ren, and B. Peng, “Optical fiber F–P magnetic field sensor based on magnetostrictive effect of magnetic fluid,” Opt. Fiber Technol. 43, 35–40 (2018).
[Crossref]

Siang, L. W.

Song, B.

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

Su, D.

J. Rao, S. Pu, T. Yao, and D. Su, “Ultrasensitive magnetic field sensing based on refractive-index-matched coupling,” Sensors 17(7), 1590 (2017).
[Crossref]

Sun, Q.

Sun, W.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Sun, Y.

Violakis, G.

Wang, F.

J. Xia, F. Wang, H. Luo, Q. Wang, and S. Xiong, “A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure,” Sensors 16(5), 620 (2016).
[Crossref]

Wang, H.

Wang, H. T.

Wang, N.

Wang, P.

Wang, Q.

J. Xia, F. Wang, H. Luo, Q. Wang, and S. Xiong, “A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure,” Sensors 16(5), 620 (2016).
[Crossref]

Y. Zhao, R.-Q. Lv, H. Li, and Q. Wang, “Simulation and experimental measurement of magnetic fluid transmission characteristics subjected to the magnetic field,” IEEE Trans. Magn. 50(5), 1–7 (2014).
[Crossref]

Y. Zhao, R. Q. Lv, Y. Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50(9), 1177–1184 (2012).
[Crossref]

Wang, S.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
[Crossref]

Wei, C. W.

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

Wei, H.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
[Crossref]

Wei, L.

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

Wen, S. L.

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

Wu, J.

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

Wu, Q.

Xia, J.

J. Xia, F. Wang, H. Luo, Q. Wang, and S. Xiong, “A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure,” Sensors 16(5), 620 (2016).
[Crossref]

Xiao, H.

Xiong, S.

J. Xia, F. Wang, H. Luo, Q. Wang, and S. Xiong, “A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure,” Sensors 16(5), 620 (2016).
[Crossref]

Yan, L.

F. Shi, L. Yan, J. Che, Z. Ren, and B. Peng, “Optical fiber F–P magnetic field sensor based on magnetostrictive effect of magnetic fluid,” Opt. Fiber Technol. 43, 35–40 (2018).
[Crossref]

Yan, P.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
[Crossref]

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
[Crossref]

Yan, Z.

Yao, J.

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

Yao, T.

T. Yao, S. Pu, J. Rao, and J. Zhang, “Investigation of optical force on magnetic nanoparticles with magnetic-fluid-filled Fabry-Perot interferometer,” Sci. Rep. 8(1), 12352 (2018).
[Crossref]

Y. Li, S. Pu, Y. Zhao, and T. Yao, “Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding,” Sensors 18(12), 4358 (2018).
[Crossref]

J. Rao, S. Pu, T. Yao, and D. Su, “Ultrasensitive magnetic field sensing based on refractive-index-matched coupling,” Sensors 17(7), 1590 (2017).
[Crossref]

Yin, J.

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
[Crossref]

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
[Crossref]

Yu, J.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Yu, J. H.

Yu, L.

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
[Crossref]

Zhang, J.

Zhang, K.

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

Zhang, L.

Zhang, M.

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
[Crossref]

Zhang, X.

H. Chen, Z. Shao, X. Zhang, Y. Hao, and Q. Rong, “Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer,” Opt. Lasers Eng. 107, 78–82 (2018).
[Crossref]

Zhang, Y.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Zhang, Y. F.

Zhang, Y. X.

Zhang, Y. Y.

Y. Zhao, R. Q. Lv, Y. Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50(9), 1177–1184 (2012).
[Crossref]

Zhao, Y.

Y. Li, S. Pu, Y. Zhao, and T. Yao, “Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding,” Sensors 18(12), 4358 (2018).
[Crossref]

X. G. Li, X. Zhou, Y. Zhao, and R. Q. Lv, “Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid,” Opt. Fiber Technol. 41, 1–6 (2018).
[Crossref]

Y. Zhao, R.-Q. Lv, H. Li, and Q. Wang, “Simulation and experimental measurement of magnetic fluid transmission characteristics subjected to the magnetic field,” IEEE Trans. Magn. 50(5), 1–7 (2014).
[Crossref]

Y. Zhao, R. Q. Lv, Y. Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50(9), 1177–1184 (2012).
[Crossref]

Zhong, Y.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Zhong, Y. C.

Zhou, K.

Zhou, X.

X. G. Li, X. Zhou, Y. Zhao, and R. Q. Lv, “Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid,” Opt. Fiber Technol. 41, 1–6 (2018).
[Crossref]

Zhu, W.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Zhu, W. G.

