Abstract

In this paper we present a light field camera system where a flat-surface hexagonal array of nanostructured gradient index lenses was used as a lens matrix. In our approach we use an array of 469 gradient index microlenses with a diameter of 20 µm and 100% fill factor. To develop the single lens and the lenslet array we used a modified stack-and-draw technology. In this technique, variation of refractive index is achieved by using quantized gradient index profiles and rods from different types of glasses. We show experimental results of using this type of lenses for imaging in a system of two kinds of light field cameras. In the first one, the microlens array is located in the focal plane of the main lens. The image is reconstructed, in this case using a Fourier slice photography algorithm. This allowed a partial reconstruction of a 3D scene with spatial and depth resolution of 20 µm and field of view of 500×500×500 µm. In the second configuration, the microlens array is located between a sample and a microscopic objective, thus allowing for superresolution 3D reconstruction of a microscopic image. The scale-invariant feature transform method was used for image reconstruction and obtained a partial 3D reconstruction with a field of view of 150×115×80 µm and a spatial resolution of 2 µm and depth resolution of 10 µm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses

Rafal Kasztelanic, Adam Filipkowski, Dariusz Pysz, Ryszard Stepien, Andrew J. Waddie, Mohammad R. Taghizadeh, and Ryszard Buczynski
Opt. Express 25(3) 1680-1691 (2017)

Camera array based light field microscopy

Xing Lin, Jiamin Wu, Guoan Zheng, and Qionghai Dai
Biomed. Opt. Express 6(9) 3179-3189 (2015)

Development of large diameter nanostructured GRIN microlenses enhanced with temperature-controlled diffusion

Adam Filipkowski, Hue Thi Nguyen, Rafał Kasztelanic, Tomasz Stefaniuk, Jaroslaw Cimek, Dariusz Pysz, Ryszard Stępień, Konrad Krzyżak, Pentti Karioja, and Ryszard Buczynski
Opt. Express 27(24) 35052-35064 (2019)

