Abstract

Photonic integrated circuit (PIC) phased arrays can be an enabling technology for a broad range of applications including free-space laser communications on compact moving platforms. However, scaling PIC phased arrays to a large number of array elements is limited by the large size and high power consumption of individual phase shifters used for beam steering. In this paper, we demonstrate silicon PIC phased array beam steering based on thermally tuned ultracompact microring resonator phase shifters with a radius of a few microns. These resonators integrated with micro-heaters are designed to be strongly coupled to an external waveguide, thereby providing a large and adjustable phase shift with a small residual amplitude modulation while consuming an average power of 0.4 mW. We also introduce near-field and far-field characterization techniques to enable the calibration and programming of resonator phase shifters in the phased array. With such compact phase shifters, we demonstrate beam steering with a 1x8 PIC phased array. The small size of these resonator phase shifters will enable low-power and ultra-large scale PIC phased arrays for long distance laser communication systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas

C. T. DeRose, R. D. Kekatpure, D. C. Trotter, A. Starbuck, J. R. Wendt, A. Yaacobi, M. R. Watts, U. Chettiar, N. Engheta, and P. S. Davids
Opt. Express 21(4) 5198-5208 (2013)

Ultra-compact electrically controlled beam steering chip based on coherently coupled VCSEL array directly integrated with optical phased array

Guanzhong Pan, Chen Xu, Yiyang Xie, Yibo Dong, Qiuhua Wang, Jun Deng, Jie Sun, and Hongda Chen
Opt. Express 27(10) 13910-13922 (2019)

N × N optical phased array with 2N phase shifters

Farshid Ashtiani and Firooz Aflatouni
Opt. Express 27(19) 27183-27190 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Doylend, M. Heck, J. T. Bovington, J. D. Peters, L. Coldren, and J. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref]
  2. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref]
  3. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref]
  4. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
    [Crossref]
  5. J. Notaros, C. V. Poulton, M. J. Byrd, M. Raval, and M. R. Watts, “Integrated optical phased arrays for quasi-bessel-beam generation,” Opt. Lett. 42(17), 3510–3513 (2017).
    [Crossref]
  6. J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
    [Crossref]
  7. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
    [Crossref]
  8. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39(15), 4575–4578 (2014).
    [Crossref]
  9. M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
    [Crossref]
  10. C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).
  11. Y. Zhang, Y.-C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. B. Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27(3), 1929–1940 (2019).
    [Crossref]
  12. J. Sun, E. shah Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, “Two-dimensional apodized silicon photonic phased arrays,” Opt. Lett. 39(2), 367–370 (2014).
    [Crossref]
  13. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
    [Crossref]
  14. S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator cmos,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
    [Crossref]
  15. R. Fatemi, A. Khachaturian, and A. Hajimiri, “A nonuniform sparse 2-d large-fov optical phased array with a low-power pwm drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
    [Crossref]
  16. S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.
  17. W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars,” Opt. Express 27(3), 3642–3663 (2019).
    [Crossref]
  18. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
    [Crossref]
  19. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
    [Crossref]
  20. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
    [Crossref]
  21. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
    [Crossref]
  22. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and lidar,” Opt. Express 25(3), 2511–2528 (2017).
    [Crossref]
  23. R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2d aperture,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B–6.
  24. Y. Lo, “A mathematical theory of antenna arrays with randomly spaced elements,” IEEE Trans. Antennas Propag. 12(3), 257–268 (1964).
    [Crossref]
  25. R. J. Mailloux, Phased array antenna handbook (Artech house, 2017).
  26. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).
    [Crossref]
  27. M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
    [Crossref]
  28. R. Fatemi, B. Abiri, A. Khachaturian, and A. Hajimiri, “High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture,” Opt. Express 26(23), 29983–29999 (2018).
    [Crossref]
  29. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

2019 (4)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Y. Zhang, Y.-C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. B. Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27(3), 1929–1940 (2019).
[Crossref]

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A nonuniform sparse 2-d large-fov optical phased array with a low-power pwm drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars,” Opt. Express 27(3), 3642–3663 (2019).
[Crossref]

