Abstract

Design of sensors which are able to probe electromagnetic radiation with larger cross section and at the same time with having negligible perturbation in measurement has attracted significant attention. For this purpose, scattering-cancellation sensors or cloaking sensors are introduced. However, tunable cloaking sensors are very challenging. In this regards, here, a metasurface based on graphene strips is proposed to cloak a dielectric cylinder under illumination of TEz and TMz polarized incident waves in terahertz range. According to the in plane effective surface impedance tensor for the considered metasurface and the required surface impedance for achieving invisibility under TE and TM polarized impinging waves, the geometrical parameters of the covering structure and characteristics of graphene are obtained. Numerical simulations show radar cross section reduction for both TE and TM polarizations. Furthermore, the introduced metasurface is able to cloak the cylinder for incoming waves with circular polarization. In addition, it is shown that by properly adjusting the chemical potential of graphene, the required surface impedance to have cloaking for the two polarizations in other frequencies can also be achieved, which results in a tunable dual polarized cloaking. The proposed structure provides 2-11 dB reduction in scattering strength relative to the uncloaked configuration for 0.3eV variation of graphene chemical potential.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface

Shuo Liu, He-Xiu Xu, Hao Chi Zhang, and Tie Jun Cui
Opt. Express 22(11) 13403-13417 (2014)

Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface

Elnaz Shokati, Nosrat Granpayeh, and Mohammad Danaeifar
Appl. Opt. 56(11) 3053-3058 (2017)

Nonideal ultrathin mantle cloak for electrically large conducting cylinders

Shuo Liu, Hao Chi Zhang, He-Xiu Xu, and Tie Jun Cui
J. Opt. Soc. Am. A 31(9) 2075-2082 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
    [Crossref]
  2. A. Alu and N. Engheta, “Cloaking a receiving antenna or a sensor with plasmonic metamaterials,” Metamaterials 4(2-3), 153–159 (2010).
    [Crossref]
  3. A. Khademi, T. Dewolf, and R. Gordon, “Quantum plasmonic epsilon near zero: field enhancement and cloaking,” Opt. Express 26(12), 15656–15664 (2018).
    [Crossref]
  4. M. D. Guild, A. Alu, and M. R. Haberman, “Cloaking of an acoustic sensor using scattering cancellation,” Appl. Phys. Lett. 105(2), 023510 (2014).
    [Crossref]
  5. R. Fleury and A. Alu, “Cloaking and invisibility: A review,” in Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), vol. 1 (2014).
  6. G. Labate, S. K. Podilchak, and L. Matekovits, “Closed-form harmonic contrast control with surface impedance coatings for conductive objects,” Appl. Opt. 56(36), 10055–10059 (2017).
    [Crossref]
  7. A. K. Ospanova, G. Labate, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
    [Crossref]
  8. M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak using the equivalence principle,” IEEE Antennas Wirel. Propag. Lett. 11, 1226–1229 (2012).
    [Crossref]
  9. A. Rajput and K. V. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).
    [Crossref]
  10. P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wirel. Propag. Lett. 15, 282–285 (2016).
    [Crossref]
  11. Y. Shi, W. Tang, L. Li, and C.-H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
    [Crossref]
  12. Z. Hamzavi-Zarghani, A. Yahaghi, and A. Bordbar, “Analytical design of nanostructured graphene metasurface for controllable scattering manipulation of dielectric cylinder,” in Electrical Engineering (ICEE), Iranian Conference on, (IEEE, 2018), pp. 592–595.
  13. Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Dynamically tunable scattering manipulation of dielectric and conducting cylinders using nanostructured graphene metasurfaces,” IEEE Access 7, 15556–15562 (2019).
    [Crossref]
  14. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref]
  15. D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  16. A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
    [Crossref]
  17. M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
    [Crossref]
  18. M. Nisar and Q. A. Naqvi, “Cloaking and magnifying using radial anisotropy in non-integer dimensional space,” Phys. Lett. A 382(31), 2055–2060 (2018).
    [Crossref]
  19. A. Darabi, A. Zareei, M.-R. Alam, and M. J. Leamy, “Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves,” Phys. Rev. Lett. 121(17), 174301 (2018).
    [Crossref]
  20. A. Shahzad, S. Ahmed, A. Ghaffar, and Q. Naqvi, “Incorporation of the nihility medium to improve the cylindrical invisibility cloak,” ACES J.29(1), (2014).
  21. M. Rajabi and A. Mojahed, “Active acoustic cloaking spherical shells,” Acta Acust. Acust. 104(1), 5–12 (2018).
    [Crossref]
  22. A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating pemc at perturbed void region,” Prog. Electromagn. Res. 21, 61–76 (2011).
    [Crossref]
  23. A. Alu, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
    [Crossref]
  24. G. Labate, A. Alu, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
    [Crossref]
  25. A. Forouzmand and A. B. Yakovlev, “Electromagnetic cloaking of a finite conducting wedge with a nanostructured graphene metasurface,” IEEE Trans. Antennas Propag. 63(5), 2191–2202 (2015).
    [Crossref]
  26. P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref]
  27. S. Vellucci, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti, “Satellite applications of electromagnetic cloaking,” IEEE Trans. Antennas Propag. 65(9), 4931–4934 (2017).
    [Crossref]
  28. H. Younesiraad, M. Bemani, and S. Nikmehr, “Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach,” IET Microwaves, Antennas Propag. 13(3), 278–285 (2019).
    [Crossref]
  29. L. Matekovits and T. S. Bird, “Width-modulated microstrip-line based mantle cloaks for thin single-and multiple cylinders,” IEEE Trans. Antennas Propag. 62(5), 2606–2615 (2014).
    [Crossref]
  30. T. V. Teperik, S. N. Burokur, A. de Lustrac, G. Sabanowski, and G.-P. Piau, “Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies,” Appl. Phys. Lett. 111(5), 054105 (2017).
    [Crossref]
  31. M. Danaeifar and N. Granpayeh, “Wideband invisibility by using inhomogeneous metasurfaces of graphene nanodisks in the infrared regime,” J. Opt. Soc. Am. B 33(8), 1764–1768 (2016).
    [Crossref]
  32. E. Shokati, N. Granpayeh, and M. Danaeifar, “Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface,” Appl. Opt. 56(11), 3053–3058 (2017).
    [Crossref]
  33. M. Qin, L. Wang, X. Zhai, and S. Xia, “Multispectral resonances and coherent control in plasmonic metasurfaces,” IEEE Photonics Technol. Lett. 31(4), 319–322 (2019).
    [Crossref]
  34. M. Qin, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
    [Crossref]
  35. G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
    [Crossref]
  36. M. Baqir, A. Farmani, T. Fatima, M. Raza, S. Shaukat, and A. Mir, “Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range,” Appl. Opt. 57(31), 9447–9454 (2018).
    [Crossref]
  37. S. Khani, M. Danaie, and P. Rezaei, “Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled u-shaped cavities,” IET Optoelectron. 13(4), 161–171 (2019).
    [Crossref]
  38. A. Farmani, A. Mir, M. Bazgir, and F. B. Zarrabi, “Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in thz range: numerical study,” Phys. E (Amsterdam, Neth.) 104, 233–240 (2018).
    [Crossref]
  39. A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
    [Crossref]
  40. M. Hosseinifar, V. Ahmadi, and M. Ebnali-Heidari, “Schottky graphene/si photodetector based on metal-dielectric hybrid hollow-core photonic crystal fibers,” Opt. Lett. 42(24), 5066–5069 (2017).
    [Crossref]
  41. A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photonics Technol. Lett. 31(8), 643–646 (2019).
    [Crossref]
  42. Z. Vafapour, Y. Hajati, M. Hajati, and H. Ghahraloud, “Graphene-based mid-infrared biosensor,” J. Opt. Soc. Am. B 34(12), 2586–2592 (2017).
    [Crossref]
  43. A. Farmani, “Three-dimensional fdtd analysis of a nanostructured plasmonic sensor in the near-infrared range,” J. Opt. Soc. Am. B 36(2), 401–407 (2019).
    [Crossref]
  44. M. Janfaza, M. A. Mansouri-Birjandi, and A. Tavousi, “Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on bragg gratings,” Opt. Commun. 440, 75–82 (2019).
    [Crossref]
  45. A. Farmani, M. Miri, and M. H. Sheikhi, “Tunable resonant goos–hänchen and imbert–fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces,” J. Opt. Soc. Am. B 34(6), 1097–1106 (2017).
    [Crossref]
  46. M. Dehghan, M. K. Moravvej-Farshi, M. Ghaffari-Miab, M. Jabbari, and G. Darvish, “Ultra-compact spatial terahertz switch based on graphene plasmonic-coupled waveguide,” Plasmonics1–11 (2019).
    [Crossref]
  47. S. Xiao, T. Liu, L. Cheng, C. Zhou, X. Jiang, Z. Li, and C. Xu, “Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures,” J. Lightwave Technol. 37(13), 3290–3297 (2019).
    [Crossref]
  48. P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
    [Crossref]
  49. T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
    [Crossref]
  50. X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
    [Crossref]
  51. T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
    [Crossref]
  52. Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
    [Crossref]
  53. M. Rahmanshahi, S. Golmohammadi, H. Baghban, and A. Asgari, “Photonics Nanostructures-Fundamentals Appl.,” Photonics Nanostructures-Fundamentals Appl. 31, 173–179 (2018).
    [Crossref]
  54. V. K. Sadaghiani, M. Zavvari, M. B. Tavakkoli, and A. Horri, “Design of graphene-based hybrid waveguides for nonlinear applications,” Opt. Quantum Electron. 51(2), 49 (2019).
    [Crossref]
  55. M. M. Mehrnegar, S. Darbari, H. Ramezani, and M. K. Moravvej-Farshi, “Designing graphene-based multi-mode acousto-plasmonic devices,” J. Lightwave Technol. 37(9), 2126–2132 (2019).
    [Crossref]
  56. S. Asgari, N. Granpayeh, and Z. G. Kashani, “Plasmonic mid-infrared wavelength selector and linear logic gates based on graphene cylindrical resonator,” IEEE Trans. Nanotechnol. 18, 42–50 (2019).
    [Crossref]
  57. M. H. Rezaei, A. Zarifkar, and M. Miri, “Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio,” Opt. Mater. 84, 572–578 (2018).
    [Crossref]
  58. A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced goos-hanchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
    [Crossref]
  59. Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Tunable lens based on graphene metasurface for circular polarization,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), (IEEE, 2018), pp. 644–647.
  60. Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Reconfigurable metasurface lens based on graphene split ring resonators using pancharatnam–berry phase manipulation,” J. Electromagn. Waves Appl. 33(5), 572–583 (2019).
    [Crossref]
  61. Z. Hamzavi-Zarghani, A. Yahaghi, L. Matekovits, and I. Peter, “Tunable polarization converter based on graphene metasurfaces,” in 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), (IEEE, 2018), pp. 1–2.
  62. A. Farmani, M. Miri, and M. H. Sheikhi, “Design of a high extinction ratio tunable graphene on white graphene polarizer,” IEEE Photonics Technol. Lett. 30(2), 153–156 (2018).
    [Crossref]
  63. E. S. Torabi, A. Fallahi, and A. Yahaghi, “Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption,” IEEE Trans. Antennas Propag. 65(3), 1464–1467 (2017).
    [Crossref]
  64. S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (mir) range,” IEEE Trans. Electromagn. Compat.1–9 (2019).
    [Crossref]
  65. S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35(20), 4553–4558 (2017).
    [Crossref]
  66. S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
    [Crossref]
  67. X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microwaves, Antennas Propag. 9(4), 307–312 (2015).
    [Crossref]
  68. R. Ning, Z. Jiao, and J. Bao, “Multi-band and wide-band electromagnetically induced transparency in graphene metasurface of composite structure,” IET Microwaves, Antennas Propag. 12(3), 380–384 (2018).
    [Crossref]
  69. V. S. Yadav, S. K. Ghosh, S. Bhattacharyya, and S. Das, “Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence,” Appl. Opt. 57(29), 8720–8726 (2018).
    [Crossref]
  70. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
    [Crossref]
  71. M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
    [Crossref]
  72. Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Analytical design of a metasurface based mantle cloak for dielectric cylinder under oblique incidence,” in 2018 9th International Symposium on Telecommunications (IST), (IEEE, 2018), pp. 65–68.
  73. Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87(11), 115401 (2013).
    [Crossref]
  74. R. Emadi, R. Safian, A. Z. Nezhad, and N. Barani, “Robust multi-layer graphene-based plasmonic cloaking,” in 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (IEEE, 2018), pp. 145–146.
  75. J. Soric, P. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
    [Crossref]
  76. A. Monti, J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for tm and te scattering reduction,” IEEE Trans. Antennas Propag. 63(4), 1775–1788 (2015).
    [Crossref]
  77. J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
    [Crossref]
  78. C. A. Balanis, Advanced engineering electromagnetics (John Wiley and Sons, 1999).
  79. S. A. H. Gangaraj, T. Low, A. Nemilentsau, and G. W. Hanson, “Directive surface plasmons on tunable two-dimensional hyperbolic metasurfaces and black phosphorus: Green’s function and complex plane analysis,” IEEE Trans. Antennas Propag. 65(3), 1174–1186 (2017).
    [Crossref]
  80. G. W. Hanson, “Erratum:"dyadic green’s functions and guided surface waves for a surface conductivity model of graphene" [j. appl. phys. 103, 064302 (2008)],” J. Appl. Phys. 113(2), 029902 (2013).
    [Crossref]
  81. M. Biabanifard and M. S. Abrishamian, “Multi-band circuit model of tunable thz absorber based on graphene sheet and ribbons,” AEU-International J. Electron. Commun. 95, 256–263 (2018).
    [Crossref]

