Abstract

Whispering gallery mode resonators hold great promises as very sensitive detectors, with a wide range of applications, notably as biosensors. However, in order to monitor the fine variations in their resonances, a costly and bulky apparatus is required, which confines the use of these efficient tools within specialised labs. Here, we consider a micro-ring resonator that is completely covered by a Bragg grating and propose to functionalize it only over a quarter of its perimeter. As target molecules progressively bind to the active region of the resonator, some particular resonances near the edge of the band gap undergo monotonous frequency splitting. Such a splitting, within the GHz range, can be monitored by conventional electronics and, hence, does not require finely tunable lasers or spectrometers. Meanwhile, the ultrahigh sensitivity that is characteristic of whispering gallery mode resonators is maintained. This robust and sensitive self-heterodyne detection scheme may pave the way to portable whispering-gallery-mode-based detectors, and in particular to point-of-care diagnostic tools.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunneling optical resonances in light–droplet interactions: simulations of spaceborne cloud droplet observations

Rouba Yaacoub, Olivier Pujol, and Philippe Dubuisson
J. Opt. Soc. Am. A 36(12) 2076-2088 (2019)

Highly sensitive label-free coupled resonator Fabry–Perot self-referencing photonic biosensor

Dmitriy Kalantarov and Christopher P. Search
J. Opt. Soc. Am. B 34(5) 968-975 (2017)

Silicon photonic micro-disk resonators for label-free biosensing

Samantha M. Grist, Shon A. Schmidt, Jonas Flueckiger, Valentina Donzella, Wei Shi, Sahba Talebi Fard, James T. Kirk, Daniel M. Ratner, Karen C. Cheung, and Lukas Chrostowski
Opt. Express 21(7) 7994-8006 (2013)

References

  • View by:
  • |
  • |
  • |

  1. I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
    [Crossref]
  2. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
    [Crossref]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [Crossref]
  4. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref]
  5. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref]
  6. G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
    [Crossref]
  7. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
    [Crossref]
  8. S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
    [Crossref]
  9. F. Vollmer and L. Yan, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267 (2012).
    [Crossref]
  10. D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817 (2009).
    [Crossref]
  11. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref]
  12. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [Crossref]
  13. Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
    [Crossref]
  14. W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
    [Crossref]
  15. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U. S. A. 105(52), 20701–20704 (2008).
    [Crossref]
  16. T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
    [Crossref]
  17. J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2(1), 254 (2011).
    [Crossref]
  18. G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
    [Crossref]
  19. G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photonics Rev. 5(6), 737–749 (2011).
    [Crossref]
  20. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref]
  21. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  22. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. T. Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994 (2013).
    [Crossref]
  23. M. Soltani, V. Ilchenko, A. Matsko, A. Savchenkov, J. Schlafer, C. Ryan, and L. Maleki, “Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip,” Opt. Lett. 41(18), 4375 (2016).
    [Crossref]
  24. C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
    [Crossref]
  25. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
    [Crossref]
  26. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
    [Crossref]
  27. A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SiON microring resonator-based platform for biosensing at 850 nm,” J. Lightwave Technol. 34(3), 969–977 (2016).
    [Crossref]
  28. M. de Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2o3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Opt. Express 27(13), 18508 (2019).
    [Crossref]
  29. A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
    [Crossref]
  30. A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
    [Crossref]
  31. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  32. A. L. Washburn, W. W. Shia, K. A. Lenkeit, S.-H. Lee, and R. C. Bailey, “Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays,” Analyst 141(18), 5358–5365 (2016).
    [Crossref]
  33. J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
    [Crossref]
  34. Y. Shin, A. P. Perera, and M. K. Park, “Label-free DNA sensor for detection of bladder cancer biomarkers in urine,” Sens. Actuators, B 178, 200–206 (2013).
    [Crossref]
  35. G. Kozyreff and N. Acharyya, “Dispersion relations and bending losses of cylindrical and spherical shells, slabs, and slot waveguides,” Opt. Express 24(25), 28204 (2016).
    [Crossref]
  36. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).
  37. E. Bernhardi, H. Van Wolferen, L. Agazzi, M. Khan, C. Roeloffzen, K. Wórhoff, M. Pollnau, and R. De Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
    [Crossref]
  38. E. Bernhardi, M. Khan, C. Roeloffzen, H. van Wolferen, K. Wörhoff, R. De Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37(2), 181–183 (2012).
    [Crossref]
  39. Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161 (2018).
    [Crossref]
  40. H. C. Frankis, Z. Su, N. Li, E. S. Magden, M. Ye, M. R. Watts, and J. D. Bradley, “Four-wave mixing in a high-Q aluminum oxide microcavity on silicon,” in “CLEO: Science and Innovations,” (Optical Society of America, 2018), pp. STh3I–3.
  41. G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosens. Bioelectron. 7, 1000209 (2016).
    [Crossref]
  42. Y. K. Suh and S. Kang, “A review on mixing in microfluidics,” Micromachines 1(3), 82–111 (2010).
    [Crossref]
  43. I. Teraoka, “A hybrid filter of bragg grating and ring resonator,” Opt. Commun. 339, 108–114 (2015).
    [Crossref]
  44. Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated bragg grating: a compact replacement for a sampled grating distributed bragg reflector,” Opt. Quantum Electron. 41(9), 689–697 (2009).
    [Crossref]
  45. C. E. Campanella, A. Giorgini, S. Avino, P. Malara, R. Zullo, G. Gagliardi, and P. D. Natale, “Localized strain sensing with fiber bragg-grating ring cavities,” Opt. Express 21(24), 29435 (2013).
    [Crossref]