2018 (3)

2017 (4)

2016 (1)

2014 (4)

J. Sun, E. shah Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, “Two-dimensional apodized silicon photonic phased arrays,” Opt. Lett. 39(2), 367–370 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39(15), 4575–4578 (2014).
[Crossref]

2013 (3)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

2011 (1)

2010 (2)

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[Crossref]

1964 (1)

Y. Lo, “A mathematical theory of antenna arrays with randomly spaced elements,” IEEE Trans. Antennas Propag. 12(3), 257–268 (1964).
[Crossref]

1958 (1)

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).
[Crossref]

Abediasl, H.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator cmos,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Abiri, B.

Adibi, A.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[Crossref]

Anderson, P. W.

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).
[Crossref]

Atabaki, A. H.

Baehr-Jones, T.

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

Bovington, J. T.

Bowers, J.

Bowers, J. E.

Byrd, M. J.

Chang, Y.-C.

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref]

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

Christodoulides, D. N.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Chung, S.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator cmos,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Coldren, L.

Cole, D. B.

Colosimo, J.

Coolbaugh, D.

Davenport, M.

Doylend, J. K.

Fatemi, R.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A nonuniform sparse 2-d large-fov optical phased array with a low-power pwm drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

R. Fatemi, B. Abiri, A. Khachaturian, and A. Hajimiri, “High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture,” Opt. Express 26(23), 29983–29999 (2018).
[Crossref]

R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2d aperture,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B–6.

Feshali, A.

Galland, C.

Gentry, C.

Gordillo, O. A. J.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

Hajimiri, A.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A nonuniform sparse 2-d large-fov optical phased array with a low-power pwm drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

R. Fatemi, B. Abiri, A. Khachaturian, and A. Hajimiri, “High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture,” Opt. Express 26(23), 29983–29999 (2018).
[Crossref]

R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2d aperture,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B–6.

Hashemi, H.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator cmos,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

Heck, J.

Heck, M.

Helkey, R.

Hochberg, M.

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[Crossref]

Huang, J.

Hutchison, D. N.

Ji, X.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

Khachaturian, A.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A nonuniform sparse 2-d large-fov optical phased array with a low-power pwm drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

R. Fatemi, B. Abiri, A. Khachaturian, and A. Hajimiri, “High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture,” Opt. Express 26(23), 29983–29999 (2018).
[Crossref]

R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2d aperture,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B–6.

Khandaker, M.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Kim, W.

Komljenovic, T.

Kumar, R.

Leake, G.

Li, N.

Li, Q.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Lim, A. E.-J.

Ling, Y.-C.

Lipson, M.

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref]

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

Lispson, M.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

Lo, G.-Q.

Lo, Y.

Y. Lo, “A mathematical theory of antenna arrays with randomly spaced elements,” IEEE Trans. Antennas Propag. 12(3), 257–268 (1964).
[Crossref]

Mailloux, R. J.

R. J. Mailloux, Phased array antenna handbook (Artech house, 2017).

Miller, S. A.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

Mohanty, A.

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref]

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

Moresco, M.

Notaros, J.

Peters, J. D.

Phare, C. T.

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref]

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

Pintus, P.

Poulton, C. V.

Raval, M.

Roberts, S. P.

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref]

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

Rong, H.

Russo, P.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Sadighi, D.

Segev, M.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

shah Hosseini, E.

Shin, M. C.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

Silberberg, Y.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Soltani, M.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Stern, B.

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

Su, Z.

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

J. Sun, E. shah Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, “Two-dimensional apodized silicon photonic phased arrays,” Opt. Lett. 39(2), 367–370 (2014).
[Crossref]

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39(15), 4575–4578 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Suni, P.

Timurdogan, E.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Torres, A.

Tran, M.

Vermeulen, D.