Zu, P.

Appl. Phys. Lett. (2)

J. Wu, Y. Miao, B. Song, L. Wei, Z. Hao, K. Zhang, L. Bo, and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104(25), 252402 (2014).
[Crossref]

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110(23), 231104 (2017).
[Crossref]

IEEE Trans. Magn. (1)

Y. Zhao, R.-Q. Lv, H. Li, and Q. Wang, “Simulation and experimental measurement of magnetic fluid transmission characteristics subjected to the magnetic field,” IEEE Trans. Magn. 50(5), 1–7 (2014).
[Crossref]

Instrum. Sci. Technol. (1)

X. Li, “Investigation of the magnetic field sensing properties of a magnetic fluid clad microfiber knot sensor,” Instrum. Sci. Technol. 47(3), 341–354 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanomaterials (1)

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer,” Nanomaterials 9(5), 785 (2019).
[Crossref]

Opt. Fiber Technol. (2)

X. G. Li, X. Zhou, Y. Zhao, and R. Q. Lv, “Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid,” Opt. Fiber Technol. 41, 1–6 (2018).
[Crossref]

F. Shi, L. Yan, J. Che, Z. Ren, and B. Peng, “Optical fiber F–P magnetic field sensor based on magnetostrictive effect of magnetic fluid,” Opt. Fiber Technol. 43, 35–40 (2018).
[Crossref]

Opt. Lasers Eng. (2)

Y. Zhao, R. Q. Lv, Y. Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50(9), 1177–1184 (2012).
[Crossref]

H. Chen, Z. Shao, X. Zhang, Y. Hao, and Q. Rong, “Highly sensitive magnetic field sensor using tapered Mach–Zehnder interferometer,” Opt. Lasers Eng. 107, 78–82 (2018).
[Crossref]

Opt. Lett. (6)

Sci. Rep. (1)

T. Yao, S. Pu, J. Rao, and J. Zhang, “Investigation of optical force on magnetic nanoparticles with magnetic-fluid-filled Fabry-Perot interferometer,” Sci. Rep. 8(1), 12352 (2018).
[Crossref]

Sens. Actuators, A (1)

E. Rodriguez-Schwendtner, N. Diaz-Herrera, M. C. Navarrete, A. Gonzalez-Cano, and O. Esteban, “Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields,” Sens. Actuators, A 264, 58–62 (2017).
[Crossref]

Sens. Actuators, B (2)

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators, B 238, 518–524 (2017).
[Crossref]

Z. Peng, C. C. Chi, W. K. Guo, S. L. Wen, Y. Jin, H. F. Liew, C. W. Wei, and X. Dong, “Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sens. Actuators, B 191, 19–23 (2014).
[Crossref]

Sensors (3)

Y. Li, S. Pu, Y. Zhao, and T. Yao, “Fiber-Optic Magnetic Field Sensing Based on Microfiber Knot Resonator with Magnetic Fluid Cladding,” Sensors 18(12), 4358 (2018).
[Crossref]

J. Rao, S. Pu, T. Yao, and D. Su, “Ultrasensitive magnetic field sensing based on refractive-index-matched coupling,” Sensors 17(7), 1590 (2017).
[Crossref]

J. Xia, F. Wang, H. Luo, Q. Wang, and S. Xiong, “A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure,” Sensors 16(5), 620 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic diagram of the proposed sensing structure, (b) microscope picture and profile of the side polished fiber, (c) transmission spectra of the unpolished SNS, the SP-SNS structure in air and MF, respectively.
Fig. 2.
Fig. 2. Schematic diagram of the distribution of the magnetic nanochain-clusters (a) without magnetic field (b) with applying magnetic field.
Fig. 3.
Fig. 3. Schematic diagram of the experimental setup.
Fig. 4.
Fig. 4. Spectral response around 1310 nm of the sensing structure at different magnetic field orientations (a) 0° to 90°, (b) 100° to 180°, (c)190° to 270°, (d) 280° to 360°, (e) magnetic-field-orientation dependent dip wavelength in polar coordinate system. The applied magnetic field is fixed at 5 mT.
Fig. 5.
Fig. 5. Transmission spectra at different magnetic field strengths for the 0° case (a) and (b), 90° case (c) and (d) and the dip wavelength as a function of magnetic field (e).

Tables (1)

Tables Icon

Table 1. Sensing performance of various optical fiber magnetic field sensors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = m = 1 N c m 2 I 0 ( λ ) + i j = 1 N c i c j I 0 ( λ ) cos [ ( β i β j ) L ] ,

Metrics