Abstract

We report development of ytterbium doped silica fiber with nanostructured core for laser applications. We study influence of non-continuous distributed Yb dopants on gain, beam quality, and fiber laser performance. The fiber core is composed of over 43 thousand nanorods with a central part doped with Yb. The diameter of each nanorod is 72 nm. With this method we obtained a flat refractive index profile with uniformity of 1.3 × 10−4 refractive index unit (RIU) despite the non-uniformity of 1.2 × 10−3 RIU in Yb doped preform rods used for the fiber development. We demonstrate a nanostructured core single-mode fiber laser with 61.8% of slope efficiency, and extremely low numerical aperture 0.027 of generated mode.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Manipulating refractive index, homogeneity and spectroscopy of Yb3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers

Fan Wang, Lili Hu, Wenbin Xu, Meng Wang, Suya Feng, Jinjun Ren, Lei Zhang, Danping Chen, Nadège Ollier, Guojun Gao, Chunlei Yu, and Shikai Wang
Opt. Express 25(21) 25960-25969 (2017)

Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method

Shikai Wang, Wenbin Xu, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Wei Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 6(1) 69-78 (2016)

Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber

Shikai Wang, Wenbin Xu, Fan Wang, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 7(6) 2012-2022 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C McCollum. Double clad, offset core Nd fiber laser. Paper PD5 in Proc. Opt. Fib. Sensors 2 (OSA, 1988).
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref]
  3. J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
    [Crossref]
  4. V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
    [Crossref]
  5. D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
    [Crossref]
  6. S. Wang, W. Xu, F. Wang, F. Lou, L. Zhang, Q. Zhou, D. Chen, S. Feng, M. Wang, C. Yu, and L. Hu, “Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber,” Opt. Mater. Express 7(6), 2012–2022 (2017).
    [Crossref]
  7. A. Baz, H. E. Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
    [Crossref]
  8. M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett. 36(9), 1557–1559 (2011).
    [Crossref]
  9. D. Jain, C. Baskiotis, and J. K. Sahu, “Bending performance of large mode area multitrench fibers,” Opt. Express 21(22), 26663–26670 (2013).
    [Crossref]
  10. X. Wang, Y. Chen, W. Hageman, G. U. Kim, M. Richardson, C. Xiong, J. Ballato, and M. Bass, “Transverse mode competition in gain-guided index antiguided fiber lasers,” J. Opt. Soc. Am. B 29(2), 191–196 (2012).
    [Crossref]
  11. X. Ma, C. Zhu, I. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
    [Crossref]
  12. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni, “Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers,” Opt. Express 20(22), 24575–24584 (2012).
    [Crossref]
  13. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26mJ, 130WQ-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1076 (2012).
    [Crossref]
  14. A. Islam and M. S. Alam, “An extremely large mode area microstructured core leakage channel fiber with low bending loss,” J. Lightwave Technol. 32(2), 250–256 (2014).
    [Crossref]
  15. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
    [Crossref]
  16. G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
    [Crossref]
  17. F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “∼1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
    [Crossref]
  18. D. Darwich, M. Sabra, R. du Jeu, M. A. Malleville, R. Dauliat, R. Jamier, A. Benoit, K. Schuster, and P. Roy, “140 µm single-polarization passive fully aperiodic large-pitch fibers operating near 2 µm,” Appl. Opt. 56(33), 9221–9224 (2017).
    [Crossref]
  19. IPG Photonics, Oxford, MA, USA, 2018. [Online]. Available: http://www.ipgphotonics.com/
  20. M. Franczyk, K. Stawicki, J. Lisowska, D. Michalik, A. Filipkowski, and R. Buczynski, “Numerical studies on large mode area fibers with nanostructured core for fiber lasers,” J. Lightwave Technol. 36(23), 5334–5343 (2018).
    [Crossref]
  21. J. M. Fini and J. W. Nicholson, “Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics,” Opt. Express 21(16), 19173–19179 (2013).
    [Crossref]