2019 (1)

2018 (1)

2017 (1)

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

2016 (5)

A. L. Washburn, W. W. Shia, K. A. Lenkeit, S.-H. Lee, and R. C. Bailey, “Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays,” Analyst 141(18), 5358–5365 (2016).
[Crossref]

G. Kozyreff and N. Acharyya, “Dispersion relations and bending losses of cylindrical and spherical shells, slabs, and slot waveguides,” Opt. Express 24(25), 28204 (2016).
[Crossref]

M. Soltani, V. Ilchenko, A. Matsko, A. Savchenkov, J. Schlafer, C. Ryan, and L. Maleki, “Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip,” Opt. Lett. 41(18), 4375 (2016).
[Crossref]

G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosens. Bioelectron. 7, 1000209 (2016).
[Crossref]

A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan, and L. Pavesi, “A SiON microring resonator-based platform for biosensing at 850 nm,” J. Lightwave Technol. 34(3), 969–977 (2016).
[Crossref]

2015 (3)

I. Teraoka, “A hybrid filter of bragg grating and ring resonator,” Opt. Commun. 339, 108–114 (2015).
[Crossref]

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref]

2014 (3)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
[Crossref]

2013 (5)

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. T. Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994 (2013).
[Crossref]

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

Y. Shin, A. P. Perera, and M. K. Park, “Label-free DNA sensor for detection of bladder cancer biomarkers in urine,” Sens. Actuators, B 178, 200–206 (2013).
[Crossref]

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
[Crossref]

C. E. Campanella, A. Giorgini, S. Avino, P. Malara, R. Zullo, G. Gagliardi, and P. D. Natale, “Localized strain sensing with fiber bragg-grating ring cavities,” Opt. Express 21(24), 29435 (2013).
[Crossref]

2012 (4)

E. Bernhardi, M. Khan, C. Roeloffzen, H. van Wolferen, K. Wörhoff, R. De Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser,” Opt. Lett. 37(2), 181–183 (2012).
[Crossref]

F. Vollmer and L. Yan, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267 (2012).
[Crossref]

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (5)

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photonics Rev. 5(6), 737–749 (2011).
[Crossref]

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2(1), 254 (2011).
[Crossref]

