Abstract

Slow light technique has significant potential applications in many contemporary photonic device developments for integrated all-optical circuit, such as buffers, regenerators, switches and interferometers. In this paper, we present an efficient coupling mechanism of an electromagnetically induced transparency like (EIT-like) effect in an all-dielectric nano-metamaterial. This EIT-like effect is generated by destructive interference between a radiative Fabry-Perot (FP) mode and a dark waveguide (WG) mode, which is based on a combined structure of a dielectric grating and multilayer films. The dark WG mode is excited by guided mode of dielectric grating instead of radiative FP mode. In analogy to the molecular transition process, the FP mode, guided mode and WG mode are denoted by excited states of |1〉, |2〉 and |3〉. The two coupling pathways of the EIT-like effect in our metamaterial are |0〉 → |1〉 and |0〉 → |2〉 → |3〉 → |1〉, where |0〉 is the ground state. The simulated resonant wavelength of WG mode is consistent with theoretical result. We further confirm this EIT-like effect through a two-oscillator coupling analysis. We achieve a group refractive index of 913.6 by adjusting these two modes coupling of the EIT-like effect, which is useful for developing slow light device. This work provides a valuable solution to realize electromagnetically induced transparency in all-dielectric nanomaterial.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency in all-dielectric metamaterial-waveguide system

Pei Ding, Jinna He, Junqiao Wang, Chunzhen Fan, and Erjun Liang
Appl. Opt. 54(12) 3708-3714 (2015)

A novel planar metamaterial design for electromagnetically induced transparency and slow light

Junqiao Wang, Baohe Yuan, Chunzhen Fan, Jinna He, Pei Ding, Qianzhong Xue, and Erjun Liang
Opt. Express 21(21) 25159-25166 (2013)

Electromagnetically induced transparency in hybrid plasmonic-dielectric system

Bin Tang, Lei Dai, and Chun Jiang
Opt. Express 19(2) 628-637 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [Crossref]
  2. A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
    [Crossref]
  3. F. Bagci and B. Akaoglu, “Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants,” Opt. Quantum Electron. 47(3), 791–806 (2015).
    [Crossref]
  4. A. S. Losev and A. S. Troshin, “Twofold light-pulse regeneration under conditions of electromagnetically induced transparency,” J. Opt. Technol. 80(7), 431–434 (2013).
    [Crossref]
  5. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17(20), 18340–18353 (2009).
    [Crossref]
  6. S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-photon switch based on Rydberg blockade,” Phys. Rev. Lett. 112(7), 073901 (2014).
    [Crossref]
  7. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [Crossref]
  8. K. Qin, S. Hu, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Slow light Mach–Zehnder interferometer as label-free biosensor with scalable sensitivity,” Opt. Lett. 41(4), 753–756 (2016).
    [Crossref]
  9. O. S. Magaña-Loaiza, B. Gao, S. A. Schulz, K. M. Awan, J. Upham, K. Dolgaleva, and R. W. Boyd, “Enhanced spectral sensitivity of a chip-scale photonic-crystal slow-light interferometer,” Opt. Lett. 41(7), 1431–1434 (2016).
    [Crossref]
  10. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  11. C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, and B. Chen, “Electromagnetically induced transparency and slow light in two-mode optomechanics,” Opt. Express 21(10), 12165–12173 (2013).
    [Crossref]
  12. G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
    [Crossref]
  13. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
    [Crossref]
  14. P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
    [Crossref]
  15. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express 14(19), 8540–8545 (2006).
    [Crossref]
  16. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
    [Crossref]
  17. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref]
  18. M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
    [Crossref]
  19. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  20. M. Minkov and V. Savona, “Wide-band slow light in compact photonic crystal coupled-cavity waveguides,” Optica 2(7), 631–634 (2015).
    [Crossref]
  21. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref]
  22. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
    [Crossref]
  23. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
    [Crossref]
  24. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref]
  25. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref]
  26. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  27. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
    [Crossref]
  28. T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
    [Crossref]
  29. J. Hu, E. Yao, W. Xie, W. Liu, D. Li, Y. Lu, and Q. Zhan, “Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure,” Opt. Express 27(13), 18642–18652 (2019).
    [Crossref]
  30. S.-G. Lee, S.-Y. Jung, H.-S. Kim, S. Lee, and J.-M. Park, “Electromagnetically induced transparency based on guided-mode resonances,” Opt. Lett. 40(18), 4241–4244 (2015).
    [Crossref]
  31. C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1–8 (2017).
    [Crossref]
  32. B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
    [Crossref]
  33. S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
    [Crossref]
  34. A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
    [Crossref]
  35. W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
    [Crossref]
  36. G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
    [Crossref]
  37. E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
    [Crossref]