2019 (15)

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Dynamically tunable scattering manipulation of dielectric and conducting cylinders using nanostructured graphene metasurfaces,” IEEE Access 7, 15556–15562 (2019).
[Crossref]

H. Younesiraad, M. Bemani, and S. Nikmehr, “Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach,” IET Microwaves, Antennas Propag. 13(3), 278–285 (2019).
[Crossref]

M. Qin, L. Wang, X. Zhai, and S. Xia, “Multispectral resonances and coherent control in plasmonic metasurfaces,” IEEE Photonics Technol. Lett. 31(4), 319–322 (2019).
[Crossref]

S. Khani, M. Danaie, and P. Rezaei, “Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled u-shaped cavities,” IET Optoelectron. 13(4), 161–171 (2019).
[Crossref]

A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photonics Technol. Lett. 31(8), 643–646 (2019).
[Crossref]

A. Farmani, “Three-dimensional fdtd analysis of a nanostructured plasmonic sensor in the near-infrared range,” J. Opt. Soc. Am. B 36(2), 401–407 (2019).
[Crossref]

M. Janfaza, M. A. Mansouri-Birjandi, and A. Tavousi, “Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on bragg gratings,” Opt. Commun. 440, 75–82 (2019).
[Crossref]

S. Xiao, T. Liu, L. Cheng, C. Zhou, X. Jiang, Z. Li, and C. Xu, “Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures,” J. Lightwave Technol. 37(13), 3290–3297 (2019).
[Crossref]

T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
[Crossref]

V. K. Sadaghiani, M. Zavvari, M. B. Tavakkoli, and A. Horri, “Design of graphene-based hybrid waveguides for nonlinear applications,” Opt. Quantum Electron. 51(2), 49 (2019).
[Crossref]

M. M. Mehrnegar, S. Darbari, H. Ramezani, and M. K. Moravvej-Farshi, “Designing graphene-based multi-mode acousto-plasmonic devices,” J. Lightwave Technol. 37(9), 2126–2132 (2019).
[Crossref]

S. Asgari, N. Granpayeh, and Z. G. Kashani, “Plasmonic mid-infrared wavelength selector and linear logic gates based on graphene cylindrical resonator,” IEEE Trans. Nanotechnol. 18, 42–50 (2019).
[Crossref]

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Reconfigurable metasurface lens based on graphene split ring resonators using pancharatnam–berry phase manipulation,” J. Electromagn. Waves Appl. 33(5), 572–583 (2019).
[Crossref]

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

2018 (18)

M. Rahmanshahi, S. Golmohammadi, H. Baghban, and A. Asgari, “Photonics Nanostructures-Fundamentals Appl.,” Photonics Nanostructures-Fundamentals Appl. 31, 173–179 (2018).
[Crossref]

R. Ning, Z. Jiao, and J. Bao, “Multi-band and wide-band electromagnetically induced transparency in graphene metasurface of composite structure,” IET Microwaves, Antennas Propag. 12(3), 380–384 (2018).
[Crossref]

V. S. Yadav, S. K. Ghosh, S. Bhattacharyya, and S. Das, “Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence,” Appl. Opt. 57(29), 8720–8726 (2018).
[Crossref]

M. Biabanifard and M. S. Abrishamian, “Multi-band circuit model of tunable thz absorber based on graphene sheet and ribbons,” AEU-International J. Electron. Commun. 95, 256–263 (2018).
[Crossref]

A. Farmani, M. Miri, and M. H. Sheikhi, “Design of a high extinction ratio tunable graphene on white graphene polarizer,” IEEE Photonics Technol. Lett. 30(2), 153–156 (2018).
[Crossref]

M. H. Rezaei, A. Zarifkar, and M. Miri, “Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio,” Opt. Mater. 84, 572–578 (2018).
[Crossref]

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced goos-hanchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
[Crossref]

A. Farmani, A. Mir, M. Bazgir, and F. B. Zarrabi, “Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in thz range: numerical study,” Phys. E (Amsterdam, Neth.) 104, 233–240 (2018).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

M. Qin, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

M. Baqir, A. Farmani, T. Fatima, M. Raza, S. Shaukat, and A. Mir, “Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range,” Appl. Opt. 57(31), 9447–9454 (2018).
[Crossref]

M. Nisar and Q. A. Naqvi, “Cloaking and magnifying using radial anisotropy in non-integer dimensional space,” Phys. Lett. A 382(31), 2055–2060 (2018).
[Crossref]

A. Darabi, A. Zareei, M.-R. Alam, and M. J. Leamy, “Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves,” Phys. Rev. Lett. 121(17), 174301 (2018).
[Crossref]

M. Rajabi and A. Mojahed, “Active acoustic cloaking spherical shells,” Acta Acust. Acust. 104(1), 5–12 (2018).
[Crossref]