2010 (6)

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref]

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

E. Bernhardi, H. Van Wolferen, L. Agazzi, M. Khan, C. Roeloffzen, K. Wórhoff, M. Pollnau, and R. De Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010).
[Crossref]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Y. K. Suh and S. Kang, “A review on mixing in microfluidics,” Micromachines 1(3), 82–111 (2010).
[Crossref]

2009 (2)

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated bragg grating: a compact replacement for a sampled grating distributed bragg reflector,” Opt. Quantum Electron. 41(9), 689–697 (2009).
[Crossref]

D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817 (2009).
[Crossref]

2008 (4)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U. S. A. 105(52), 20701–20704 (2008).
[Crossref]

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

2003 (1)

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

Acharyya, N.

Adam, T. N.

Agazzi, L.

Arazi, L.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref]

Arbabi, A.

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated bragg grating: a compact replacement for a sampled grating distributed bragg reflector,” Opt. Quantum Electron. 41(9), 689–697 (2009).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U. S. A. 105(52), 20701–20704 (2008).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Avino, S.

Bachmann, T. T.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Baehr-Jones, T.

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bailey, R. C.

A. L. Washburn, W. W. Shia, K. A. Lenkeit, S.-H. Lee, and R. C. Bailey, “Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays,” Analyst 141(18), 5358–5365 (2016).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Barrios, C. A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Bauters, J. F.

Bernhardi, E.

Besselink, G. A. J.

G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosens. Bioelectron. 7, 1000209 (2016).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref]

Blumenthal, D. J.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref]

Bowers, J. E.

Bowman, A. L.

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Bradley, J. D.

H. C. Frankis, Z. Su, N. Li, E. S. Magden, M. Ye, M. R. Watts, and J. D. Bradley, “Four-wave mixing in a high-Q aluminum oxide microcavity on silicon,” in “CLEO: Science and Innovations,” (Optical Society of America, 2018), pp. STh3I–3.

Bradley, J. D. B.

Brault, N. D.

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

Campanella, C. E.

Campbell, C. J.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Carlborg, C. F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Catala, A. M.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Chalyan, T.

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Chen, W.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Cheung, K. C.

Chrostowski, L.

Chu, S.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Ciani, I.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref]

Clarke, J.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Clements, W. R.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Coolbaugh, D.

Corrigan, D. K.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Crain, J.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Dai, D.

Dayan, B.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref]

de Goede, M.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Ridder, R.

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dijkstra, M.

Dominguez Juarez, J. L.

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photonics Rev. 5(6), 737–749 (2011).
[Crossref]

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

Dominguez-Juarez, J. L.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2(1), 254 (2011).
[Crossref]

Donzella, V.

Dortu, F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Douglass, K. O.

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Falke, F.

G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosens. Bioelectron. 7, 1000209 (2016).
[Crossref]

Fard, S. T.

Flagan, R.

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Flood, E.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Flueckiger, J.

Frankis, H. C.

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161 (2018).
[Crossref]

H. C. Frankis, Z. Su, N. Li, E. S. Magden, M. Ye, M. R. Watts, and J. D. Bradley, “Four-wave mixing in a high-Q aluminum oxide microcavity on silicon,” in “CLEO: Science and Innovations,” (Optical Society of America, 2018), pp. STh3I–3.

Fraser, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Gagliardi, G.

Gandolfi, D.

Garcia-Blanco, S. M.

Ghazal, P.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Ghulinyan, M.

Gill, D.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Giorgini, A.

Giraud, G.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Goad, D.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Goddard, L. L.

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated bragg grating: a compact replacement for a sampled grating distributed bragg reflector,” Opt. Quantum Electron. 41(9), 689–697 (2009).
[Crossref]

Gong, Q.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Grist, S. M.

Guider, R.

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gylfason, K. B.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Haus, H. A.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).

He, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosens. Bioelectron. 7, 1000209 (2016).
[Crossref]

Henihan, G.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Hochberg, M.