References

  • View by:
  • |
  • |
  • |

  1. V. Toal, Introduction to Holography (CRC, Boca Raton, 2011).
  2. E. Y. Lam, “Computational photography with plenoptic camera and light field capture: tutorial,” J. Opt. Soc. Am. A 32(11), 2021–2032 (2015).
    [Crossref]
  3. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
    [Crossref]
  4. D. E. Roberts and T. Smith, “The History of Integral Print Methods”, pp. 1–21, http://lenticulartechnology.com/files/2014/02/Integral-History.pdf
  5. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [Crossref]
  6. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with computed reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
    [Crossref]
  7. A. Stern and B. Javidi, “3D Image Sensing and Reconstruction with Time-Division Multiplexed Computational Integral Imaging (CII),” Appl. Opt. 42(35), 7036–7042 (2003).
    [Crossref]
  8. E. H. Adelson and J. R. Bergen, The plenoptic function and the elements of early vision. Computational Models of Visual Processing (MIT, Cambridge1991).
  9. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceeding of Siggraph (ACM, 1996), pp. 31–42.
  10. N. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications,” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref]
  11. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” in Proceeding of IEEE Conference Transactions on pattern analysis and machine intelligence (IEEE, (1992), pp. 99–106.
  12. Lytro, The Lytro Camera. http://lytro.com
  13. Raytrix, 3D light field camera technology. http://www.raytrix.de
  14. J. S. Jang and B. Javidi, “Three-dimensional Integral Imaging of Micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
    [Crossref]
  15. A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
    [Crossref]
  16. B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14(25), 12096–12108 (2006).
    [Crossref]
  17. J. Fiss, B. Curless, and R. Szeliski, “Refocusing plenoptic images using depth-adaptive splatting,” in Proceeding of IEEE International Conference on Computational Photography (ICCP) (IEEE, 2014), 14383062.
  18. H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. Kweon, “Accurate depth map estimation from a lenslet light field camera,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2015), 15538728.
  19. L. Mc Millan and G. Bishop, “Plenoptic modeling: An imagebased rendering system,” in Proceeding of Siggraph (ACM, 1995), pp. 39–46.
  20. E. Y. Lam, G. Bennett, C. Fernandez-Cull, D. Gerwe, M. Kriss, and Z. Zalevsky, “Imaging systems and signal recovery: introduction to feature issue,” Appl. Opt. 54(13), IS1–IS2 (2015).
    [Crossref]
  21. M. Martinez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3D scenes by integral imaging,” in Proceedings of IEEE105 (IEEE, 2017), pp. 825–836.
  22. M. Martinez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: A tutorial on integral imaging, Lightfield, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
    [Crossref]
  23. Stern, and B. Javidi, “3D Image Sensing, Visualization, and Processing using Integral Imaging,” Proceedings of the IEEE Journal94(3), (IEEE, 2006), pp. 591–608.
  24. T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceeding of Eurographics Symposium on Rendering, (EGSR, 2006), pp. 263–272.
  25. S. Prasad, “Digital superresolution and the generalized sampling theorem,” J. Opt. Soc. Am. A 24(2), 311–325 (2007).
    [Crossref]
  26. F. Pérez Nava and J. P. Lüke, “Simultaneous estimation of super-resolved depth and all-in-focus Images from a plenoptic camera,” in Proceeding of 3DTV Conference, (3DTV, 2009), 10701793.
  27. R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
    [Crossref]
  28. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Stanford Tech Report CTSR (2005).
  29. F. Jin, J. S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29(12), 1345–1347 (2004).
    [Crossref]
  30. R. Ng, “Digital light field photography,” PhD thesis, Stanford University, Stanford, CA, USA, Adviser: Patrick Hanrahan (2006).
  31. A. Lumsdaine and T. Georgiev, “Full resolution lightfield rendering,” Tech. rep., Adobe Systems (2008).
  32. L. Xuejin, Y. Jianquan, and Z. Baigangb, “Analyses on propagation and imaging properties of GRIN lenses,” in Proceedings of SPIE4919, (SPIE2002), pp. 155–160.
  33. F. Hudelist, J. M. Nowosielski, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
    [Crossref]
  34. J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Opt. Commun. 283(9), 1938–1944 (2010).
    [Crossref]
  35. J. M. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
    [Crossref]
  36. J. Cimek, R. Stepien, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
    [Crossref]
  37. R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepien, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
    [Crossref]
  38. C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
    [Crossref]
  39. C. Gómez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, 2002).
  40. J. R. Hensler, “Method of Producing a Refractive Index Gradient in Glass,” U.S. Patent 3,873,408 (25 Mar. 1975).
  41. J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, “Gradient Index Optics at DARPA,” Institute For Defense Analyses (2013).
  42. Y. Huang and S. T. Ho, “Superhigh numerical aperture (NA > 1.5) micro gradient-index lens based on a dualmaterial approach,” Opt. Lett. 30(11), 1291–1293 (2005).
    [Crossref]
  43. F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
    [Crossref]
  44. B. Filipkowski, D. Piechal, R. Pysz, A. J. Stepien, M. R. Waddie, R. Taghizadeh, and Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
    [Crossref]
  45. K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stepien, W. Krolikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
    [Crossref]
  46. J. Pniewski, R. Kasztelanic, B. Piechal, J. M. Nowosielski, A. J. Waddie, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
    [Crossref]
  47. Sihvola, Electromagnetic Mixing Formulas and Applications. (The Institution of Electrical Engineers, 1999).
  48. X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
    [Crossref]
  49. R. Ng, “Fourier slice photography,” in Proceeding of Siggraph (ACM, 2005), pp. 735–744.
  50. T. Georgiev and A. Lumsdaine, “Superresolution with Plenoptic Camera 2.0,” Tech. rep., Adobe Systems (2009).
  51. M. Levo, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” in Proceeding of Siggraph (ACM, 2006), pp. 924–934.
  52. D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comp. Vision 60(2), 91–110 (2004).
    [Crossref]
  53. Mathworks Matlab, Computer Vision Toolbox. www.mathworks.com/products/computer-vision.html
  54. S. D. Wei and S. H. Lai, “Fast template matching based on normalized cross correlation with adaptive multilevel winner update,” in Proceeding of IEEE Transformation Image Processing, (IEEE, 2008), pp. 2227–2235.
  55. Z. Feng, H. Qingming, and G. Wen, “Image matching by normalized cross-correlation,” in Proceeding of IEEE International Conference on Acoustics Speed and Signal Processing, (IEEE, 2006), pp. 729–732.
  56. M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [Crossref]

2018 (1)

M. Martinez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: A tutorial on integral imaging, Lightfield, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

2017 (2)

2016 (3)

2015 (4)

2014 (1)

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

2013 (2)

2012 (1)

2010 (2)

J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Opt. Commun. 283(9), 1938–1944 (2010).
[Crossref]

F. Hudelist, J. M. Nowosielski, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
[Crossref]

2009 (1)

2008 (1)

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2004 (3)

2003 (1)

2001 (1)

1997 (1)

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
[Crossref]

Adams, A.