A. Khademi, T. Dewolf, and R. Gordon, “Quantum plasmonic epsilon near zero: field enhancement and cloaking,” Opt. Express 26(12), 15656–15664 (2018).
[Crossref]

A. K. Ospanova, G. Labate, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

2017 (13)

A. Rajput and K. V. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).
[Crossref]

G. Labate, S. K. Podilchak, and L. Matekovits, “Closed-form harmonic contrast control with surface impedance coatings for conductive objects,” Appl. Opt. 56(36), 10055–10059 (2017).
[Crossref]

E. Shokati, N. Granpayeh, and M. Danaeifar, “Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface,” Appl. Opt. 56(11), 3053–3058 (2017).
[Crossref]

G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
[Crossref]

M. Hosseinifar, V. Ahmadi, and M. Ebnali-Heidari, “Schottky graphene/si photodetector based on metal-dielectric hybrid hollow-core photonic crystal fibers,” Opt. Lett. 42(24), 5066–5069 (2017).
[Crossref]

T. V. Teperik, S. N. Burokur, A. de Lustrac, G. Sabanowski, and G.-P. Piau, “Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies,” Appl. Phys. Lett. 111(5), 054105 (2017).
[Crossref]

G. Labate, A. Alu, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

S. Vellucci, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti, “Satellite applications of electromagnetic cloaking,” IEEE Trans. Antennas Propag. 65(9), 4931–4934 (2017).
[Crossref]

A. Farmani, M. Miri, and M. H. Sheikhi, “Tunable resonant goos–hänchen and imbert–fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces,” J. Opt. Soc. Am. B 34(6), 1097–1106 (2017).
[Crossref]

Z. Vafapour, Y. Hajati, M. Hajati, and H. Ghahraloud, “Graphene-based mid-infrared biosensor,” J. Opt. Soc. Am. B 34(12), 2586–2592 (2017).
[Crossref]

E. S. Torabi, A. Fallahi, and A. Yahaghi, “Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption,” IEEE Trans. Antennas Propag. 65(3), 1464–1467 (2017).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35(20), 4553–4558 (2017).
[Crossref]

S. A. H. Gangaraj, T. Low, A. Nemilentsau, and G. W. Hanson, “Directive surface plasmons on tunable two-dimensional hyperbolic metasurfaces and black phosphorus: Green’s function and complex plane analysis,” IEEE Trans. Antennas Propag. 65(3), 1174–1186 (2017).
[Crossref]

2016 (3)

M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
[Crossref]

M. Danaeifar and N. Granpayeh, “Wideband invisibility by using inhomogeneous metasurfaces of graphene nanodisks in the infrared regime,” J. Opt. Soc. Am. B 33(8), 1764–1768 (2016).
[Crossref]

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wirel. Propag. Lett. 15, 282–285 (2016).
[Crossref]

2015 (6)

Y. Shi, W. Tang, L. Li, and C.-H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

A. Forouzmand and A. B. Yakovlev, “Electromagnetic cloaking of a finite conducting wedge with a nanostructured graphene metasurface,” IEEE Trans. Antennas Propag. 63(5), 2191–2202 (2015).
[Crossref]

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microwaves, Antennas Propag. 9(4), 307–312 (2015).
[Crossref]

A. Monti, J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for tm and te scattering reduction,” IEEE Trans. Antennas Propag. 63(4), 1775–1788 (2015).
[Crossref]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref]

2014 (2)

L. Matekovits and T. S. Bird, “Width-modulated microstrip-line based mantle cloaks for thin single-and multiple cylinders,” IEEE Trans. Antennas Propag. 62(5), 2606–2615 (2014).
[Crossref]

M. D. Guild, A. Alu, and M. R. Haberman, “Cloaking of an acoustic sensor using scattering cancellation,” Appl. Phys. Lett. 105(2), 023510 (2014).
[Crossref]

2013 (5)

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87(11), 115401 (2013).
[Crossref]

J. Soric, P. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
[Crossref]

G. W. Hanson, “Erratum:"dyadic green’s functions and guided surface waves for a surface conductivity model of graphene" [j. appl. phys. 103, 064302 (2008)],” J. Appl. Phys. 113(2), 029902 (2013).
[Crossref]

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

2012 (1)

M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak using the equivalence principle,” IEEE Antennas Wirel. Propag. Lett. 11, 1226–1229 (2012).
[Crossref]

2011 (3)

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating pemc at perturbed void region,” Prog. Electromagn. Res. 21, 61–76 (2011).
[Crossref]

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

2010 (2)

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

A. Alu and N. Engheta, “Cloaking a receiving antenna or a sensor with plasmonic metamaterials,” Metamaterials 4(2-3), 153–159 (2010).
[Crossref]

2009 (1)

A. Alu, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Abrishamian, M. S.

M. Biabanifard and M. S. Abrishamian, “Multi-band circuit model of tunable thz absorber based on graphene sheet and ribbons,” AEU-International J. Electron. Commun. 95, 256–263 (2018).
[Crossref]

Ahmadi, V.

Ahmed, S.

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating pemc at perturbed void region,” Prog. Electromagn. Res. 21, 61–76 (2011).
[Crossref]

A. Shahzad, S. Ahmed, A. Ghaffar, and Q. Naqvi, “Incorporation of the nihility medium to improve the cylindrical invisibility cloak,” ACES J.29(1), (2014).

Alam, M.-R.

A. Darabi, A. Zareei, M.-R. Alam, and M. J. Leamy, “Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves,” Phys. Rev. Lett. 121(17), 174301 (2018).
[Crossref]

Alburaikan, A.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microwaves, Antennas Propag. 9(4), 307–312 (2015).
[Crossref]

Alipour, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

Alu, A.

G. Labate, A. Alu, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref]

M. D. Guild, A. Alu, and M. R. Haberman, “Cloaking of an acoustic sensor using scattering cancellation,” Appl. Phys. Lett. 105(2), 023510 (2014).
[Crossref]

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

A. Alu and N. Engheta, “Cloaking a receiving antenna or a sensor with plasmonic metamaterials,” Metamaterials 4(2-3), 153–159 (2010).
[Crossref]

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

A. Alu, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

R. Fleury and A. Alu, “Cloaking and invisibility: A review,” in Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), vol. 1 (2014).

Alù, A.

A. Monti, J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for tm and te scattering reduction,” IEEE Trans. Antennas Propag. 63(4), 1775–1788 (2015).
[Crossref]

J. Soric, P. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Aqeeli, M.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microwaves, Antennas Propag. 9(4), 307–312 (2015).
[Crossref]

Asgari, A.

M. Rahmanshahi, S. Golmohammadi, H. Baghban, and A. Asgari, “Photonics Nanostructures-Fundamentals Appl.,” Photonics Nanostructures-Fundamentals Appl. 31, 173–179 (2018).
[Crossref]

Asgari, S.

S. Asgari, N. Granpayeh, and Z. G. Kashani, “Plasmonic mid-infrared wavelength selector and linear logic gates based on graphene cylindrical resonator,” IEEE Trans. Nanotechnol. 18, 42–50 (2019).
[Crossref]

Baghban, H.

M. Rahmanshahi, S. Golmohammadi, H. Baghban, and A. Asgari, “Photonics Nanostructures-Fundamentals Appl.,” Photonics Nanostructures-Fundamentals Appl. 31, 173–179 (2018).
[Crossref]

Bai, X.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Balanis, C. A.

C. A. Balanis, Advanced engineering electromagnetics (John Wiley and Sons, 1999).

Bao, J.

R. Ning, Z. Jiao, and J. Bao, “Multi-band and wide-band electromagnetically induced transparency in graphene metasurface of composite structure,” IET Microwaves, Antennas Propag. 12(3), 380–384 (2018).
[Crossref]

Baqir, M.

Barani, N.

R. Emadi, R. Safian, A. Z. Nezhad, and N. Barani, “Robust multi-layer graphene-based plasmonic cloaking,” in 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (IEEE, 2018), pp. 145–146.

Barbuto, M.

S. Vellucci, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti, “Satellite applications of electromagnetic cloaking,” IEEE Trans. Antennas Propag. 65(9), 4931–4934 (2017).
[Crossref]

Basharin, A. A.

A. K. Ospanova, G. Labate, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

Bazgir, M.

A. Farmani, A. Mir, M. Bazgir, and F. B. Zarrabi, “Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in thz range: numerical study,” Phys. E (Amsterdam, Neth.) 104, 233–240 (2018).
[Crossref]

Bemani, M.

H. Younesiraad, M. Bemani, and S. Nikmehr, “Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach,” IET Microwaves, Antennas Propag. 13(3), 278–285 (2019).
[Crossref]

Bernety, H. M.

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

Bhattacharyya, S.

V. S. Yadav, S. K. Ghosh, S. Bhattacharyya, and S. Das, “Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence,” Appl. Opt. 57(29), 8720–8726 (2018).
[Crossref]

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (mir) range,” IEEE Trans. Electromagn. Compat.1–9 (2019).
[Crossref]

Biabanifard, M.

M. Biabanifard and M. S. Abrishamian, “Multi-band circuit model of tunable thz absorber based on graphene sheet and ribbons,” AEU-International J. Electron. Commun. 95, 256–263 (2018).
[Crossref]

Bianco, G. V.

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

Bilotti, F.