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hodges, J. T.

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
[Crossref]

Holler, S.

Hryniewicz, J.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Huang, S. H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

Ilchenko, V.

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Ja, S.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Jiang, S.

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

Jiang, X.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Kang, S.

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

Y. K. Suh and S. Kang, “A review on mixing in microfluidics,” Micromachines 1(3), 82–111 (2010).
[Crossref]

Kang, Y. M.

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated bragg grating: a compact replacement for a sampled grating distributed bragg reflector,” Opt. Quantum Electron. 41(9), 689–697 (2009).
[Crossref]

Kazmierczak, A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U. S. A. 105(52), 20701–20704 (2008).
[Crossref]

Khan, M.

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Kim, J.

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Kim, M.

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref]

King, O.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Kirk, J. T.

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. T. Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994 (2013).
[Crossref]

Knobbe, E.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Kozyreff, G.

G. Kozyreff and N. Acharyya, “Dispersion relations and bending losses of cylindrical and spherical shells, slabs, and slot waveguides,” Opt. Express 24(25), 28204 (2016).
[Crossref]

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2(1), 254 (2011).
[Crossref]

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photonics Rev. 5(6), 737–749 (2011).
[Crossref]

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

Kresbach, G. M.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Leake, G.

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Lee, S.-H.

A. L. Washburn, W. W. Shia, K. A. Lenkeit, S.-H. Lee, and R. C. Bailey, “Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays,” Analyst 141(18), 5358–5365 (2016).
[Crossref]

Lenkeit, K. A.

A. L. Washburn, W. W. Shia, K. A. Lenkeit, S.-H. Lee, and R. C. Bailey, “Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays,” Analyst 141(18), 5358–5365 (2016).
[Crossref]

Li, B.-B.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Li, N.

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161 (2018).
[Crossref]

H. C. Frankis, Z. Su, N. Li, E. S. Magden, M. Ye, M. R. Watts, and J. D. Bradley, “Four-wave mixing in a high-Q aluminum oxide microcavity on silicon,” in “CLEO: Science and Innovations,” (Optical Society of America, 2018), pp. STh3I–3.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Little, B.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Long, D. A.

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
[Crossref]

Long, G. L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

Lovsky, Y.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Luchansky, M. S.

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Magden, E. S.

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161 (2018).
[Crossref]

H. C. Frankis, Z. Su, N. Li, E. S. Magden, M. Ye, M. R. Watts, and J. D. Bradley, “Four-wave mixing in a high-Q aluminum oxide microcavity on silicon,” in “CLEO: Science and Innovations,” (Optical Society of America, 2018), pp. STh3I–3.

Malara, P.

Maleki, L.

Martínez, E.

Martorell, J.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2(1), 254 (2011).
[Crossref]

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photonics Rev. 5(6), 737–749 (2011).
[Crossref]

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

Matsko, A.

Maxwell, S. E.

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
[Crossref]

Mitjans, F.

Moh, T.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Monifi, F.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

Mount, A. R.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Natale, P. D.

Nguyen, H.

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

Obregón, R.

Özdemir, S. K.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref]

Padilla, L.

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

Park, J.

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

Park, M. K.

Y. Shin, A. P. Perera, and M. K. Park, “Label-free DNA sensor for detection of bladder cancer biomarkers in urine,” Sens. Actuators, B 178, 200–206 (2013).
[Crossref]

Pavesi, L.

Peng, B.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

Perera, A. P.

Y. Shin, A. P. Perera, and M. K. Park, “Label-free DNA sensor for detection of bladder cancer biomarkers in urine,” Sens. Actuators, B 178, 200–206 (2013).
[Crossref]

Pethig, R.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Plusquellic, D. F.

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
[Crossref]

Pollnau, M.

Polo, M. J. B.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Popplewell, J.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Pucker, G.

Ramachandran, A.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Ramón-Azcón, J.

Ratner, D. M.