  22. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, and P. S. J. Russell, “High power air-clad photonic crystal fiber laser,” Opt. Express 11(1), 48–53 (2003).
    [Crossref]
  23. K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17(20), 17855–17861 (2009).
    [Crossref]
  24. K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
    [Crossref]
  25. V. V. Velmiskin, O. N. Egorova, V. Mishkin, K. Nishchev, and S. L. Semjonov, “Active material for fiber core made by powder-in-tube method: subsequent homogenization by means of stack-and-draw technique,” Proc. SPIE 8426, 84260I (2012).
    [Crossref]
  26. F. Kong, C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Donget, “Large-mode-area fibers operating near single-mode regime,” Opt. Express 24(10), 10295–10301 (2016).
    [Crossref]
  27. V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Wessels, “Experimental Comparison of Fundamental Mode Content in Er:Yb-Codoped LMA Fibers With Multifilament- and Pedestal-Design Cores,” J. Lightwave Technol. 28(22), 3212–3219 (2010).
    [Crossref]
  28. A. Sihvola, Electromagnetic Mixing Formulas and Applications, Institution of Electrical Engineers, London, UK, 1999.
  29. F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
    [Crossref]
  30. O. Kallenberg, Probabilistic Symmetries and Invariance Principles, Springer, 2005
  31. L. Kociszewski, J. Buźniak, R. Stępień, and R. S. Romaniuk, “High quality medical image - guides by mosaic -assembling optical fiber technology,” Proc. SPIE 0906, 97–107 (1988).
    [Crossref]
  32. J. C. Knight, T. A. Birks, D. M. Atkin, and P. S. J. Russell, “All silica single-mode optical fiber with photonic crystal fiber,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref]
  33. R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
    [Crossref]
  34. A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8, 12329 (2018).
    [Crossref]
  35. A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
    [Crossref]
  36. K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stepien, W. Krolikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
    [Crossref]
  37. L. Zenteno, “High power double-clad fiber lasers,” J. Lightwave Technol. 11(9), 1435–1446 (1993).
    [Crossref]
  38. Interfiber Analysis, Sharon, MA, USA, 2019 [Online]. Available: http://interfiberanalysis.com/images/IFA100_datasheet.pdf
  39. Y. L. Lo, J. S. Sirkis, and K. T. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4(4), 327–333 (1995).
    [Crossref]
  40. K. H. Tsai, K. S. Kim, and T. F. Morse, “General solutions for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9(1), 7–17 (1991).
    [Crossref]
  41. A. D. Yablon, “Multi-Wavelength Optical Fiber Refractive Index Profiling by Spatially Resolved Fourier Transform Spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
    [Crossref]
  42. J. Limpert, N. Deguil-Robin, I. Manek-Honninger, F. Salin, F. Roser, A. Liem, T. Schreiber, S. Nolte, H. Zellmar, and A. Tunnermann, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
    [Crossref]
  43. W. Day and D. L. Franzen, “Optical Fiber Metrology,” J. Lightwave Technol. 26(9), 1119–1131 (2008).
    [Crossref]

2018 (2)

M. Franczyk, K. Stawicki, J. Lisowska, D. Michalik, A. Filipkowski, and R. Buczynski, “Numerical studies on large mode area fibers with nanostructured core for fiber lasers,” J. Lightwave Technol. 36(23), 5334–5343 (2018).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8, 12329 (2018).
[Crossref]

2017 (4)

2016 (2)

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

F. Kong, C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Donget, “Large-mode-area fibers operating near single-mode regime,” Opt. Express 24(10), 10295–10301 (2016).
[Crossref]

2015 (4)

2014 (2)

2013 (3)

2012 (4)

2011 (3)

2010 (2)

2009 (3)

2008 (2)

2005 (1)

2003 (1)

1996 (1)

1995 (1)

Y. L. Lo, J. S. Sirkis, and K. T. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4(4), 327–333 (1995).
[Crossref]

1993 (1)

L. Zenteno, “High power double-clad fiber lasers,” J. Lightwave Technol. 11(9), 1435–1446 (1993).
[Crossref]

1991 (1)

K. H. Tsai, K. S. Kim, and T. F. Morse, “General solutions for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9(1), 7–17 (1991).
[Crossref]

1988 (1)

L. Kociszewski, J. Buźniak, R. Stępień, and R. S. Romaniuk, “High quality medical image - guides by mosaic -assembling optical fiber technology,” Proc. SPIE 0906, 97–107 (1988).
[Crossref]

Alam, M. S.