S. Vellucci, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti, “Satellite applications of electromagnetic cloaking,” IEEE Trans. Antennas Propag. 65(9), 4931–4934 (2017).
[Crossref]

A. Monti, J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for tm and te scattering reduction,” IEEE Trans. Antennas Propag. 63(4), 1775–1788 (2015).
[Crossref]

Bird, T. S.

L. Matekovits and T. S. Bird, “Width-modulated microstrip-line based mantle cloaks for thin single-and multiple cylinders,” IEEE Trans. Antennas Propag. 62(5), 2606–2615 (2014).
[Crossref]

Booket, M. R.

M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
[Crossref]

Bordbar, A.

Z. Hamzavi-Zarghani, A. Yahaghi, and A. Bordbar, “Analytical design of nanostructured graphene metasurface for controllable scattering manipulation of dielectric cylinder,” in Electrical Engineering (ICEE), Iranian Conference on, (IEEE, 2018), pp. 592–595.

Bruno, G.

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

Burokur, S. N.

T. V. Teperik, S. N. Burokur, A. de Lustrac, G. Sabanowski, and G.-P. Piau, “Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies,” Appl. Phys. Lett. 111(5), 054105 (2017).
[Crossref]

Capezzuto, P.

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

Chen, P.

J. Soric, P. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Chen, P.-Y.

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

Cheng, L.

T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
[Crossref]

S. Xiao, T. Liu, L. Cheng, C. Zhou, X. Jiang, Z. Li, and C. Xu, “Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures,” J. Lightwave Technol. 37(13), 3290–3297 (2019).
[Crossref]

Choi, W.

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

Cummer, S. A.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

D’Orazio, A.

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

Danaeifar, M.

Danaie, M.

S. Khani, M. Danaie, and P. Rezaei, “Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled u-shaped cavities,” IET Optoelectron. 13(4), 161–171 (2019).
[Crossref]

Darabi, A.

A. Darabi, A. Zareei, M.-R. Alam, and M. J. Leamy, “Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves,” Phys. Rev. Lett. 121(17), 174301 (2018).
[Crossref]

Darbari, S.

Darvish, G.

M. Dehghan, M. K. Moravvej-Farshi, M. Ghaffari-Miab, M. Jabbari, and G. Darvish, “Ultra-compact spatial terahertz switch based on graphene plasmonic-coupled waveguide,” Plasmonics1–11 (2019).
[Crossref]

Das, S.

V. S. Yadav, S. K. Ghosh, S. Bhattacharyya, and S. Das, “Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence,” Appl. Opt. 57(29), 8720–8726 (2018).
[Crossref]

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (mir) range,” IEEE Trans. Electromagn. Compat.1–9 (2019).
[Crossref]

de Lustrac, A.

T. V. Teperik, S. N. Burokur, A. de Lustrac, G. Sabanowski, and G.-P. Piau, “Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies,” Appl. Phys. Lett. 111(5), 054105 (2017).
[Crossref]

Dehghan, M.

M. Dehghan, M. K. Moravvej-Farshi, M. Ghaffari-Miab, M. Jabbari, and G. Darvish, “Ultra-compact spatial terahertz switch based on graphene plasmonic-coupled waveguide,” Plasmonics1–11 (2019).
[Crossref]

Dewolf, T.

Ebnali-Heidari, M.

Eleftheriades, G. V.

M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak using the equivalence principle,” IEEE Antennas Wirel. Propag. Lett. 11, 1226–1229 (2012).
[Crossref]

Emadi, R.

R. Emadi, R. Safian, A. Z. Nezhad, and N. Barani, “Robust multi-layer graphene-based plasmonic cloaking,” in 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (IEEE, 2018), pp. 145–146.

Engheta, N.

A. Alu and N. Engheta, “Cloaking a receiving antenna or a sensor with plasmonic metamaterials,” Metamaterials 4(2-3), 153–159 (2010).
[Crossref]

Fallahi, A.

E. S. Torabi, A. Fallahi, and A. Yahaghi, “Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption,” IEEE Trans. Antennas Propag. 65(3), 1464–1467 (2017).
[Crossref]

Fan, Y.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Farmani, A.

A. Farmani, “Three-dimensional fdtd analysis of a nanostructured plasmonic sensor in the near-infrared range,” J. Opt. Soc. Am. B 36(2), 401–407 (2019).
[Crossref]

A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photonics Technol. Lett. 31(8), 643–646 (2019).
[Crossref]

A. Farmani, A. Mir, M. Bazgir, and F. B. Zarrabi, “Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in thz range: numerical study,” Phys. E (Amsterdam, Neth.) 104, 233–240 (2018).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

M. Baqir, A. Farmani, T. Fatima, M. Raza, S. Shaukat, and A. Mir, “Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range,” Appl. Opt. 57(31), 9447–9454 (2018).
[Crossref]

A. Farmani, M. Miri, and M. H. Sheikhi, “Design of a high extinction ratio tunable graphene on white graphene polarizer,” IEEE Photonics Technol. Lett. 30(2), 153–156 (2018).
[Crossref]

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced goos-hanchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

A. Farmani, M. Miri, and M. H. Sheikhi, “Tunable resonant goos–hänchen and imbert–fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces,” J. Opt. Soc. Am. B 34(6), 1097–1106 (2017).
[Crossref]

Fatima, T.

Fleury, R.

R. Fleury and A. Alu, “Cloaking and invisibility: A review,” in Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), vol. 1 (2014).

Forouzmand, A.

A. Forouzmand and A. B. Yakovlev, “Electromagnetic cloaking of a finite conducting wedge with a nanostructured graphene metasurface,” IEEE Trans. Antennas Propag. 63(5), 2191–2202 (2015).
[Crossref]

Fu, Q.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Gangaraj, S. A. H.

S. A. H. Gangaraj, T. Low, A. Nemilentsau, and G. W. Hanson, “Directive surface plasmons on tunable two-dimensional hyperbolic metasurfaces and black phosphorus: Green’s function and complex plane analysis,” IEEE Trans. Antennas Propag. 65(3), 1174–1186 (2017).
[Crossref]

Gao, D.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Ghaffar, A.

A. Shahzad, S. Ahmed, A. Ghaffar, and Q. Naqvi, “Incorporation of the nihility medium to improve the cylindrical invisibility cloak,” ACES J.29(1), (2014).

Ghaffari-Miab, M.

M. Dehghan, M. K. Moravvej-Farshi, M. Ghaffari-Miab, M. Jabbari, and G. Darvish, “Ultra-compact spatial terahertz switch based on graphene plasmonic-coupled waveguide,” Plasmonics1–11 (2019).
[Crossref]

Ghahraloud, H.

Ghosh, S. K.

V. S. Yadav, S. K. Ghosh, S. Bhattacharyya, and S. Das, “Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence,” Appl. Opt. 57(29), 8720–8726 (2018).
[Crossref]

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (mir) range,” IEEE Trans. Electromagn. Compat.1–9 (2019).
[Crossref]

Golmohammadi, S.

M. Rahmanshahi, S. Golmohammadi, H. Baghban, and A. Asgari, “Photonics Nanostructures-Fundamentals Appl.,” Photonics Nanostructures-Fundamentals Appl. 31, 173–179 (2018).
[Crossref]

Gomez-Diaz, J. S.

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref]

Gordon, R.

Grande, M.

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

Granpayeh, N.

S. Asgari, N. Granpayeh, and Z. G. Kashani, “Plasmonic mid-infrared wavelength selector and linear logic gates based on graphene cylindrical resonator,” IEEE Trans. Nanotechnol. 18, 42–50 (2019).
[Crossref]

E. Shokati, N. Granpayeh, and M. Danaeifar, “Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface,” Appl. Opt. 56(11), 3053–3058 (2017).
[Crossref]

M. Danaeifar and N. Granpayeh, “Wideband invisibility by using inhomogeneous metasurfaces of graphene nanodisks in the infrared regime,” J. Opt. Soc. Am. B 33(8), 1764–1768 (2016).
[Crossref]

M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
[Crossref]

Guild, M. D.

M. D. Guild, A. Alu, and M. R. Haberman, “Cloaking of an acoustic sensor using scattering cancellation,” Appl. Phys. Lett. 105(2), 023510 (2014).
[Crossref]

Haberman, M. R.

M. D. Guild, A. Alu, and M. R. Haberman, “Cloaking of an acoustic sensor using scattering cancellation,” Appl. Phys. Lett. 105(2), 023510 (2014).
[Crossref]

Hajati, M.

Hajati, Y.

Hamzavi-Zarghani, Z.

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Dynamically tunable scattering manipulation of dielectric and conducting cylinders using nanostructured graphene metasurfaces,” IEEE Access 7, 15556–15562 (2019).
[Crossref]

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Reconfigurable metasurface lens based on graphene split ring resonators using pancharatnam–berry phase manipulation,” J. Electromagn. Waves Appl. 33(5), 572–583 (2019).
[Crossref]

Z. Hamzavi-Zarghani, A. Yahaghi, L. Matekovits, and I. Peter, “Tunable polarization converter based on graphene metasurfaces,” in 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), (IEEE, 2018), pp. 1–2.

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Tunable lens based on graphene metasurface for circular polarization,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), (IEEE, 2018), pp. 644–647.