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. T. Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994 (2013).
[Crossref]

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

Roeloffzen, C.

Ronan, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Rosenblum, S.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref]

Ryan, C.

Samusenko, A.

Savchenkov, A.

Schlafer, J.

Schmidt, S. A.

Schreuder, E.

G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosens. Bioelectron. 7, 1000209 (2016).
[Crossref]

Schulze, H.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Shao, L.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Shi, W.

Shia, W. W.

A. L. Washburn, W. W. Shia, K. A. Lenkeit, S.-H. Lee, and R. C. Bailey, “Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays,” Analyst 141(18), 5358–5365 (2016).
[Crossref]

Shin, Y.

Y. Shin, A. P. Perera, and M. K. Park, “Label-free DNA sensor for detection of bladder cancer biomarkers in urine,” Sens. Actuators, B 178, 200–206 (2013).
[Crossref]

Sohlstróm, H.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Soltani, M.

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Spencer, D. T.

Stemme, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Su, Z.

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161 (2018).
[Crossref]

H. C. Frankis, Z. Su, N. Li, E. S. Magden, M. Ye, M. R. Watts, and J. D. Bradley, “Four-wave mixing in a high-Q aluminum oxide microcavity on silicon,” in “CLEO: Science and Innovations,” (Optical Society of America, 2018), pp. STh3I–3.

Suh, Y. K.

Y. K. Suh and S. Kang, “A review on mixing in microfluidics,” Micromachines 1(3), 82–111 (2010).
[Crossref]

Teraoka, I.

I. Teraoka, “A hybrid filter of bragg grating and ring resonator,” Opt. Commun. 339, 108–114 (2015).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Terry, J. G.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Tien, M.-C.

Truong, G. W.

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
[Crossref]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

Van den Vlekkert, H. H.

G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosens. Bioelectron. 7, 1000209 (2016).
[Crossref]

van der Wijngaart, W.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

van Wolferen, H.

van Zee, R. D.

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
[Crossref]

Vivien, L.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Vollmer, F.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

F. Vollmer and L. Yan, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U. S. A. 105(52), 20701–20704 (2008).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Wald, L.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Walton, A. J.

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

Wang, S.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

Wang, W.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Washburn, A. L.

A. L. Washburn, W. W. Shia, K. A. Lenkeit, S.-H. Lee, and R. C. Bailey, “Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays,” Analyst 141(18), 5358–5365 (2016).
[Crossref]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Watts, M. R.

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161 (2018).
[Crossref]

H. C. Frankis, Z. Su, N. Li, E. S. Magden, M. Ye, M. R. Watts, and J. D. Bradley, “Four-wave mixing in a high-Q aluminum oxide microcavity on silicon,” in “CLEO: Science and Innovations,” (Optical Society of America, 2018), pp. STh3I–3.

Wevers, L. S.

G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosens. Bioelectron. 7, 1000209 (2016).
[Crossref]

Wiersig, J.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Wórhoff, K.

Wörhoff, K.

Xiao, Y.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Yan, L.

F. Vollmer and L. Yan, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267 (2012).
[Crossref]

Yang, L.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref]

Yang, X.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

Ye, M.

H. C. Frankis, Z. Su, N. Li, E. S. Magden, M. Ye, M. R. Watts, and J. D. Bradley, “Four-wave mixing in a high-Q aluminum oxide microcavity on silicon,” in “CLEO: Science and Innovations,” (Optical Society of America, 2018), pp. STh3I–3.

Yilmaz, H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

Yu, X.-C.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Zhao, G.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Zhu, J.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref]

Zullo, R.