Alam, S.

Anuszkiewicz, A.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8, 12329 (2018).
[Crossref]

K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stepien, W. Krolikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
[Crossref]

Atkin, D. M.

Ballato, J.

Barty, C. P. J.

Barua, P.

Baskiotis, C.

Bass, M.

Baz, A.

A. Baz, H. E. Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Beach, R. J.

Benoit, A.

Bigot, L.

A. Baz, H. E. Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Birks, T. A.

Bouazaoui, M.

A. Baz, H. E. Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Bouwmans, G.

A. Baz, H. E. Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, and P. S. J. Russell, “High power air-clad photonic crystal fiber laser,” Opt. Express 11(1), 48–53 (2003).
[Crossref]

Buczynski, R.

Buzniak, J.

L. Kociszewski, J. Buźniak, R. Stępień, and R. S. Romaniuk, “High quality medical image - guides by mosaic -assembling optical fiber technology,” Proc. SPIE 0906, 97–107 (1988).
[Crossref]

Chen, D.

Chen, Y.

Cimek, J.

Dajani, I.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “∼1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

Darwich, D.

Dauliat, R.

Dawson, J. W.

Day, W.

Deguil-Robin, N.

DeSantolo, A. M.

DiGiovanni, D. J.

DiMarcello, F.

Dong, L.

Donget, L.

du Jeu, R.

Dunn, C.

Egorova, O. N.

V. V. Velmiskin, O. N. Egorova, V. Mishkin, K. Nishchev, and S. L. Semjonov, “Active material for fiber core made by powder-in-tube method: subsequent homogenization by means of stack-and-draw technique,” Proc. SPIE 8426, 84260I (2012).
[Crossref]

Eschrich, T.

Feder, K.

Feng, S.

Fermann, M. E.

Filipkowski, A.

Fini, J. M.

Franczyk, M.

Franzen, D. L.

Fsaifes, I.

A. Baz, H. E. Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Fu, L.

Galvanauskas, A.

Grimm, S.

Gu, G.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “∼1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
[Crossref]

Hageman, W.

Hakimi, F.

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C McCollum. Double clad, offset core Nd fiber laser. Paper PD5 in Proc. Opt. Fib. Sensors 2 (OSA, 1988).

Hamzaoui, H. E.

A. Baz, H. E. Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Hawkins, T. W.

Headley, C.

Heebner, J. E.

Hu, I.

Hu, L.

Hudelist, F.

Islam, A.

Jain, D.

Jamier, R.

Jansen, F.

Jauregui, C.

Jetschke, S.

Jones, M.

Jung, Y.

Just, F.

Kalichevsky-Dong, M. T.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “∼1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

F. Kong, C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Donget, “Large-mode-area fibers operating near single-mode regime,” Opt. Express 24(10), 10295–10301 (2016).
[Crossref]

Kallenberg, O.

O. Kallenberg, Probabilistic Symmetries and Invariance Principles, Springer, 2005

Kaplan, A.

Kasztelanic, R.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8, 12329 (2018).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref]

Khitrov, V.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

Kim, G. U.

Kim, K. S.

K. H. Tsai, K. S. Kim, and T. F. Morse, “General solutions for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9(1), 7–17 (1991).
[Crossref]

Kirchhof, J.

Klimczak, M.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8, 12329 (2018).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref]

Knight, J. C.

Kociszewski, L.

L. Kociszewski, J. Buźniak, R. Stępień, and R. S. Romaniuk, “High quality medical image - guides by mosaic -assembling optical fiber technology,” Proc. SPIE 0906, 97–107 (1988).
[Crossref]

Kong, F.