2019 (1)

2018 (3)

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
[Crossref]

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

2017 (2)

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1–8 (2017).
[Crossref]

A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
[Crossref]

2016 (3)

2015 (5)

S.-G. Lee, S.-Y. Jung, H.-S. Kim, S. Lee, and J.-M. Park, “Electromagnetically induced transparency based on guided-mode resonances,” Opt. Lett. 40(18), 4241–4244 (2015).
[Crossref]

M. Minkov and V. Savona, “Wide-band slow light in compact photonic crystal coupled-cavity waveguides,” Optica 2(7), 631–634 (2015).
[Crossref]

F. Bagci and B. Akaoglu, “Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants,” Opt. Quantum Electron. 47(3), 791–806 (2015).
[Crossref]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
[Crossref]

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
[Crossref]

2014 (1)

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-photon switch based on Rydberg blockade,” Phys. Rev. Lett. 112(7), 073901 (2014).
[Crossref]

2013 (3)

2012 (2)

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

2011 (1)

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

2010 (1)

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

2009 (2)

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17(20), 18340–18353 (2009).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

2008 (2)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

2006 (1)

2005 (4)

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
[Crossref]

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

2001 (2)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1994 (1)

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Abeyta, A.

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

Achanta, V.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

Agarwal, G. S.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

Akaoglu, B.

F. Bagci and B. Akaoglu, “Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants,” Opt. Quantum Electron. 47(3), 791–806 (2015).
[Crossref]

Awan, K. M.

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Bagci, F.

F. Bagci and B. Akaoglu, “Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants,” Opt. Quantum Electron. 47(3), 791–806 (2015).
[Crossref]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Baur, S.

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-photon switch based on Rydberg blockade,” Phys. Rev. Lett. 112(7), 073901 (2014).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bian, Z.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Biswas, R.

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

Blit, R.

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Boyd, R. W.

O. S. Magaña-Loaiza, B. Gao, S. A. Schulz, K. M. Awan, J. Upham, K. Dolgaleva, and R. W. Boyd, “Enhanced spectral sensitivity of a chip-scale photonic-crystal slow-light interferometer,” Opt. Lett. 41(7), 1431–1434 (2016).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Büttner, T. F. S.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
[Crossref]

Cao, W.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Chan, C. T.

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

Chang-Hasnain, C. J.

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
[Crossref]

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

Chen, B.

Chen, G.

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Choi, D. Y.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
[Crossref]

Chuang, S. L.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

Chung, D. S.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Crankshaw, S.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

Cui, Y.

Dahan, D.

Deshmukh, P.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

Diao, J.

Dolgaleva, K.

Dürr, S.

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-photon switch based on Rydberg blockade,” Phys. Rev. Lett. 112(7), 073901 (2014).
[Crossref]

Duttagupta, S. P.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Ebnali-Heidari, M.

Eggleton, B. J.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
[Crossref]

Eisenstein, G.

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Gao, B.

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Giessen, H.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref]

Grillet, C.

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Guo, L. J.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Gupta, A.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

Ha, T.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref]

Han, B.