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Analytical design of a metasurface based mantle cloak for dielectric cylinder under oblique incidence,” in 2018 9th International Symposium on Telecommunications (IST), (IEEE, 2018), pp. 65–68.

Z. Hamzavi-Zarghani, A. Yahaghi, and A. Bordbar, “Analytical design of nanostructured graphene metasurface for controllable scattering manipulation of dielectric cylinder,” in Electrical Engineering (ICEE), Iranian Conference on, (IEEE, 2018), pp. 592–595.

Hanson, G. W.

S. A. H. Gangaraj, T. Low, A. Nemilentsau, and G. W. Hanson, “Directive surface plasmons on tunable two-dimensional hyperbolic metasurfaces and black phosphorus: Green’s function and complex plane analysis,” IEEE Trans. Antennas Propag. 65(3), 1174–1186 (2017).
[Crossref]

G. W. Hanson, “Erratum:"dyadic green’s functions and guided surface waves for a surface conductivity model of graphene" [j. appl. phys. 103, 064302 (2008)],” J. Appl. Phys. 113(2), 029902 (2013).
[Crossref]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87(11), 115401 (2013).
[Crossref]

He, P.

X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Horri, A.

V. K. Sadaghiani, M. Zavvari, M. B. Tavakkoli, and A. Horri, “Design of graphene-based hybrid waveguides for nonlinear applications,” Opt. Quantum Electron. 51(2), 49 (2019).
[Crossref]

Hosseinifar, M.

Hu, Z.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microwaves, Antennas Propag. 9(4), 307–312 (2015).
[Crossref]

Huang, X.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microwaves, Antennas Propag. 9(4), 307–312 (2015).
[Crossref]

Huang, Y.

Ito, E.

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

Jabbari, M.

M. Dehghan, M. K. Moravvej-Farshi, M. Ghaffari-Miab, M. Jabbari, and G. Darvish, “Ultra-compact spatial terahertz switch based on graphene plasmonic-coupled waveguide,” Plasmonics1–11 (2019).
[Crossref]

Janfaza, M.

M. Janfaza, M. A. Mansouri-Birjandi, and A. Tavousi, “Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on bragg gratings,” Opt. Commun. 440, 75–82 (2019).
[Crossref]

Jian, S.

Jiang, X.

S. Xiao, T. Liu, L. Cheng, C. Zhou, X. Jiang, Z. Li, and C. Xu, “Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures,” J. Lightwave Technol. 37(13), 3290–3297 (2019).
[Crossref]

T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
[Crossref]

Jiao, Z.

R. Ning, Z. Jiao, and J. Bao, “Multi-band and wide-band electromagnetically induced transparency in graphene metasurface of composite structure,” IET Microwaves, Antennas Propag. 12(3), 380–384 (2018).
[Crossref]

Justice, B.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Kaipa, C. S.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87(11), 115401 (2013).
[Crossref]

Kang, Y. S.

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

Kashani, Z. G.

S. Asgari, N. Granpayeh, and Z. G. Kashani, “Plasmonic mid-infrared wavelength selector and linear logic gates based on graphene cylindrical resonator,” IEEE Trans. Nanotechnol. 18, 42–50 (2019).
[Crossref]

Kerkhoff, A.

J. Soric, P. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

Khademi, A.

Khani, S.

S. Khani, M. Danaie, and P. Rezaei, “Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled u-shaped cavities,” IET Optoelectron. 13(4), 161–171 (2019).
[Crossref]

Labate, G.

A. K. Ospanova, G. Labate, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

G. Labate, S. K. Podilchak, and L. Matekovits, “Closed-form harmonic contrast control with surface impedance coatings for conductive objects,” Appl. Opt. 56(36), 10055–10059 (2017).
[Crossref]

G. Labate, A. Alu, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

Laneve, D.

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

Leamy, M. J.

A. Darabi, A. Zareei, M.-R. Alam, and M. J. Leamy, “Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves,” Phys. Rev. Lett. 121(17), 174301 (2018).
[Crossref]

Lee, S. Y.

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

Li, B.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Li, H.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Li, L.

Y. Shi, W. Tang, L. Li, and C.-H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Li, Z.

Liang, C.-H.

Y. Shi, W. Tang, L. Li, and C.-H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Lin, Q.

M. Qin, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
[Crossref]

Lin, Z.

Liu, G.

X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Liu, G.-D.

Liu, J.-Q.

Liu, T.

S. Xiao, T. Liu, L. Cheng, C. Zhou, X. Jiang, Z. Li, and C. Xu, “Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures,” J. Lightwave Technol. 37(13), 3290–3297 (2019).
[Crossref]

T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
[Crossref]

Liu, Y.

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
[Crossref]

Low, T.

S. A. H. Gangaraj, T. Low, A. Nemilentsau, and G. W. Hanson, “Directive surface plasmons on tunable two-dimensional hyperbolic metasurfaces and black phosphorus: Green’s function and complex plane analysis,” IEEE Trans. Antennas Propag. 65(3), 1174–1186 (2017).
[Crossref]

Mansouri-Birjandi, M. A.

M. Janfaza, M. A. Mansouri-Birjandi, and A. Tavousi, “Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on bragg gratings,” Opt. Commun. 440, 75–82 (2019).
[Crossref]

Matekovits, L.

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Reconfigurable metasurface lens based on graphene split ring resonators using pancharatnam–berry phase manipulation,” J. Electromagn. Waves Appl. 33(5), 572–583 (2019).
[Crossref]

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Dynamically tunable scattering manipulation of dielectric and conducting cylinders using nanostructured graphene metasurfaces,” IEEE Access 7, 15556–15562 (2019).
[Crossref]

A. K. Ospanova, G. Labate, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

G. Labate, S. K. Podilchak, and L. Matekovits, “Closed-form harmonic contrast control with surface impedance coatings for conductive objects,” Appl. Opt. 56(36), 10055–10059 (2017).
[Crossref]

G. Labate, A. Alu, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

L. Matekovits and T. S. Bird, “Width-modulated microstrip-line based mantle cloaks for thin single-and multiple cylinders,” IEEE Trans. Antennas Propag. 62(5), 2606–2615 (2014).
[Crossref]

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Tunable lens based on graphene metasurface for circular polarization,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), (IEEE, 2018), pp. 644–647.

Z. Hamzavi-Zarghani, A. Yahaghi, L. Matekovits, and I. Peter, “Tunable polarization converter based on graphene metasurfaces,” in 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), (IEEE, 2018), pp. 1–2.

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Analytical design of a metasurface based mantle cloak for dielectric cylinder under oblique incidence,” in 2018 9th International Symposium on Telecommunications (IST), (IEEE, 2018), pp. 65–68.

Medina, F.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87(11), 115401 (2013).
[Crossref]

Mehrnegar, M. M.

Melin, K.

J. Soric, P. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Meng, H.

X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Mesa, F.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87(11), 115401 (2013).
[Crossref]

Mir, A.

A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photonics Technol. Lett. 31(8), 643–646 (2019).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

A. Farmani, A. Mir, M. Bazgir, and F. B. Zarrabi, “Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in thz range: numerical study,” Phys. E (Amsterdam, Neth.) 104, 233–240 (2018).
[Crossref]

M. Baqir, A. Farmani, T. Fatima, M. Raza, S. Shaukat, and A. Mir, “Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range,” Appl. Opt. 57(31), 9447–9454 (2018).
[Crossref]

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced goos-hanchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

Miri, M.

M. H. Rezaei, A. Zarifkar, and M. Miri, “Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio,” Opt. Mater. 84, 572–578 (2018).
[Crossref]

A. Farmani, M. Miri, and M. H. Sheikhi, “Design of a high extinction ratio tunable graphene on white graphene polarizer,” IEEE Photonics Technol. Lett. 30(2), 153–156 (2018).
[Crossref]

A. Farmani, M. Miri, and M. H. Sheikhi, “Tunable resonant goos–hänchen and imbert–fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces,” J. Opt. Soc. Am. B 34(6), 1097–1106 (2017).
[Crossref]

Mock, J.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Mojahed, A.

M. Rajabi and A. Mojahed, “Active acoustic cloaking spherical shells,” Acta Acust. Acust. 104(1), 5–12 (2018).
[Crossref]

Monti, A.

S. Vellucci, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti, “Satellite applications of electromagnetic cloaking,” IEEE Trans. Antennas Propag. 65(9), 4931–4934 (2017).
[Crossref]

A. Monti, J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for tm and te scattering reduction,” IEEE Trans. Antennas Propag. 63(4), 1775–1788 (2015).
[Crossref]

Moravvej-Farshi, M. K.

M. M. Mehrnegar, S. Darbari, H. Ramezani, and M. K. Moravvej-Farshi, “Designing graphene-based multi-mode acousto-plasmonic devices,” J. Lightwave Technol. 37(9), 2126–2132 (2019).
[Crossref]

M. Dehghan, M. K. Moravvej-Farshi, M. Ghaffari-Miab, M. Jabbari, and G. Darvish, “Ultra-compact spatial terahertz switch based on graphene plasmonic-coupled waveguide,” Plasmonics1–11 (2019).
[Crossref]

Naqvi, Q.

A. Shahzad, S. Ahmed, A. Ghaffar, and Q. Naqvi, “Incorporation of the nihility medium to improve the cylindrical invisibility cloak,” ACES J.29(1), (2014).

Naqvi, Q. A.