Watts, M. R.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state lidar with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref]

J. Notaros, C. V. Poulton, M. J. Byrd, M. Raval, and M. R. Watts, “Integrated optical phased arrays for quasi-bessel-beam generation,” Opt. Lett. 42(17), 3510–3513 (2017).
[Crossref]

J. Sun, E. shah Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, “Two-dimensional apodized silicon photonic phased arrays,” Opt. Lett. 39(2), 367–370 (2014).
[Crossref]

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39(15), 4575–4578 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Whaley, G.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

Xie, W.

Yaacobi, A.

Yang, S.

Yegnanarayanan, S.

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[Crossref]

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

Yoo, S. B.

Zadka, M.

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref]

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

Zhang, K.

Zhang, Y.

IEEE J. Quantum Electron. (1)

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range lidar and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

IEEE J. Solid-State Circuits (2)

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator cmos,” IEEE J. Solid-State Circuits 53(1), 275–296 (2018).
[Crossref]

R. Fatemi, A. Khachaturian, and A. Hajimiri, “A nonuniform sparse 2-d large-fov optical phased array with a low-power pwm drive,” IEEE J. Solid-State Circuits 54(5), 1200–1215 (2019).
[Crossref]

IEEE Trans. Antennas Propag. (1)

Y. Lo, “A mathematical theory of antenna arrays with randomly spaced elements,” IEEE Trans. Antennas Propag. 12(3), 257–268 (1964).
[Crossref]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Nat. Photonics (1)

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Opt. Express (8)

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref]

Y. Zhang, Y.-C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. B. Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27(3), 1929–1940 (2019).
[Crossref]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[Crossref]

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and lidar,” Opt. Express 25(3), 2511–2528 (2017).
[Crossref]

R. Fatemi, B. Abiri, A. Khachaturian, and A. Hajimiri, “High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture,” Opt. Express 26(23), 29983–29999 (2018).
[Crossref]

J. K. Doylend, M. Heck, J. T. Bovington, J. D. Peters, L. Coldren, and J. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars,” Opt. Express 27(3), 3642–3663 (2019).
[Crossref]

Opt. Lett. (5)

Optica (1)

Phys. Rev. (1)

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).
[Crossref]

Other (5)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

R. J. Mailloux, Phased array antenna handbook (Artech house, 2017).

S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka, and M. Lispson, “512-element actively steered silicon phased array for low-power lidar,” in 2018 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2018), pp. 1–2.

R. Fatemi, A. Khachaturian, and A. Hajimiri, “Scalable optical phased array with sparse 2d aperture,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. STu4B–6.