Kracht, D.

Krolikowski, W.

Kuhn, V.

Langner, A.

Leich, M.

Li, J.

Liem, A.

Limpert, J.

Lisowska, J.

Liu, X.

Liu, Z.

Lo, Y. L.

Y. L. Lo, J. S. Sirkis, and K. T. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4(4), 327–333 (1995).
[Crossref]

Lou, F.

Ma, X.

Ma, Y.

Malleville, M. A.

Manek-Honninger, I.

Marcinkevicius, A.

Mattsson, K. E.

McCollum, B. C

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C McCollum. Double clad, offset core Nd fiber laser. Paper PD5 in Proc. Opt. Fib. Sensors 2 (OSA, 1988).

Mckay, H. A.

Messerly, M. J.

Michalik, D.

Minelly, J. D.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

Mishkin, V.

V. V. Velmiskin, O. N. Egorova, V. Mishkin, K. Nishchev, and S. L. Semjonov, “Active material for fiber core made by powder-in-tube method: subsequent homogenization by means of stack-and-draw technique,” Proc. SPIE 8426, 84260I (2012).
[Crossref]

Monberg, E.

Morse, T. F.

K. H. Tsai, K. S. Kim, and T. F. Morse, “General solutions for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9(1), 7–17 (1991).
[Crossref]

Neumann, J.

Nicholson, J. W.

Nishchev, K.

V. V. Velmiskin, O. N. Egorova, V. Mishkin, K. Nishchev, and S. L. Semjonov, “Active material for fiber core made by powder-in-tube method: subsequent homogenization by means of stack-and-draw technique,” Proc. SPIE 8426, 84260I (2012).
[Crossref]

Nolte, S.

Ortiz, R.

Parsons, J.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “∼1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

F. Kong, C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Donget, “Large-mode-area fibers operating near single-mode regime,” Opt. Express 24(10), 10295–10301 (2016).
[Crossref]

Pax, P. H.

Percival, R. M.

Petit, V.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

Piechal, B.

Po, H.

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C McCollum. Double clad, offset core Nd fiber laser. Paper PD5 in Proc. Opt. Fib. Sensors 2 (OSA, 1988).

Pulford, B.

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “∼1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

Pysz, D.

Richardson, M.

Ritchie, K. T.

Y. L. Lo, J. S. Sirkis, and K. T. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4(4), 327–333 (1995).
[Crossref]

Romaniuk, R. S.

L. Kociszewski, J. Buźniak, R. Stępień, and R. S. Romaniuk, “High quality medical image - guides by mosaic -assembling optical fiber technology,” Proc. SPIE 0906, 97–107 (1988).
[Crossref]

Roser, F.

Roy, P.

Russell, P. S. J.

Sabra, M.

Sahu, J. K.

Salin, F.

Schötz, G.

Schreiber, T.

Schuster, K.

Semjonov, S. L.

V. V. Velmiskin, O. N. Egorova, V. Mishkin, K. Nishchev, and S. L. Semjonov, “Active material for fiber core made by powder-in-tube method: subsequent homogenization by means of stack-and-draw technique,” Proc. SPIE 8426, 84260I (2012).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

Sihvola, A.

A. Sihvola, Electromagnetic Mixing Formulas and Applications, Institution of Electrical Engineers, London, UK, 1999.

Sirkis, J. S.

Y. L. Lo, J. S. Sirkis, and K. T. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4(4), 327–333 (1995).
[Crossref]

Siwicki, B.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8, 12329 (2018).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref]

Snitzer, E.

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C McCollum. Double clad, offset core Nd fiber laser. Paper PD5 in Proc. Opt. Fib. Sensors 2 (OSA, 1988).

Sridharan, A. K.

Stappaerts, E. A.

Stawicki, K.

Stefaniuk, T.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8, 12329 (2018).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref]

Stepien, R.