M. Nisar and Q. A. Naqvi, “Cloaking and magnifying using radial anisotropy in non-integer dimensional space,” Phys. Lett. A 382(31), 2055–2060 (2018).
[Crossref]

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating pemc at perturbed void region,” Prog. Electromagn. Res. 21, 61–76 (2011).
[Crossref]

Nemilentsau, A.

S. A. H. Gangaraj, T. Low, A. Nemilentsau, and G. W. Hanson, “Directive surface plasmons on tunable two-dimensional hyperbolic metasurfaces and black phosphorus: Green’s function and complex plane analysis,” IEEE Trans. Antennas Propag. 65(3), 1174–1186 (2017).
[Crossref]

Nezhad, A. Z.

R. Emadi, R. Safian, A. Z. Nezhad, and N. Barani, “Robust multi-layer graphene-based plasmonic cloaking,” in 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (IEEE, 2018), pp. 145–146.

Nikmehr, S.

H. Younesiraad, M. Bemani, and S. Nikmehr, “Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach,” IET Microwaves, Antennas Propag. 13(3), 278–285 (2019).
[Crossref]

Ning, R.

R. Ning, Z. Jiao, and J. Bao, “Multi-band and wide-band electromagnetically induced transparency in graphene metasurface of composite structure,” IET Microwaves, Antennas Propag. 12(3), 380–384 (2018).
[Crossref]

Nisar, M.

M. Nisar and Q. A. Naqvi, “Cloaking and magnifying using radial anisotropy in non-integer dimensional space,” Phys. Lett. A 382(31), 2055–2060 (2018).
[Crossref]

Ospanova, A. K.

A. K. Ospanova, G. Labate, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

Padooru, Y. R.

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87(11), 115401 (2013).
[Crossref]

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

Pendry, J. B.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Peter, I.

Z. Hamzavi-Zarghani, A. Yahaghi, L. Matekovits, and I. Peter, “Tunable polarization converter based on graphene metasurfaces,” in 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), (IEEE, 2018), pp. 1–2.

Petruzzelli, V.

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

Piau, G.-P.

T. V. Teperik, S. N. Burokur, A. de Lustrac, G. Sabanowski, and G.-P. Piau, “Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies,” Appl. Phys. Lett. 111(5), 054105 (2017).
[Crossref]

Podilchak, S. K.

Prudenzano, F.

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

Qasim, F.

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating pemc at perturbed void region,” Prog. Electromagn. Res. 21, 61–76 (2011).
[Crossref]

Qin, M.

M. Qin, L. Wang, X. Zhai, and S. Xia, “Multispectral resonances and coherent control in plasmonic metasurfaces,” IEEE Photonics Technol. Lett. 31(4), 319–322 (2019).
[Crossref]

M. Qin, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

Qiu, C.-W.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Rahmanshahi, M.

M. Rahmanshahi, S. Golmohammadi, H. Baghban, and A. Asgari, “Photonics Nanostructures-Fundamentals Appl.,” Photonics Nanostructures-Fundamentals Appl. 31, 173–179 (2018).
[Crossref]

Rainwater, D.

J. Soric, P. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

Rajabi, M.

M. Rajabi and A. Mojahed, “Active acoustic cloaking spherical shells,” Acta Acust. Acust. 104(1), 5–12 (2018).
[Crossref]

Rajput, A.

A. Rajput and K. V. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).
[Crossref]

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wirel. Propag. Lett. 15, 282–285 (2016).
[Crossref]

Ramezani, H.

Raza, M.

Ren, G.

Rezaei, M. H.

M. H. Rezaei, A. Zarifkar, and M. Miri, “Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio,” Opt. Mater. 84, 572–578 (2018).
[Crossref]

Rezaei, P.

S. Khani, M. Danaie, and P. Rezaei, “Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled u-shaped cavities,” IET Optoelectron. 13(4), 161–171 (2019).
[Crossref]

Sabanowski, G.

T. V. Teperik, S. N. Burokur, A. de Lustrac, G. Sabanowski, and G.-P. Piau, “Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies,” Appl. Phys. Lett. 111(5), 054105 (2017).
[Crossref]

Sadaghiani, V. K.

V. K. Sadaghiani, M. Zavvari, M. B. Tavakkoli, and A. Horri, “Design of graphene-based hybrid waveguides for nonlinear applications,” Opt. Quantum Electron. 51(2), 49 (2019).
[Crossref]

Safian, R.

R. Emadi, R. Safian, A. Z. Nezhad, and N. Barani, “Robust multi-layer graphene-based plasmonic cloaking,” in 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (IEEE, 2018), pp. 145–146.

Scalora, M.

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Selvanayagam, M.

M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak using the equivalence principle,” IEEE Antennas Wirel. Propag. Lett. 11, 1226–1229 (2012).
[Crossref]

Shahzad, A.

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating pemc at perturbed void region,” Prog. Electromagn. Res. 21, 61–76 (2011).
[Crossref]

A. Shahzad, S. Ahmed, A. Ghaffar, and Q. Naqvi, “Incorporation of the nihility medium to improve the cylindrical invisibility cloak,” ACES J.29(1), (2014).

Shang, X.

X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Sharifpour, Z.

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced goos-hanchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

Shaukat, S.

Sheikhi, M. H.

A. Farmani, M. Miri, and M. H. Sheikhi, “Design of a high extinction ratio tunable graphene on white graphene polarizer,” IEEE Photonics Technol. Lett. 30(2), 153–156 (2018).
[Crossref]

A. Farmani, M. Miri, and M. H. Sheikhi, “Tunable resonant goos–hänchen and imbert–fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces,” J. Opt. Soc. Am. B 34(6), 1097–1106 (2017).
[Crossref]

Shen, N.-H.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Shi, Y.

Y. Shi, W. Tang, L. Li, and C.-H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Shokati, E.

Smith, D.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Song, D.

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

Soric, J.

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

J. Soric, P. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Soric, J. C.

A. Monti, J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for tm and te scattering reduction,” IEEE Trans. Antennas Propag. 63(4), 1775–1788 (2015).
[Crossref]

Soukoulis, C. M.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Srivastava, K. V.

A. Rajput and K. V. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).
[Crossref]

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wirel. Propag. Lett. 15, 282–285 (2016).
[Crossref]

Starr, A.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Sudhagar, P.

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

Tang, W.

Y. Shi, W. Tang, L. Li, and C.-H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Tavakkoli, M. B.

V. K. Sadaghiani, M. Zavvari, M. B. Tavakkoli, and A. Horri, “Design of graphene-based hybrid waveguides for nonlinear applications,” Opt. Quantum Electron. 51(2), 49 (2019).
[Crossref]

Tavousi, A.

M. Janfaza, M. A. Mansouri-Birjandi, and A. Tavousi, “Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on bragg gratings,” Opt. Commun. 440, 75–82 (2019).
[Crossref]

Teperik, T. V.

T. V. Teperik, S. N. Burokur, A. de Lustrac, G. Sabanowski, and G.-P. Piau, “Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies,” Appl. Phys. Lett. 111(5), 054105 (2017).
[Crossref]

Thong, J. T.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Torabi, E. S.

E. S. Torabi, A. Fallahi, and A. Yahaghi, “Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption,” IEEE Trans. Antennas Propag. 65(3), 1464–1467 (2017).
[Crossref]

Toscano, A.

S. Vellucci, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti, “Satellite applications of electromagnetic cloaking,” IEEE Trans. Antennas Propag. 65(9), 4931–4934 (2017).
[Crossref]

A. Monti, J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for tm and te scattering reduction,” IEEE Trans. Antennas Propag. 63(4), 1775–1788 (2015).
[Crossref]

Tymchenko, M.

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref]

Vafapour, Z.

Vellucci, S.

S. Vellucci, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti, “Satellite applications of electromagnetic cloaking,” IEEE Trans. Antennas Propag. 65(9), 4931–4934 (2017).
[Crossref]

Verma, V.

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

Vura, P.

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wirel. Propag. Lett. 15, 282–285 (2016).
[Crossref]

Wang, G.

T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
[Crossref]

Wang, H.

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
[Crossref]

Wang, L.

M. Qin, L. Wang, X. Zhai, and S. Xia, “Multispectral resonances and coherent control in plasmonic metasurfaces,” IEEE Photonics Technol. Lett. 31(4), 319–322 (2019).
[Crossref]

M. Qin, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

Wang, L.-L.

Wang, X.

X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Wei, Z.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Wen, S.-C.

Wu, H.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Wu, L.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Xia, S.

M. Qin, L. Wang, X. Zhai, and S. Xia, “Multispectral resonances and coherent control in plasmonic metasurfaces,” IEEE Photonics Technol. Lett. 31(4), 319–322 (2019).
[Crossref]

M. Qin, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

Xia, S.-X.

Xiao, L.

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
[Crossref]

Xiao, S.

T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
[Crossref]

S. Xiao, T. Liu, L. Cheng, C. Zhou, X. Jiang, Z. Li, and C. Xu, “Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures,” J. Lightwave Technol. 37(13), 3290–3297 (2019).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
[Crossref]

Xu, C.

S. Xiao, T. Liu, L. Cheng, C. Zhou, X. Jiang, Z. Li, and C. Xu, “Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures,” J. Lightwave Technol. 37(13), 3290–3297 (2019).
[Crossref]

T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
[Crossref]

Yadav, V. S.