Adv. Mater. (1)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 26(7), 991 (2014).
[Crossref]

Anal. Chem. (1)

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82(1), 69–72 (2010).
[Crossref]

Analyst (1)

A. L. Washburn, W. W. Shia, K. A. Lenkeit, S.-H. Lee, and R. C. Bailey, “Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays,” Analyst 141(18), 5358–5365 (2016).
[Crossref]

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Biosens. Bioelectron. (3)

I. Ciani, H. Schulze, D. K. Corrigan, G. Henihan, G. Giraud, J. G. Terry, A. J. Walton, R. Pethig, P. Ghazal, J. Crain, C. J. Campbell, T. T. Bachmann, and A. R. Mount, “Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,” Biosens. Bioelectron. 31(1), 413–418 (2012).
[Crossref]

J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron. 42, 100–105 (2013).
[Crossref]

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad, L. Wald, E. Flood, E. Knobbe, J. Hryniewicz, S. Chu, D. Gill, W. Chen, O. King, and B. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

J. Biosens. Bioelectron. (1)

G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, and H. H. Van den Vlekkert, “Performance of arrayed microring resonator sensors with the TriPleX platform,” J. Biosens. Bioelectron. 7, 1000209 (2016).
[Crossref]

J. Lightwave Technol. (1)

Lab Chip (1)

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. B. Polo, A. M. Catala, G. M. Kresbach, H. Sohlstróm, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref]

Laser Photonics Rev. (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photonics Rev. 5(6), 737–749 (2011).
[Crossref]

Micromachines (1)

Y. K. Suh and S. Kang, “A review on mixing in microfluidics,” Micromachines 1(3), 82–111 (2010).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yan, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267 (2012).
[Crossref]

Nat. Commun. (2)

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6(1), 6788 (2015).
[Crossref]

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2(1), 254 (2011).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (1)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref]

Nat. Photonics (1)

G. W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7(7), 532–534 (2013).
[Crossref]

Nature (1)

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Opt. Commun. (1)

I. Teraoka, “A hybrid filter of bragg grating and ring resonator,” Opt. Commun. 339, 108–114 (2015).
[Crossref]

Opt. Express (8)

D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817 (2009).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref]

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
[Crossref]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. T. Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994 (2013).
[Crossref]

C. E. Campanella, A. Giorgini, S. Avino, P. Malara, R. Zullo, G. Gagliardi, and P. D. Natale, “Localized strain sensing with fiber bragg-grating ring cavities,” Opt. Express 21(24), 29435 (2013).
[Crossref]

G. Kozyreff and N. Acharyya, “Dispersion relations and bending losses of cylindrical and spherical shells, slabs, and slot waveguides,” Opt. Express 24(25), 28204 (2016).
[Crossref]

Z. Su, N. Li, H. C. Frankis, E. S. Magden, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “High-Q-factor Al2O3 micro-trench cavities integrated with silicon nitride waveguides on silicon,” Opt. Express 26(9), 11161 (2018).
[Crossref]

M. de Goede, M. Dijkstra, R. Obregón, J. Ramón-Azcón, E. Martínez, L. Padilla, F. Mitjans, and S. M. Garcia-Blanco, “Al2o3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Opt. Express 27(13), 18508 (2019).
[Crossref]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated bragg grating: a compact replacement for a sampled grating distributed bragg reflector,” Opt. Quantum Electron. 41(9), 689–697 (2009).
[Crossref]

Optica (1)

Phys. Rev. A (1)

G. Kozyreff, J. L. Dominguez Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77(4), 043817 (2008).
[Crossref]

Phys. Rev. Lett. (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery raman microlaser,” Proc. Natl. Acad. Sci. 111(37), E3836–E3844 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U. S. A. 105(52), 20701–20704 (2008).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J. Kim, S. Fraser, R. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Sens. Actuators, B (1)

Y. Shin, A. P. Perera, and M. K. Park, “Label-free DNA sensor for detection of bladder cancer biomarkers in urine,” Sens. Actuators, B 178, 200–206 (2013).
[Crossref]

Sensors (1)

H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: A versatile technique for biosensor applications,” Sensors 15(5), 10481–10510 (2015).
[Crossref]

Other (2)

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).