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
[Crossref]

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1–8 (2017).
[Crossref]

Han, J.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hawkins, A. R.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Hayashi, S.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref]

Hentschel, M.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref]

Ho, K. M.

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Hong, Z.

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
[Crossref]

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1–8 (2017).
[Crossref]

Hu, J.

Hu, S.

Hulbert, J. F.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Hurd, K.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Janaszek, B.

Jiang, C.

Jing, X.

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
[Crossref]

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1–8 (2017).
[Crossref]

Jung, S.-Y.

Kabakova, I. V.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
[Crossref]

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Kästel, J.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref]

Kim, E. T.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

Kim, H. D.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Kim, H.-S.

Kim, T. T.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

Kravchenko, I. I.

Ku, P. C.

Lai, G.

Lang, T.

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1–8 (2017).
[Crossref]

Lee, S.

Lee, S.-G.

Lee, Y. H.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Li, D.

Li, X.

Liang, R.

Liu, H.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Liu, W.

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Losev, A. S.

Lu, Y.

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

Lunt, E. J.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Luther-Davies, B.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Madden, S. J.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
[Crossref]

Magaña-Loaiza, O. S.

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

Merklein, M.

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
[Crossref]

Min, B.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Minkov, M.

Moewe, M.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

Monat, C.

Moravvej-Farshi, M.

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref]

Nesterenko, D. V.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

Oh, S. S.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Özbay, E.

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

Palinginis, P.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

Palkhivala, S.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

Park, J.-M.

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

Prabhu, S. S.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

Qin, K.

Rahmouni, A.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

Rana, G.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

Rempe, G.

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-photon switch based on Rydberg blockade,” Phys. Rev. Lett. 112(7), 073901 (2014).
[Crossref]

Retterer, S. T.

Savona, V.

Schmidt, H.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Schulz, S. A.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Sedgwick, F.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

Sekkat, Z.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Shumakher, E.

Singh, R.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Soukoulis, C. M.

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref]

Sui, C.

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
[Crossref]

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1–8 (2017).
[Crossref]

Szczepanski, P.

Taubert, R.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Tiarks, D.

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-photon switch based on Rydberg blockade,” Phys. Rev. Lett. 112(7), 073901 (2014).
[Crossref]

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

Tonouchi, M.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

Tringides, M.

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

Troshin, A. S.

Tucker, R. S.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref]

Tuttle, G.

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

Tyszka-Zawadzka, A.

Upham, J.

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

Wang, H.

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Weiss, S. M.

Willinger, A.

Wu, B.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

Xie, W.

Xu, T.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Yao, E.

Yi, L.

Zhan, G.

Zhan, Q.

Zhang, C.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Zhang, S.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, W.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, Y.

Zhao, R.

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
[Crossref]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

ACS Photonics (1)

T. T. Kim, H. D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photonics 5(5), 1800–1807 (2018).
[Crossref]

Appl. Phys. Lett. (4)

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

P. Palinginis, S. Crankshaw, F. Sedgwick, E. T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87(17), 171102 (2005).
[Crossref]

IEEE Photonics J. (1)

C. Sui, B. Han, T. Lang, X. Li, X. Jing, and Z. Hong, “Electromagnetically induced transparency in an all-dielectric metamaterial-waveguide with large group index,” IEEE Photonics J. 9(5), 1–8 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Technol. (1)

Nano Lett. (1)

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref]

Nat. Commun. (2)

M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits,” Nat. Commun. 6(1), 6396 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Nat. Photonics (2)

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4(11), 776–779 (2010).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Express (7)

C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, and B. Chen, “Electromagnetically induced transparency and slow light in two-mode optomechanics,” Opt. Express 21(10), 12165–12173 (2013).
[Crossref]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
[Crossref]

E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, “Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification,” Opt. Express 14(19), 8540–8545 (2006).
[Crossref]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
[Crossref]