V. S. Yadav, S. K. Ghosh, S. Bhattacharyya, and S. Das, “Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence,” Appl. Opt. 57(29), 8720–8726 (2018).
[Crossref]

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (mir) range,” IEEE Trans. Electromagn. Compat.1–9 (2019).
[Crossref]

Yahaghi, A.

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Reconfigurable metasurface lens based on graphene split ring resonators using pancharatnam–berry phase manipulation,” J. Electromagn. Waves Appl. 33(5), 572–583 (2019).
[Crossref]

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Dynamically tunable scattering manipulation of dielectric and conducting cylinders using nanostructured graphene metasurfaces,” IEEE Access 7, 15556–15562 (2019).
[Crossref]

E. S. Torabi, A. Fallahi, and A. Yahaghi, “Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption,” IEEE Trans. Antennas Propag. 65(3), 1464–1467 (2017).
[Crossref]

Z. Hamzavi-Zarghani, A. Yahaghi, L. Matekovits, and I. Peter, “Tunable polarization converter based on graphene metasurfaces,” in 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), (IEEE, 2018), pp. 1–2.

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Tunable lens based on graphene metasurface for circular polarization,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), (IEEE, 2018), pp. 644–647.

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Analytical design of a metasurface based mantle cloak for dielectric cylinder under oblique incidence,” in 2018 9th International Symposium on Telecommunications (IST), (IEEE, 2018), pp. 65–68.

Z. Hamzavi-Zarghani, A. Yahaghi, and A. Bordbar, “Analytical design of nanostructured graphene metasurface for controllable scattering manipulation of dielectric cylinder,” in Electrical Engineering (ICEE), Iranian Conference on, (IEEE, 2018), pp. 592–595.

Yakovlev, A. B.

A. Forouzmand and A. B. Yakovlev, “Electromagnetic cloaking of a finite conducting wedge with a nanostructured graphene metasurface,” IEEE Trans. Antennas Propag. 63(5), 2191–2202 (2015).
[Crossref]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87(11), 115401 (2013).
[Crossref]

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

Yang, T.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Yi, Z.

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
[Crossref]

Younesiraad, H.

H. Younesiraad, M. Bemani, and S. Nikmehr, “Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach,” IET Microwaves, Antennas Propag. 13(3), 278–285 (2019).
[Crossref]

Zareei, A.

A. Darabi, A. Zareei, M.-R. Alam, and M. J. Leamy, “Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves,” Phys. Rev. Lett. 121(17), 174301 (2018).
[Crossref]

Zarifkar, A.

M. H. Rezaei, A. Zarifkar, and M. Miri, “Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio,” Opt. Mater. 84, 572–578 (2018).
[Crossref]

Zarrabi, F. B.

A. Farmani, A. Mir, M. Bazgir, and F. B. Zarrabi, “Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in thz range: numerical study,” Phys. E (Amsterdam, Neth.) 104, 233–240 (2018).
[Crossref]

Zavvari, M.

V. K. Sadaghiani, M. Zavvari, M. B. Tavakkoli, and A. Horri, “Design of graphene-based hybrid waveguides for nonlinear applications,” Opt. Quantum Electron. 51(2), 49 (2019).
[Crossref]

Zhai, X.

M. Qin, L. Wang, X. Zhai, and S. Xia, “Multispectral resonances and coherent control in plasmonic metasurfaces,” IEEE Photonics Technol. Lett. 31(4), 319–322 (2019).
[Crossref]

M. Qin, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

S.-X. Xia, X. Zhai, Y. Huang, J.-Q. Liu, L.-L. Wang, and S.-C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35(20), 4553–4558 (2017).
[Crossref]

G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
[Crossref]

Zhang, F.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Zhang, X.

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microwaves, Antennas Propag. 9(4), 307–312 (2015).
[Crossref]

Zhao, C.-J.

Zhao, Q.

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Zheng, S.

Zhou, C.

T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
[Crossref]

S. Xiao, T. Liu, L. Cheng, C. Zhou, X. Jiang, Z. Li, and C. Xu, “Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures,” J. Lightwave Technol. 37(13), 3290–3297 (2019).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
[Crossref]

Zhu, B.

ACS Nano (1)

P.-Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref]

Acta Acust. Acust. (1)

M. Rajabi and A. Mojahed, “Active acoustic cloaking spherical shells,” Acta Acust. Acust. 104(1), 5–12 (2018).
[Crossref]

Adv. Funct. Mater. (1)

S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, “Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells,” Adv. Funct. Mater. 21(19), 3729–3736 (2011).
[Crossref]

Adv. Mater. (1)

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. Thong, and C.-W. Qiu, “Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Graphene plasmonics: A platform for 2d optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

AEU-International J. Electron. Commun. (1)

M. Biabanifard and M. S. Abrishamian, “Multi-band circuit model of tunable thz absorber based on graphene sheet and ribbons,” AEU-International J. Electron. Commun. 95, 256–263 (2018).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

M. Grande, G. V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, and A. D’Orazio, “Gain and phase control in a graphene-loaded reconfigurable antenna,” Appl. Phys. Lett. 115(13), 133103 (2019).
[Crossref]

M. D. Guild, A. Alu, and M. R. Haberman, “Cloaking of an acoustic sensor using scattering cancellation,” Appl. Phys. Lett. 105(2), 023510 (2014).
[Crossref]

T. V. Teperik, S. N. Burokur, A. de Lustrac, G. Sabanowski, and G.-P. Piau, “Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies,” Appl. Phys. Lett. 111(5), 054105 (2017).
[Crossref]

Appl. Surf. Sci. (1)

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced goos-hanchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

Electron. Lett. (1)

M. Danaeifar, N. Granpayeh, and M. R. Booket, “Optical invisibility of cylindrical structures and homogeneity effect on scattering cancellation method,” Electron. Lett. 52(1), 29–31 (2016).
[Crossref]

IEEE Access (1)

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Dynamically tunable scattering manipulation of dielectric and conducting cylinders using nanostructured graphene metasurfaces,” IEEE Access 7, 15556–15562 (2019).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (4)

M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak using the equivalence principle,” IEEE Antennas Wirel. Propag. Lett. 11, 1226–1229 (2012).
[Crossref]

A. Rajput and K. V. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).
[Crossref]

P. Vura, A. Rajput, and K. V. Srivastava, “Composite-shaped external cloaks with homogeneous material properties,” IEEE Antennas Wirel. Propag. Lett. 15, 282–285 (2016).
[Crossref]

Y. Shi, W. Tang, L. Li, and C.-H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (5)

A. Farmani and A. Mir, “Graphene sensor based on surface plasmon resonance for optical scanning,” IEEE Photonics Technol. Lett. 31(8), 643–646 (2019).
[Crossref]

M. Qin, L. Wang, X. Zhai, and S. Xia, “Multispectral resonances and coherent control in plasmonic metasurfaces,” IEEE Photonics Technol. Lett. 31(4), 319–322 (2019).
[Crossref]

M. Qin, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Multispectral plasmon induced transparency in a defective metasurface plasmonic nanostructure,” IEEE Photonics Technol. Lett. 30(11), 1009–1012 (2018).
[Crossref]

A. Farmani, M. Miri, and M. H. Sheikhi, “Design of a high extinction ratio tunable graphene on white graphene polarizer,” IEEE Photonics Technol. Lett. 30(2), 153–156 (2018).
[Crossref]

X. Wang, G. Liu, S. Xia, H. Meng, X. Shang, P. He, and X. Zhai, “Dynamically tunable fano resonance based on graphene metamaterials,” IEEE Photonics Technol. Lett. 30(24), 2147–2150 (2018).
[Crossref]

IEEE Sens. J. (1)

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

IEEE Trans. Antennas Propag. (6)

S. Vellucci, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti, “Satellite applications of electromagnetic cloaking,” IEEE Trans. Antennas Propag. 65(9), 4931–4934 (2017).
[Crossref]

A. Forouzmand and A. B. Yakovlev, “Electromagnetic cloaking of a finite conducting wedge with a nanostructured graphene metasurface,” IEEE Trans. Antennas Propag. 63(5), 2191–2202 (2015).
[Crossref]

L. Matekovits and T. S. Bird, “Width-modulated microstrip-line based mantle cloaks for thin single-and multiple cylinders,” IEEE Trans. Antennas Propag. 62(5), 2606–2615 (2014).
[Crossref]

E. S. Torabi, A. Fallahi, and A. Yahaghi, “Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption,” IEEE Trans. Antennas Propag. 65(3), 1464–1467 (2017).
[Crossref]

A. Monti, J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, “Anisotropic mantle cloaks for tm and te scattering reduction,” IEEE Trans. Antennas Propag. 63(4), 1775–1788 (2015).
[Crossref]

S. A. H. Gangaraj, T. Low, A. Nemilentsau, and G. W. Hanson, “Directive surface plasmons on tunable two-dimensional hyperbolic metasurfaces and black phosphorus: Green’s function and complex plane analysis,” IEEE Trans. Antennas Propag. 65(3), 1174–1186 (2017).
[Crossref]

IEEE Trans. Nanotechnol. (1)