M. Levo, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” in Proceeding of Siggraph (ACM, 2006), pp. 924–934.

Adelson, E. H.

E. H. Adelson and J. R. Bergen, The plenoptic function and the elements of early vision. Computational Models of Visual Processing (MIT, Cambridge1991).

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” in Proceeding of IEEE Conference Transactions on pattern analysis and machine intelligence (IEEE, (1992), pp. 99–106.

Andalman, A.

Anuszkiewicz, A.

Arai, J.

Arimoto, H.

Baigangb, Z.

L. Xuejin, Y. Jianquan, and Z. Baigangb, “Analyses on propagation and imaging properties of GRIN lenses,” in Proceedings of SPIE4919, (SPIE2002), pp. 155–160.

Balko, B.

J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, “Gradient Index Optics at DARPA,” Institute For Defense Analyses (2013).

Bao, C.

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

C. Gómez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, 2002).

Barreiro, J. C.

M. Martinez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3D scenes by integral imaging,” in Proceedings of IEEE105 (IEEE, 2017), pp. 825–836.

Bennett, G.

Bergen, J. R.

E. H. Adelson and J. R. Bergen, The plenoptic function and the elements of early vision. Computational Models of Visual Processing (MIT, Cambridge1991).

Bishop, G.

L. Mc Millan and G. Bishop, “Plenoptic modeling: An imagebased rendering system,” in Proceeding of Siggraph (ACM, 1995), pp. 39–46.

Bok, Y.

H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. Kweon, “Accurate depth map estimation from a lenslet light field camera,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2015), 15538728.

Bredif, M.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Stanford Tech Report CTSR (2005).

Broxton, M.

Buckley, L.

J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, “Gradient Index Optics at DARPA,” Institute For Defense Analyses (2013).

Buczynski,

Buczynski, R.

R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepien, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
[Crossref]

K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stepien, W. Krolikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
[Crossref]

J. Pniewski, R. Kasztelanic, B. Piechal, J. M. Nowosielski, A. J. Waddie, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref]

J. Cimek, R. Stepien, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

J. M. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref]

F. Hudelist, J. M. Nowosielski, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
[Crossref]

J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Opt. Commun. 283(9), 1938–1944 (2010).
[Crossref]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref]

Choe, G.

H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. Kweon, “Accurate depth map estimation from a lenslet light field camera,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2015), 15538728.

Cimek, J.

J. Cimek, R. Stepien, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Cohen, N.

Curless, B.

J. Fiss, B. Curless, and R. Szeliski, “Refocusing plenoptic images using depth-adaptive splatting,” in Proceeding of IEEE International Conference on Computational Photography (ICCP) (IEEE, 2014), 14383062.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceeding of Eurographics Symposium on Rendering, (EGSR, 2006), pp. 263–272.

Deisseroth, K.

Dorado, A.

M. Martinez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3D scenes by integral imaging,” in Proceedings of IEEE105 (IEEE, 2017), pp. 825–836.

Duval, G.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Stanford Tech Report CTSR (2005).

Feng, Z.

Z. Feng, H. Qingming, and G. Wen, “Image matching by normalized cross-correlation,” in Proceeding of IEEE International Conference on Acoustics Speed and Signal Processing, (IEEE, 2006), pp. 729–732.

Fernandez-Cull, C.

Filipkowski, A.

Filipkowski, B.

Fisher, B.

J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, “Gradient Index Optics at DARPA,” Institute For Defense Analyses (2013).

Fiss, J.

J. Fiss, B. Curless, and R. Szeliski, “Refocusing plenoptic images using depth-adaptive splatting,” in Proceeding of IEEE International Conference on Computational Photography (ICCP) (IEEE, 2014), 14383062.

Flores-Arias, M. T.

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

Footer, M.

M. Levo, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” in Proceeding of Siggraph (ACM, 2006), pp. 924–934.

Georgeiv, T.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceeding of Eurographics Symposium on Rendering, (EGSR, 2006), pp. 263–272.

Georgiev, T.