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17(20), 18340–18353 (2009).
[Crossref]

A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
[Crossref]

J. Hu, E. Yao, W. Xie, W. Liu, D. Li, Y. Lu, and Q. Zhan, “Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure,” Opt. Express 27(13), 18642–18652 (2019).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

F. Bagci and B. Akaoglu, “Enhancement of buffer capability in slow light photonic crystal waveguides with extended lattice constants,” Opt. Quantum Electron. 47(3), 791–806 (2015).
[Crossref]

Optica (1)

Phys. Rev. Appl. (1)

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9(6), 064015 (2018).
[Crossref]

Phys. Rev. B (1)

E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50(3), 1945–1948 (1994).
[Crossref]

Phys. Rev. Lett. (8)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

S. Baur, D. Tiarks, G. Rempe, and S. Dürr, “Single-photon switch based on Rydberg blockade,” Phys. Rev. Lett. 112(7), 073901 (2014).
[Crossref]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic illustration of the proposed all-dielectric nano-metamaterial: (a) whole schematics and (b) profile view.
Fig. 2.
Fig. 2. Reflection spectra of all-dielectric nano metameterial with different t under (a) TM and (b) TE polarized light; Transmission spectra with different t under (c) TM and (d) TE polarized light; Reflection spectra with (e) $t = {160}\;\textrm{nm}$ and (f) $t = {525}\;\textrm{nm}$ under TM polarization; (g) Transition levels of the EIT-like effect in all-dielectric nano-metamaterial.
Fig. 3.
Fig. 3. Electric and magnetic field distributions of (a) $t = {160}\;\textrm{nm}$, $\lambda = {721.8}\;\textrm{nm}$; (b) $t = {160}\;\textrm{nm}$, $\lambda = {725.0}\;\textrm{nm}$; (c) $t = {160}\;\textrm{nm}$, $\lambda = {728.8}\;\textrm{nm}$; (d) $t = {525}\;\textrm{nm}$, $\lambda = {722.4}\;\textrm{nm}$; (e) $t = {525}\;\textrm{nm}$, $\lambda = {725.0}\;\textrm{nm}$; and (f) $t = {525}\;\textrm{nm}$, $\lambda = {728.2}\;\textrm{nm}$.
Fig. 4.
Fig. 4. Reflection spectra with different t for (a) $P = {600}\;\textrm{nm}$ and (b) $P = {700}\;\textrm{nm}$; Reflection spectra with different P for (c) $t = {160}\;\textrm{nm}$ and (d) $t = {525}\;\textrm{nm}$.
Fig. 5.
Fig. 5. Reflection spectra with different t for (a) $a = {200}\;\textrm{nm}$ and (b) $a = {400}\;\textrm{nm}$; Reflection spectra with a continuous changing a for (c) $t = {160}\;\textrm{nm}$ and (d) $t = {525}\;\textrm{nm}$.
Fig. 6.
Fig. 6. Reflection spectrum with $a = {300}\;\textrm{nm}$ and $t = {525}\;\textrm{nm}$ in Fig. 5(d); Magnetic field distributions of (b) $\lambda = {722.0}\;\textrm{nm}$, (c) $\lambda = {725.0}\;\textrm{nm}$, and (d) $\lambda = {727.2}\;\textrm{nm}$.