S. Asgari, N. Granpayeh, and Z. G. Kashani, “Plasmonic mid-infrared wavelength selector and linear logic gates based on graphene cylindrical resonator,” IEEE Trans. Nanotechnol. 18, 42–50 (2019).
[Crossref]

IET Microwaves, Antennas Propag. (3)

X. Huang, X. Zhang, Z. Hu, M. Aqeeli, and A. Alburaikan, “Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach,” IET Microwaves, Antennas Propag. 9(4), 307–312 (2015).
[Crossref]

R. Ning, Z. Jiao, and J. Bao, “Multi-band and wide-band electromagnetically induced transparency in graphene metasurface of composite structure,” IET Microwaves, Antennas Propag. 12(3), 380–384 (2018).
[Crossref]

H. Younesiraad, M. Bemani, and S. Nikmehr, “Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach,” IET Microwaves, Antennas Propag. 13(3), 278–285 (2019).
[Crossref]

IET Optoelectron. (1)

S. Khani, M. Danaie, and P. Rezaei, “Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled u-shaped cavities,” IET Optoelectron. 13(4), 161–171 (2019).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Erratum:"dyadic green’s functions and guided surface waves for a surface conductivity model of graphene" [j. appl. phys. 103, 064302 (2008)],” J. Appl. Phys. 113(2), 029902 (2013).
[Crossref]

J. Electromagn. Waves Appl. (1)

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Reconfigurable metasurface lens based on graphene split ring resonators using pancharatnam–berry phase manipulation,” J. Electromagn. Waves Appl. 33(5), 572–583 (2019).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

T. Liu, C. Zhou, L. Cheng, X. Jiang, G. Wang, C. Xu, and S. Xiao, “Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial,” J. Opt. 21(3), 035101 (2019).
[Crossref]

J. Opt. Soc. Am. B (4)

Metamaterials (1)

A. Alu and N. Engheta, “Cloaking a receiving antenna or a sensor with plasmonic metamaterials,” Metamaterials 4(2-3), 153–159 (2010).
[Crossref]

New J. Phys. (3)

A. Alu, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
[Crossref]

J. Soric, P. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

Opt. Commun. (2)

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426, 629–634 (2018).
[Crossref]

M. Janfaza, M. A. Mansouri-Birjandi, and A. Tavousi, “Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on bragg gratings,” Opt. Commun. 440, 75–82 (2019).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

M. H. Rezaei, A. Zarifkar, and M. Miri, “Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio,” Opt. Mater. 84, 572–578 (2018).
[Crossref]

Opt. Quantum Electron. (1)

V. K. Sadaghiani, M. Zavvari, M. B. Tavakkoli, and A. Horri, “Design of graphene-based hybrid waveguides for nonlinear applications,” Opt. Quantum Electron. 51(2), 49 (2019).
[Crossref]

Photonics Nanostructures-Fundamentals Appl. (1)

M. Rahmanshahi, S. Golmohammadi, H. Baghban, and A. Asgari, “Photonics Nanostructures-Fundamentals Appl.,” Photonics Nanostructures-Fundamentals Appl. 31, 173–179 (2018).
[Crossref]

Phys. E (Amsterdam, Neth.) (1)

A. Farmani, A. Mir, M. Bazgir, and F. B. Zarrabi, “Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in thz range: numerical study,” Phys. E (Amsterdam, Neth.) 104, 233–240 (2018).
[Crossref]

Phys. Lett. A (1)

M. Nisar and Q. A. Naqvi, “Cloaking and magnifying using radial anisotropy in non-integer dimensional space,” Phys. Lett. A 382(31), 2055–2060 (2018).
[Crossref]

Phys. Rev. A (1)

G. Labate, A. Alu, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

Phys. Rev. B (2)

A. Alu, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87(11), 115401 (2013).
[Crossref]

Phys. Rev. Lett. (2)

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref]

A. Darabi, A. Zareei, M.-R. Alam, and M. J. Leamy, “Experimental demonstration of an ultrabroadband nonlinear cloak for flexural waves,” Phys. Rev. Lett. 121(17), 174301 (2018).
[Crossref]

Prog. Electromagn. Res. (1)

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating pemc at perturbed void region,” Prog. Electromagn. Res. 21, 61–76 (2011).
[Crossref]

Sci. Rep. (1)

A. K. Ospanova, G. Labate, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Other (10)

Z. Hamzavi-Zarghani, A. Yahaghi, and A. Bordbar, “Analytical design of nanostructured graphene metasurface for controllable scattering manipulation of dielectric cylinder,” in Electrical Engineering (ICEE), Iranian Conference on, (IEEE, 2018), pp. 592–595.

A. Shahzad, S. Ahmed, A. Ghaffar, and Q. Naqvi, “Incorporation of the nihility medium to improve the cylindrical invisibility cloak,” ACES J.29(1), (2014).

R. Fleury and A. Alu, “Cloaking and invisibility: A review,” in Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), vol. 1 (2014).

C. A. Balanis, Advanced engineering electromagnetics (John Wiley and Sons, 1999).

R. Emadi, R. Safian, A. Z. Nezhad, and N. Barani, “Robust multi-layer graphene-based plasmonic cloaking,” in 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (IEEE, 2018), pp. 145–146.

M. Dehghan, M. K. Moravvej-Farshi, M. Ghaffari-Miab, M. Jabbari, and G. Darvish, “Ultra-compact spatial terahertz switch based on graphene plasmonic-coupled waveguide,” Plasmonics1–11 (2019).
[Crossref]

Z. Hamzavi-Zarghani, A. Yahaghi, L. Matekovits, and I. Peter, “Tunable polarization converter based on graphene metasurfaces,” in 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), (IEEE, 2018), pp. 1–2.

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Tunable lens based on graphene metasurface for circular polarization,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), (IEEE, 2018), pp. 644–647.

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (mir) range,” IEEE Trans. Electromagn. Compat.1–9 (2019).
[Crossref]

Z. Hamzavi-Zarghani, A. Yahaghi, and L. Matekovits, “Analytical design of a metasurface based mantle cloak for dielectric cylinder under oblique incidence,” in 2018 9th International Symposium on Telecommunications (IST), (IEEE, 2018), pp. 65–68.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Dielectric cylinder under TE and TM polarized incident waves.
Fig. 2.
Fig. 2. (a) Structure of graphene strips, (b) A dielectric cylinder coated by graphene strips.
Fig. 3.
Fig. 3. The surface impedance tensor elements $z_{xx}$ and $z_{zz}$ for the optimized parameters of the proposed structure. The determined points with a star and dot correspond to the required surface impedances for $z_{xx}$ and $z_{zz}$, respectively.
Fig. 4.
Fig. 4. RCS of uncloaked and cloaked cylinders with anisotropic metasurface for (a) $TM$ polarized incident wave and (b) $TE$ polarized incident wave.
Fig. 5.
Fig. 5. RCS of the cloaked cylinders for different amounts of the relaxation time of graphene for (a) $TM$, (b) $TE$ polarizations.
Fig. 6.
Fig. 6. RCS of uncloaked and cloaked cylinders with anisotropic metasurface for $TE$ and $TM$ polarizations with the chemical potential of (a) 0.25eV and (b) 0.55eV.
Fig. 7.
Fig. 7. Electric field distribution for the (a) uncloaked and (b) cloaked cylinders for $TM$ polarization and (c) uncloaked and (d) cloaked cylinders for $TE$ polarization
Fig. 8.
Fig. 8. Electric field distribution for the cloaked cylinders for (a) and (b) $TM$ polarization, (c) and (d) $TE$ polarization. (a) and (c) at 2.1THz, (b) and (d) at 2.8THz.
Fig. 9.
Fig. 9. Polar plot of RCS related to cloaked and uncloaked cylinders for (a) $TM$ polarized incident wave in $\phi =0^{\circ }$ plane and for (b) $TE$ polarized incident wave in $\theta =0^{\circ }$ plane. Blue: uncloaked, Red: cloaked, Dashed line: CST, Solid line: HFSS
Fig. 10.
Fig. 10. RCS of cloaked and uncloaked cylinders under illumination of circular polarized waves.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E i = z ^   E 0   n = j n J n ( β 0 r )   e j n ϕ
E s = z ^   E 0   n = j n   c n ( T M )   H n ( 2 ) ( β 0 r )   e j n ϕ
E i n = z ^   E 0   n = j n   a n ( T M )   J n ( β r )   e j n ϕ
H i = z ^   E 0   n = j n J n ( β 0 r )   e j n ϕ
H s = z ^   E 0   n = j n   c n ( T E )   H n ( 2 ) ( β 0 r )   e j n ϕ
H i n = z ^   E 0   n = j n   a n ( T E )   J n ( β r )   e j n ϕ
H ϕ ( T M ) = 1 j w μ E z ( T M ) r
E ϕ ( T E ) = 1 j w ϵ H z ( T E ) r
z z z = z s   p a
z x x = z s   a p + g p   σ c
σ c = j ω ϵ 0 p π   ln csc ( π g 2 p )
σ i n t r a = j K B e 2 T π 2 ( w 2 j τ 1 ) [ μ c K B T + 2 ln ( e μ c K B T + 1 ) ]
σ i n t e r = j e 2 4 π ln ( 2 | μ c | ( w j τ 1 ) 2 | μ c | + ( w j τ 1 ) )
z z z = 2 ω a 1 ϵ 0 ( ϵ r 1 )

Metrics