A. Lumsdaine and T. Georgiev, “Full resolution lightfield rendering,” Tech. rep., Adobe Systems (2008).

T. Georgiev and A. Lumsdaine, “Superresolution with Plenoptic Camera 2.0,” Tech. rep., Adobe Systems (2009).

Gerwe, D.

Gómez-Reino, C.

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

C. Gómez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, 2002).

Grosenick, L.

Hanrahan, P.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Stanford Tech Report CTSR (2005).

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceeding of Siggraph (ACM, 1996), pp. 31–42.

Hensler, J. R.

J. R. Hensler, “Method of Producing a Refractive Index Gradient in Glass,” U.S. Patent 3,873,408 (25 Mar. 1975).

Ho, S. T.

Hoffmann, M.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Holzer, J.

J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, “Gradient Index Optics at DARPA,” Institute For Defense Analyses (2013).

Horowitz, M.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Stanford Tech Report CTSR (2005).

M. Levo, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” in Proceeding of Siggraph (ACM, 2006), pp. 924–934.

Hoshino, H.

Huang, Y.

Hudelist, F.

Intwala, C.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceeding of Eurographics Symposium on Rendering, (EGSR, 2006), pp. 263–272.

Jang, J. S.

Javidi, B.

M. Martinez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: A tutorial on integral imaging, Lightfield, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
[Crossref]

N. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications,” Appl. Opt. 52(4), 546–560 (2013).
[Crossref]

B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14(25), 12096–12108 (2006).
[Crossref]

F. Jin, J. S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29(12), 1345–1347 (2004).
[Crossref]

J. S. Jang and B. Javidi, “Three-dimensional Integral Imaging of Micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
[Crossref]

A. Stern and B. Javidi, “3D Image Sensing and Reconstruction with Time-Division Multiplexed Computational Integral Imaging (CII),” Appl. Opt. 42(35), 7036–7042 (2003).
[Crossref]

H. Arimoto and B. Javidi, “Integral three-dimensional imaging with computed reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
[Crossref]

Stern, and B. Javidi, “3D Image Sensing, Visualization, and Processing using Integral Imaging,” Proceedings of the IEEE Journal94(3), (IEEE, 2006), pp. 591–608.

M. Martinez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3D scenes by integral imaging,” in Proceedings of IEEE105 (IEEE, 2017), pp. 825–836.

Jeon, H.

H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. Kweon, “Accurate depth map estimation from a lenslet light field camera,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2015), 15538728.

Jianquan, Y.

L. Xuejin, Y. Jianquan, and Z. Baigangb, “Analyses on propagation and imaging properties of GRIN lenses,” in Proceedings of SPIE4919, (SPIE2002), pp. 155–160.

Jin, F.

Kasztelanic, R.

Kato, S.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Klimczak, M.

J. Cimek, R. Stepien, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Kriss, M.

Krolikowski, W.

Kujawa, I.

Kweon, I.

H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. Kweon, “Accurate depth map estimation from a lenslet light field camera,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2015), 15538728.

Lai, S. H.

S. D. Wei and S. H. Lai, “Fast template matching based on normalized cross correlation with adaptive multilevel winner update,” in Proceeding of IEEE Transformation Image Processing, (IEEE, 2008), pp. 2227–2235.

Lam, E. Y.

Levo, M.

M. Levo, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” in Proceeding of Siggraph (ACM, 2006), pp. 924–934.

Levoy, M.

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref]

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceeding of Siggraph (ACM, 1996), pp. 31–42.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Stanford Tech Report CTSR (2005).

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
[Crossref]

Llavador, A.

Lowe, D. G.

D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comp. Vision 60(2), 91–110 (2004).
[Crossref]

Lüke, J. P.

F. Pérez Nava and J. P. Lüke, “Simultaneous estimation of super-resolved depth and all-in-focus Images from a plenoptic camera,” in Proceeding of 3DTV Conference, (3DTV, 2009), 10701793.

Lumsdaine, A.

T. Georgiev and A. Lumsdaine, “Superresolution with Plenoptic Camera 2.0,” Tech. rep., Adobe Systems (2009).

A. Lumsdaine and T. Georgiev, “Full resolution lightfield rendering,” Tech. rep., Adobe Systems (2008).

Lytro,

Lytro, The Lytro Camera. http://lytro.com

Martinez-Corral, M.