Fig. 7.
Fig. 7. Reflection spectra with different (a) ${d_1}$ and (b) ${d_2}$ for $t = {160}\;\textrm{nm}$; Reflection with different (c) ${d_1}$ and (d) ${d_2}$ for $t = {525}\;\textrm{nm}$.
Fig. 8.
Fig. 8. Electric and magnetic field distributions of $\textrm{T}{\textrm{M}_1}$ and $\textrm{T}{\textrm{M}_2}$: (a) $t = {160}\;\textrm{nm}$, ${d_2} = {319.4}\;\textrm{nm}$; (b) $t = {160}\;\textrm{nm}$, ${d_2} = {538.8}\;\textrm{nm}$; (c) $t = {525}\;\textrm{nm}$, ${d_2} = {319.4}\;\textrm{nm}$ ; (d) $t = {525}\;\textrm{nm}$, ${d_2} = {538.8}\;\textrm{nm}$.
Fig. 9.
Fig. 9. Electric and magnetic field distributions at $\lambda = {938.4}\;\textrm{nm}$ with (a) point A: $t = {160}\;\textrm{nm}$, ${d_1} = {675}\;\textrm{nm}$, ${d_2} = {100}\;\textrm{nm}$; (b) point B: $t = {525}\;\textrm{nm}$, ${d_1} = {675}\;\textrm{nm}$, ${d_2} = {100}\;\textrm{nm}$; (c) point C: $t = {160}\;\textrm{nm}$, ${d_1} = {700}\;\textrm{nm}$, ${d_2} = {275}\;\textrm{nm}$; (d) point D: $t = {525}\;\textrm{nm}$, ${d_1} = {700}\;\textrm{nm}$, ${d_2} = {275}\;\textrm{nm}$.
Fig. 10.
Fig. 10. Reflection spectra of all-dielectric nano-metameterial with different ${n_1}^\prime $ (a) in the fluoropolymer layer and (b) in the fluoropolymer substrate.
Fig. 11.
Fig. 11. (a) Reflection spectra, transmission spectra and (b) absorption spectra with ${d_1}$ changing from 450 nm to 650 nm with an interval of 50 nm, for $t = {160}\;\textrm{nm}$.
Fig. 12.
Fig. 12. (a) ${\chi _\textrm{r}}$ and (b) ${n_\textrm{g}}$ with different ${d_1}$ for $t = {160}\;\textrm{nm}$.
Fig. 13.
Fig. 13. Reflection spectra with double-grouped and triple-grouped WG structures for (a) $t = {160}\;\textrm{nm}$ and (b) $t = {525}\;\textrm{nm}$.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 k FP t + arg ( ρ 1 ρ 2 ) = 2 m π ,
β = k 0 sin θ + n G ,
n 2 2 k 0 2 β 2 d 2  =  q π + 2 arctan ( n 2 2 n 1 2 β 2 k 0 2 n 1 2 k 0 2 n 2 2 β 2 ) ,
{ 2 x 1 ( t ) t 2 + γ 1 x 1 ( t ) t + ω 0 2 x 1 ( t ) + 2 κ x 2 ( t ) t = E 0 e i ω t 2 x 2 ( t ) t 2 + γ 2 x 2 ( t ) t + ( ω 0 + δ ) 2 x 2 ( t ) 2 κ x 1 ( t ) t = 0 .
x 1 ( t ) = 1 2 ω 0 ( ω ω 0 δ + i γ 2 / i γ 2 2 2 ) κ 2 ( ω ω 0 δ + i γ 2 / i γ 2 2 2 ) ( ω ω 0 + i γ 1 / i γ 1 2 2 ) E 0 e i ω t .
A ( ω ) = Im f ( ω ω 0 δ + i γ 2 / i γ 2 2 2 ) κ 2 ( ω ω 0 δ + i γ 2 / i γ 2 2 2 ) ( ω ω 0 + i γ 1 / i γ 1 2 2 ) ,
A = 1 R T ,
χ r ( ω ) = Re f ( ω ω 0 δ + i γ 2 / i γ 2 2 2 ) κ 2 ( ω ω 0 δ + i γ 2 / i γ 2 2 2 ) ( ω ω 0 + i γ 1 / i γ 1 2 2 ) .
k = ϕ ϕ 0 L + ω c ,
d k d ω = 1 L × d ( ϕ ϕ 0 ) d ω + 1 c .
n g = c L × d ( ϕ ϕ 0 ) d ω + 1.