H. C. Frankis, Z. Su, N. Li, E. S. Magden, M. Ye, M. R. Watts, and J. D. Bradley, “Four-wave mixing in a high-Q aluminum oxide microcavity on silicon,” in “CLEO: Science and Innovations,” (Optical Society of America, 2018), pp. STh3I–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Sketch of a microring cavity containing a Bragg grating and functionalized over one quarter of its perimeter. The ring is excited by injecting light in a neighbouring waveguide. If the injected wave is in resonance, energy builds up in the cavity and the intensity at the output of the waveguide is depleted, producing a sharp resonance dip in the transmission spectrum at critical coupling [20]. Molecular binding in the functionalized area splits a given resonance into two, which, under proper excitation, can produce a recordable low-frequency beating signal.
Fig. 2.
Fig. 2. Left: frequency spectrum $\omega (\ell )$ of the ring+Bragg grating, where $\ell$ is the angular number of the mode. To each resonance corresponds a dip in the transmission spectrum $I(\omega )$ of the neighbouring waveguide. Right: perturbed spectrum under proper functionalization of the ring. The degeneracy of the modes $\ell _c\pm 1$ is lifted and the corresponding transmission dip is split into two.
Fig. 3.
Fig. 3. Transmission spectra and mode intensity distributions as a function of index perturbation $\Delta n'$ for an Al$_2$O$3$ ring in air environment (see text). Top left: unperturbed spectrum of the ring with refractive index alternating between $n_1=1.6$ and $n_2=1.65$. The number of periods along the perimeter is $2\ell _c$, with $\ell _c=90$. Each transmission dip is labelled by its angular number $\ell$. The peaks on the long wavelength side correspond to the mode $\psi _{\ell _c\pm p}$, $p=0,1,2,\ldots$. Top right and second row: spectra obtained with the changes $(n_1,n_2)\to (n_1, n_2+\Delta n')$ in one quarter of the perimeter, designated by white arrows in the bottom pictures. Splitting is observed only with the long-wavelength peak labelled $\ell _c\pm 1$. Bottom row, from left to right: unperturbed mode electric field norm at $\lambda =1.0435\mu$m, and perturbed mode at wavelengths $\lambda _-$, $\lambda _+$ for $\Delta n'=0.012$.
Fig. 4.
Fig. 4. Simulated spectra of the same parameters as in Fig. 3 but where the perturbation over a quarter of perimeter is $(n_1,n_2)\to (n_1+\Delta n',n_2)$ (top) and $(n_1,n_2)\to (n_1+\Delta n',n_2+\Delta n')$ (bottom), corresponding to distinct microscopic functionalization of the ring.
Fig. 5.
Fig. 5. Left: Mode splitting vs perturbation $\Delta n'$. The dashed line is obtained from an extended coupled theory and the dots represent COMSOL simulations. Error bars correspond to the discretization step used to scan the spectrum. The slope of the line indicates a sensitivity $S\approx 150$nm/RIU. Right: LOD vs $Q$ factor assuming $F=1$ in Eq. (12).
Fig. 6.
Fig. 6. Computed spectra in a ring of radius $R=10 \mu$m and width $0.5 \mu$m with a Bragg grating of angular period $\pi /30$. Here, $\ell _c=30$ and the third-order band gap is located at the mode angular number $\ell =3\ell _c$. Top left: unperturbed spectrum, with peaks labelled by their corresponding angular number. Top right: close-up of the intensity distribution of the two unperturbed modes with $\ell =3\ell _c$. Bottom row: mode splitting of neighbouring resonance resulting from the quarter-perimeter perturbation $\Delta n'$.
Fig. 7.
Fig. 7. Left: Mode splitting vs coverage angle $\Delta \theta$ for a fixed perturbation $\Delta n'$. Right: LOD vs $Q$ factor assuming $F=1$ for variable $\Delta \theta$. Inset: corresponding wavelength splitting vs $\Delta n'$. Calculation performed on an Al$_2$O$_3$ microring ($n_2=1.65$) with mean radius $R=150 \mu$m and width $w=500$nm.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