Stepniewski, G.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8, 12329 (2018).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref]

Stutzki, F.

Such, M.

Supradeepa, V. R.

Switkowski, K.

Taghizadeh, M. R.

Thomas, B. K.

Tsai, K. H.

K. H. Tsai, K. S. Kim, and T. F. Morse, “General solutions for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9(1), 7–17 (1991).
[Crossref]

Tumminelli, R.

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C McCollum. Double clad, offset core Nd fiber laser. Paper PD5 in Proc. Opt. Fib. Sensors 2 (OSA, 1988).

Tumminelli, R. P.

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

Tunnermann, A.

Tünnermann, A.

Unger, S.

Velmiskin, V. V.

V. V. Velmiskin, O. N. Egorova, V. Mishkin, K. Nishchev, and S. L. Semjonov, “Active material for fiber core made by powder-in-tube method: subsequent homogenization by means of stack-and-draw technique,” Proc. SPIE 8426, 84260I (2012).
[Crossref]

Waddie, A.

Waddie, A. J.

Wadsworth, W. J.

Wang, F.

Wang, M.

Wang, S.

Wang, X.

Wessels, P.

Westbrook, P. S.

Xiong, C.

Xu, W.

Xu, X.

Yablon, A. D.

Yu, C.

Zellmar, H.

Zenteno, L.

L. Zenteno, “High power double-clad fiber lasers,” J. Lightwave Technol. 11(9), 1435–1446 (1993).
[Crossref]

Zhang, L.

Zhou, P.

Zhou, Q.

Zhu, C.

Zhu, J.

Appl. Opt. (1)

J. Lightwave Technol. (8)

V. Kuhn, S. Unger, S. Jetschke, D. Kracht, J. Neumann, J. Kirchhof, and P. Wessels, “Experimental Comparison of Fundamental Mode Content in Er:Yb-Codoped LMA Fibers With Multifilament- and Pedestal-Design Cores,” J. Lightwave Technol. 28(22), 3212–3219 (2010).
[Crossref]

M. Franczyk, K. Stawicki, J. Lisowska, D. Michalik, A. Filipkowski, and R. Buczynski, “Numerical studies on large mode area fibers with nanostructured core for fiber lasers,” J. Lightwave Technol. 36(23), 5334–5343 (2018).
[Crossref]

A. Islam and M. S. Alam, “An extremely large mode area microstructured core leakage channel fiber with low bending loss,” J. Lightwave Technol. 32(2), 250–256 (2014).
[Crossref]

L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, and M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009).
[Crossref]

L. Zenteno, “High power double-clad fiber lasers,” J. Lightwave Technol. 11(9), 1435–1446 (1993).
[Crossref]

K. H. Tsai, K. S. Kim, and T. F. Morse, “General solutions for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9(1), 7–17 (1991).
[Crossref]

A. D. Yablon, “Multi-Wavelength Optical Fiber Refractive Index Profiling by Spatially Resolved Fourier Transform Spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
[Crossref]

W. Day and D. L. Franzen, “Optical Fiber Metrology,” J. Lightwave Technol. 26(9), 1119–1131 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

A. Baz, H. E. Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol–gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Opt. Express (16)

D. Jain, C. Baskiotis, and J. K. Sahu, “Bending performance of large mode area multitrench fibers,” Opt. Express 21(22), 26663–26670 (2013).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref]

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref]

D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
[Crossref]

X. Ma, C. Zhu, I. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref]

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni, “Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers,” Opt. Express 20(22), 24575–24584 (2012).
[Crossref]

G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
[Crossref]

J. M. Fini and J. W. Nicholson, “Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics,” Opt. Express 21(16), 19173–19179 (2013).
[Crossref]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, and P. S. J. Russell, “High power air-clad photonic crystal fiber laser,” Opt. Express 11(1), 48–53 (2003).
[Crossref]

K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17(20), 17855–17861 (2009).
[Crossref]

K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
[Crossref]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref]