M. Martinez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: A tutorial on integral imaging, Lightfield, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
[Crossref]

N. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in Three-Dimensional Integral Imaging: Sensing, Display, and Applications,” Appl. Opt. 52(4), 546–560 (2013).
[Crossref]

M. Martinez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3D scenes by integral imaging,” in Proceedings of IEEE105 (IEEE, 2017), pp. 825–836.

Mc Millan, L.

L. Mc Millan and G. Bishop, “Plenoptic modeling: An imagebased rendering system,” in Proceeding of Siggraph (ACM, 1995), pp. 39–46.

McCarthy, A.

Moon, I.

Nayar, S.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceeding of Eurographics Symposium on Rendering, (EGSR, 2006), pp. 263–272.

Ng, R.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Stanford Tech Report CTSR (2005).

R. Ng, “Digital light field photography,” PhD thesis, Stanford University, Stanford, CA, USA, Adviser: Patrick Hanrahan (2006).

M. Levo, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” in Proceeding of Siggraph (ACM, 2006), pp. 924–934.

R. Ng, “Fourier slice photography,” in Proceeding of Siggraph (ACM, 2005), pp. 735–744.

Nowosielski, J. M.

Okano, F.

Pak, N.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Park, J.

H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. Kweon, “Accurate depth map estimation from a lenslet light field camera,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2015), 15538728.

H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. Kweon, “Accurate depth map estimation from a lenslet light field camera,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2015), 15538728.

Perez, M. V.

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

C. Gómez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, 2002).

Pérez Nava, F.

F. Pérez Nava and J. P. Lüke, “Simultaneous estimation of super-resolved depth and all-in-focus Images from a plenoptic camera,” in Proceeding of 3DTV Conference, (3DTV, 2009), 10701793.

Piechal, B.

Piechal, D.

Pniewski, J.

Prasad, S.

Prevedel, R.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Pysz, D.

Pysz, R.

Qingming, H.

Z. Feng, H. Qingming, and G. Wen, “Image matching by normalized cross-correlation,” in Proceeding of IEEE International Conference on Acoustics Speed and Signal Processing, (IEEE, 2006), pp. 729–732.

Raskar, R.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Raytrix,

Raytrix, 3D light field camera technology. http://www.raytrix.de

Roberts, D. E.

D. E. Roberts and T. Smith, “The History of Integral Print Methods”, pp. 1–21, http://lenticulartechnology.com/files/2014/02/Integral-History.pdf

Saavedra, G.

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
[Crossref]

M. Martinez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3D scenes by integral imaging,” in Proceedings of IEEE105 (IEEE, 2017), pp. 825–836.

Salesin, D.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceeding of Eurographics Symposium on Rendering, (EGSR, 2006), pp. 263–272.

Schrödel, T.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Sihvola,

Sihvola, Electromagnetic Mixing Formulas and Applications. (The Institution of Electrical Engineers, 1999).

Siwicki, B.

J. Cimek, R. Stepien, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Smith, T.

D. E. Roberts and T. Smith, “The History of Integral Print Methods”, pp. 1–21, http://lenticulartechnology.com/files/2014/02/Integral-History.pdf

Sola-Pikabea, J.

Stafiej, P.

J. Cimek, R. Stepien, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Stepien, A. J.

Stepien, R.

Stepniewski, G.

J. Cimek, R. Stepien, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Stern, A.

Switkowski, K.

Szeliski, R.

J. Fiss, B. Curless, and R. Szeliski, “Refocusing plenoptic images using depth-adaptive splatting,” in Proceeding of IEEE International Conference on Computational Photography (ICCP) (IEEE, 2014), 14383062.

Taghizadeh, M. R.

Taghizadeh, R.

Tai, Y.

H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. Kweon, “Accurate depth map estimation from a lenslet light field camera,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2015), 15538728.

Teichman, J.

J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, “Gradient Index Optics at DARPA,” Institute For Defense Analyses (2013).

Toal, V.

V. Toal, Introduction to Holography (CRC, Boca Raton, 2011).

Waddie, A. J.

Waddie, M. R.

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” in Proceeding of IEEE Conference Transactions on pattern analysis and machine intelligence (IEEE, (1992), pp. 99–106.

Wei, S. D.

S. D. Wei and S. H. Lai, “Fast template matching based on normalized cross correlation with adaptive multilevel winner update,” in Proceeding of IEEE Transformation Image Processing, (IEEE, 2008), pp. 2227–2235.