ϕ { E ( r , z ) H ( r , z ) } e i θ .
ϕ { E c ( r , z ) H c ( r , z ) } e i θ .
ω = ω ± ( ) ω 0 ( c ) ± [ v g ( c ) / R ] 2 + Δ ω 2 / 4 ,
ψ ϕ + ϕ 2 c { E c ( r , z ) H c ( r , z ) } ( e i θ + e i ( 2 c ) θ ) .
χ ϕ ϕ 2 c { E c ( r , z ) H c ( r , z ) } ( e i θ e i ( 2 c ) θ ) .
ψ + = ψ l c + 1 + ψ l c 1 = { E c ( r , z ) H c ( r , z ) } 4 cos ( c θ ) cos ( θ ) ,
ψ = ψ l c + 1 ψ l c 1 = { E c ( r , z ) H c ( r , z ) } 4 i cos ( c θ ) sin ( θ ) .
P = α E
δ ω ω = δ λ λ = E α E d V 2 ϵ | E | 2 d V .
δ ω ± ω = δ λ ± λ 2 ( π ± 2 ) E c ( r , z ) α E c ( r , z ) r d r d z 16 π ϵ | E c ( r , z ) | 2 r d r d z
δ λ + δ λ λ E c ( r , z ) α E c ( r , z ) r d r d z 2 π ϵ | E c ( r , z ) | 2 r d r d z .
L O D = F λ Q S .
2 u + ( n 2 c 2 ω 0 ( ) 2 2 r 2 ) u = 0 , n = { n 2 , R h / 2 < r < R + h / 2 , n e n v , elsewhere .
u e i θ [ u c + O ( c c ) ] e i θ , u e i θ [ u c + O ( c c ) ] e i θ .
ω 0 ( ) 2 = { ω 0 ( c ) 2 ( 1 + 2 p / c ) , for  = c + p , ω 0 ( c ) 2 ( 1 2 p / c ) , for  = c + p , | p | | c | .
n ( θ ) = n 2 + Δ n F ( θ ) = n 2 ( 1 + δ F ( θ ) ) , δ = Δ n n 2 ,
F ( θ ) = m = C m e 2 i m c θ , C m = { 1 2 , for  m = 0 , 1 π sin m π / 2 m for  m 0.
u = = A u e i θ .
( 2 + n 2 2 c 2 ω 2 2 r 2 ) A u + 2 n 2 2 c 2 ω 2 δ m = C m A 2 m c u 2 m c = 0.
ω ω 0 ( c ) ( 1 + δ κ ) ,
a p A c + p , b p A c + p .
( κ p δ c ) a p u c + C 0 a p u c + C 1 b p u c 0
( κ + p δ c ) b p u c + C 0 b p u c + C 1 a p u c 0
( κ p δ c + C 0 C 1 C 1 κ + p δ c + C 0 ) ( a p b p ) 0.
κ ( p ) ± C 1 C 1 + p 2 δ 2 c 2 C 0 .
ω ± ( p ) ω 0 ( c ) [ 1 δ C 0 ± δ C 1 C 1 + ( c ) 2 δ 2 c 2 ] .
ω ± ( p ) ω 0 ( c ) ± [ v g ( c ) / R ] 2 + Δ ω 2 / 4 .
n ( θ ) = n 2 + Δ n F ( θ ) + Δ n G ( θ ) = n 2 [ 1 + δ ( F ( θ ) + Δ n Δ n G ( θ ) ) ] ,
G ( θ ) = j = g j e i j θ , g 0 = Δ θ 2 π , g j = 1 j π sin ( j Δ θ / 2 ) .
( κ p δ c ) a p + C 0 a p + C 1 b p + Δ n Δ n q = g q a p q 0
( κ + p δ c ) b p + C 0 b p + C 1 a p + Δ n Δ n q = g q b p q 0.