F. Kong, C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Donget, “Large-mode-area fibers operating near single-mode regime,” Opt. Express 24(10), 10295–10301 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref]

J. Limpert, N. Deguil-Robin, I. Manek-Honninger, F. Salin, F. Roser, A. Liem, T. Schreiber, S. Nolte, H. Zellmar, and A. Tunnermann, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
[Crossref]

K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stepien, W. Krolikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Proc. SPIE (4)

V. Petit, R. P. Tumminelli, J. D. Minelly, and V. Khitrov, “Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD,” Proc. SPIE 9728, 97282R (2016).
[Crossref]

F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, and L. Dong, “∼1 kilowatt Ytterbium-doped all-solid photonic bandgap fiber laser,” Proc. SPIE 10083, 1008311 (2017).
[Crossref]

L. Kociszewski, J. Buźniak, R. Stępień, and R. S. Romaniuk, “High quality medical image - guides by mosaic -assembling optical fiber technology,” Proc. SPIE 0906, 97–107 (1988).
[Crossref]

V. V. Velmiskin, O. N. Egorova, V. Mishkin, K. Nishchev, and S. L. Semjonov, “Active material for fiber core made by powder-in-tube method: subsequent homogenization by means of stack-and-draw technique,” Proc. SPIE 8426, 84260I (2012).
[Crossref]

Sci. Rep. (1)

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8, 12329 (2018).
[Crossref]

Smart Mater. Struct. (1)

Y. L. Lo, J. S. Sirkis, and K. T. Ritchie, “A study of the optomechanical response of a diametrically loaded high-birefringent optical fiber,” Smart Mater. Struct. 4(4), 327–333 (1995).
[Crossref]

Other (5)

Interfiber Analysis, Sharon, MA, USA, 2019 [Online]. Available: http://interfiberanalysis.com/images/IFA100_datasheet.pdf

O. Kallenberg, Probabilistic Symmetries and Invariance Principles, Springer, 2005

A. Sihvola, Electromagnetic Mixing Formulas and Applications, Institution of Electrical Engineers, London, UK, 1999.

IPG Photonics, Oxford, MA, USA, 2018. [Online]. Available: http://www.ipgphotonics.com/

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C McCollum. Double clad, offset core Nd fiber laser. Paper PD5 in Proc. Opt. Fib. Sensors 2 (OSA, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. The refractive index profile of ytterbium doped preform made with MCVD technology used for development of nanostructured core in the final fiber. A central dip, characteristic for the MCVD technology can be observed, along with a dip ring around the ytterbium doped core, due to silica deposition.
Fig. 2.
Fig. 2. SEM image of developed core preform cross-section of 2.6 mm in diameter (a), the edge of active core (b), basic hexagonal cell of the active core (c), the single element of core structure (d), the bright areas are ytterbium doped silica, the darker area is undoped silica.
Fig. 3.
Fig. 3. SEM of manufactured fibre cross-section of 145 µm in diameter (a), nanostructured core of 16 µm (b).
Fig. 4.
Fig. 4. Refractive index profile of a 16 µm nanostructured core in investigated optical fiber. We indicated the minimum and maximum registered refractive index values of 5.2×10−4 and 6.5×10−4 respectively, above undoped silica.
Fig. 5.
Fig. 5. Stress profile of in the investigated fiber, captured from IFA100 system.
Fig. 6.
Fig. 6. The laboratory laser set-up; DM – dichroic mirror; f1-aspherical lens
Fig. 7.
Fig. 7. The output power versus launched power for laser with active fiber length of 4.2 m. Squares indicate measurement points and linear approximation. In the left -top corner the measured intensity profile of the laser beam at maximum power of 3.1 W.
Fig. 8.
Fig. 8. Laser action spectrum with a central wavelength of 1045.3 just above the threshold. The FWHM of the spectrum was 0.2 nm.
Fig. 9.
Fig. 9. The spectrum of laser generation of 1041-1051 nm at the maximum output power of 3.1 W, achieved in laser setup constructed on 4.2 m nanostructured core optical fiber.

Metrics