Wen, G.

Z. Feng, H. Qingming, and G. Wen, “Image matching by normalized cross-correlation,” in Proceeding of IEEE International Conference on Acoustics Speed and Signal Processing, (IEEE, 2006), pp. 729–732.

Wetzstein, G.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Wu, Y.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref]

Xiao, N. X.

Xuejin, L.

L. Xuejin, Y. Jianquan, and Z. Baigangb, “Analyses on propagation and imaging properties of GRIN lenses,” in Proceedings of SPIE4919, (SPIE2002), pp. 155–160.

Yang, S.

Yeom, S.

Yoon, Y. G.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Yuyama, I.

Zalevsky, Z.

Zhang, X.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref]

Zheng, K. C.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceeding of Eurographics Symposium on Rendering, (EGSR, 2006), pp. 263–272.

Zimmer, M.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Adv. Opt. Photonics (1)

M. Martinez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: A tutorial on integral imaging, Lightfield, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

Appl. Opt. (5)

Int. J. Comp. Vision (1)

D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comp. Vision 60(2), 91–110 (2004).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
[Crossref]

Laser Photonics Rev. (1)

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

Nat. Methods (1)

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, and M. Zimmer, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Opt. Commun. (1)

J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Opt. Commun. 283(9), 1938–1944 (2010).
[Crossref]

Opt. Express (7)

J. M. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref]

R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepien, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
[Crossref]

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
[Crossref]

B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14(25), 12096–12108 (2006).
[Crossref]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref]

K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stepien, W. Krolikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
[Crossref]

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref]

Opt. Lett. (6)

Opt. Mater. (1)

J. Cimek, R. Stepien, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Sci. Rep. (1)

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref]

Other (28)

R. Ng, “Fourier slice photography,” in Proceeding of Siggraph (ACM, 2005), pp. 735–744.

T. Georgiev and A. Lumsdaine, “Superresolution with Plenoptic Camera 2.0,” Tech. rep., Adobe Systems (2009).

M. Levo, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” in Proceeding of Siggraph (ACM, 2006), pp. 924–934.

Mathworks Matlab, Computer Vision Toolbox. www.mathworks.com/products/computer-vision.html

S. D. Wei and S. H. Lai, “Fast template matching based on normalized cross correlation with adaptive multilevel winner update,” in Proceeding of IEEE Transformation Image Processing, (IEEE, 2008), pp. 2227–2235.

Z. Feng, H. Qingming, and G. Wen, “Image matching by normalized cross-correlation,” in Proceeding of IEEE International Conference on Acoustics Speed and Signal Processing, (IEEE, 2006), pp. 729–732.

C. Gómez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, 2002).

J. R. Hensler, “Method of Producing a Refractive Index Gradient in Glass,” U.S. Patent 3,873,408 (25 Mar. 1975).

J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, “Gradient Index Optics at DARPA,” Institute For Defense Analyses (2013).

Sihvola, Electromagnetic Mixing Formulas and Applications. (The Institution of Electrical Engineers, 1999).

R. Ng, “Digital light field photography,” PhD thesis, Stanford University, Stanford, CA, USA, Adviser: Patrick Hanrahan (2006).

A. Lumsdaine and T. Georgiev, “Full resolution lightfield rendering,” Tech. rep., Adobe Systems (2008).

L. Xuejin, Y. Jianquan, and Z. Baigangb, “Analyses on propagation and imaging properties of GRIN lenses,” in Proceedings of SPIE4919, (SPIE2002), pp. 155–160.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Stanford Tech Report CTSR (2005).

F. Pérez Nava and J. P. Lüke, “Simultaneous estimation of super-resolved depth and all-in-focus Images from a plenoptic camera,” in Proceeding of 3DTV Conference, (3DTV, 2009), 10701793.

M. Martinez-Corral, A. Dorado, J. C. Barreiro, G. Saavedra, and B. Javidi, “Recent advances in the capture and display of macroscopic and microscopic 3D scenes by integral imaging,” in Proceedings of IEEE105 (IEEE, 2017), pp. 825–836.

Stern, and B. Javidi, “3D Image Sensing, Visualization, and Processing using Integral Imaging,” Proceedings of the IEEE Journal94(3), (IEEE, 2006), pp. 591–608.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceeding of Eurographics Symposium on Rendering, (EGSR, 2006), pp. 263–272.

D. E. Roberts and T. Smith, “The History of Integral Print Methods”, pp. 1–21, http://lenticulartechnology.com/files/2014/02/Integral-History.pdf

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” in Proceeding of IEEE Conference Transactions on pattern analysis and machine intelligence (IEEE, (1992), pp. 99–106.

Lytro, The Lytro Camera. http://lytro.com

Raytrix, 3D light field camera technology. http://www.raytrix.de

V. Toal, Introduction to Holography (CRC, Boca Raton, 2011).

E. H. Adelson and J. R. Bergen, The plenoptic function and the elements of early vision. Computational Models of Visual Processing (MIT, Cambridge1991).

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceeding of Siggraph (ACM, 1996), pp. 31–42.

J. Fiss, B. Curless, and R. Szeliski, “Refocusing plenoptic images using depth-adaptive splatting,” in Proceeding of IEEE International Conference on Computational Photography (ICCP) (IEEE, 2014), 14383062.

H. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y. Tai, and I. Kweon, “Accurate depth map estimation from a lenslet light field camera,” in Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2015), 15538728.

L. Mc Millan and G. Bishop, “Plenoptic modeling: An imagebased rendering system,” in Proceeding of Siggraph (ACM, 1995), pp. 39–46.

Supplementary Material (2)

NameDescription
» Visualization 1       Animation of the reconstructed scene (moss protonemata) by light field camera (type 2.0) at different angles with the background reduction and discretization levels.
» Visualization 2       Example of reconstruction by light field camera (type 1.0) of an input scene - two sections of 125 µm diameter optic fiber glued perpendicularly to each other on both sides of a 100 µm thick glass plate

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schemes of the light field camera setup: (a) type 1.0, (b) type 2.0.
Fig. 2.
Fig. 2. Array of micro nGRIN lenslets fabricated using stack-and-draw technique: (a) design of an individual hexagonal nGRIN lens composed of 7651 rods made of two borosilicate glasses, (b) refractive index distribution for an ideal lens at a wavelength of λ=632.8 nm, (c) microscopic view of the whole array of 469 nGRIN microlenses ordered in a hexagonal lattice with 100% filling factor, and (d) enlarged fragment of an array. Diameter of an individual nGRIN microlens is 20 µm.
Fig. 3.
Fig. 3. Plenoptic camera types 1.0: (a) scheme of the camera system with nGRIN microlens array, (b) final configuration with test object and additional magnifying system.
Fig. 4.
Fig. 4. Sample of images registered in lightfield camera type 1.0 system.
Fig. 5.
Fig. 5. Reconstruction of the input scene: (a) reference image, (b) image with marked positions of individual lenses with additional lenses, (c) 4D light field.
Fig. 6.
Fig. 6. Reconstruction of the input scene: (a) the most important steps of the Fourier Slice Photography algorithm, (b) image with marked positions of individual lenses, (c) image with additional lenses, (d) 4D light field.
Fig. 7.
Fig. 7. Example of reconstruction of an input scene for 3 different observation positions. Animation of the reconstructed object at different angles available in the additional materials - Visualization 1.
Fig. 8.
Fig. 8. Proposed plenoptic camera types 2.0: (a) general overview, (b) sharp test scene (moss protonemata) visible in a microscopic system with blurred array of microlenses, (c) sharp sub-images generated by individual microlenses.
Fig. 9.
Fig. 9. Examples of images recorded using the proposed setup. Microscope objective magnification: (a) x20, (b) x40, (c) x100. The image shows basswood stem.
Fig. 10.
Fig. 10. Image formation in a light field camera with GRIN lenses: (a) ray path to provide image mirroring through the microlens, (b) comparison of images from neighboring microlenses, (c) change of the distance between images of two elements placed at different depths of the sample.
Fig. 11.
Fig. 11. Image analysis: (a) partial overlapping of neighbouring images, (b) neighbouring sub-images with marked the same elements. The image shows moss protonemata.
Fig. 12.
Fig. 12. Reconstruction of the image: (a) point clouds after reconstruction without removing the background and discretization, (b) reconstructed image after limiting the available depths to several levels and removing the background. The image shows moss protonemata. Animation of the reconstructed scene at different angles with the background reduction and discretization levels available in the additional materials - Visualization 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n = n F 2 ( 1 A 2 r 2 )
P α = F 2 β α F 4 ( L F )