C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” arXiv preprint arXiv:1802.04624 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Design of the phased array unit cell. (a) Three-dimensional representation of the PIC phased array unit cell where a silicon waveguide is coupled to a resonator tuned by a resistive heater. The resonator output is then emitted into free-space with an optical nanoantenna. (b) Amplitude and (c) phase of the resonator transmission spectrum associated with three different waveguide-resonator coupling regimes attributed to over-coupled ($Q_c =0.5 Q_0$) and under-coupled ($Q_c =2 Q_0$), as well as strongly over-coupled ($Q_c =0.1 Q_0$) resonators. (d) Far-field radiation pattern associated with the antenna design simulated with FDTD.
Fig. 2.
Fig. 2. Chip layout and experimental apparatus. (a) Optical micrograph of a 1x8 phased-array with resonator phase shifters displayed in falses where the device “unit cell” is framed. (b) SEM image of the device unit cell and (c) its over-coupled resonator. (d) Experimental apparatus with two switchable configurations for near-field and far-field imaging used to characterize the fabricated phased-arrays. Figure legend: PIC: photonic integrated circuit, $f_1$: objective lens, $f_2$: removable lens, $f_3$: imaging lens, CCD: charge-coupled device camera.
Fig. 3.
Fig. 3. Resonator phase shifter characterization for the phased array. (a) A representative resonator spectra based on Eq. (1) expected from our resonator phase shifter, when using our near-field method. The first order mode is weakly coupled, and the 2nd order mode is strongly over-coupled, which is the case of interest . (b) Near-field measured spectrum of each resonator phase shifter in the phased array. The resonances are already aligned through an applied bias voltage to the heaters while monitoring the 1st order resonance which has an observable extinction. (c) Representative SDFI spectrum of a resonator phase shifter based on Eq. (3) in the phased array for different resonance shifts. (d) Measured SDFI spectrum of each resonator phase shifter in the array from Fig. 2(a). The insets show the extracted $Q_c$ of the resonators via theoretical fitting of Eq. (3).
Fig. 4.
Fig. 4. Near-field and optimized far-field patterns of a 1x8 phased array with resonator phase shifters shown in Fig. 2(a). (a) Near-field pattern of the phased array. (b) Far-field pattern of the phased-array optimized to have strong contrast between central peaks and their side-lobes. (c) Far-field pattern averaged along the $y$ direction. (d) Corresponding far-field pattern expected from theory.
Fig. 5.
Fig. 5. Beam steering with a 1x8 PIC phased array with resonator phase shifters. (a) Beam-steering of the pattern shown in Fig. 4 to three different positions. (b) Continuous beam-steering of the pattern shown in (a) achieved through the use of 36 different voltage configurations applied to the device’s heaters. (c) Employed voltage values shifted with respect to the calibrating voltage used to shift the device resonances. $\pm$ 0.2 V regions are shown as red dotted lines.
Fig. 6.
Fig. 6. Transverse modes supported by the ring resonator.
Fig. 7.
Fig. 7. Test structure micrographs. (a) Test structures with input and output grating couplers, and resonators with a radius of 2.75 µm and pulley coupling angles of $60^{\textrm {o}}$ (4), $90^{\textrm {o}}$ (5), and $120^{\textrm {o}}$ (6). (b) Zoomed-in version of (a) focusing on the resonator employed as the phase shifter in the PIC phased array in the main text. The measured insertion loss of the grating couplers is 6-8 dB
Fig. 8.
Fig. 8. Transmission spectra of the ring resonators in the test structures shown in Fig. 7. (a) Spectrum of a resonator with $60^{\textrm {o}}$ pulley coupling featuring its first and second order modes at 1539.4 nm and 1550.8 nm, respectively. (b) Region of the resonator spectrum focusing on the second order mode for the cases of $60^{\textrm {o}}$ (under-coupled), $90^{\textrm {o}}$ (close to critically coupled), and $120^{\textrm {o}}$ (over-coupled) pulley coupling.
Fig. 9.
Fig. 9. Antenna design employed in the phased array. (a) Three-dimensional layout of the antenna. A 470 nm wide silicon on oxide waveguide tapers out over a distance of 4 µm into the radiating component of the structure. (b) Two-dimensional cross-section of (a) highlighting the device structure where $t_1=1.5$ µm and $t_2=2$ µm. (c) Zoomed-in version of (b) featuring the finer features of the antenna where $t_3=140$ nm, $t_4=220$ nm, $S_1=550$ nm, $S_2=750$ nm, $S_3=180$ nm, $S_4=550$ nm, $S_5=180$ nm, $S_6=650$ nm, and $S_7=180$ nm. (d) Emission efficiency of the antenna as a function of the width of its grating teeth. (e) Simulated far-field emission profile of the antenna.
Fig. 10.
Fig. 10. Extraction of the resonator transmission spectra from images of the near-field. (a) Raw (top) and threshold-ed (bottom) versions of the near-field images of the light emitted from the phased-array. A threshold value of 0.1 was employed in the illustrated results. (b) Bins attributed to each nanoantenna obtained from the threshold-ed image in (a). (c) Resonator transmission spectra obtained based on the bin assignment shown in (b). The spectra areed based on their bin assignment.
Fig. 11.
Fig. 11. Modeled SDFI spectral response of a phased array to resonance shifts in a single resonator (a) Modeled SDFI spectrum $f(\omega )$ attributed to various resonance shifts $\delta \omega$ applied to the first to the fourth emitting elements in the phased array. (b) Corresponding phase transmission spectra of the resonator for shifted ($\omega _0'=\omega _0$) and non-shifted ($\omega _0'=\omega _0 + \delta \omega$) resonant wavelengths, where wavelengths experiencing a $\pi$ phase shift upon the resonance shift are labeled. Resonant frequency shifts $\delta \omega$ are expressed in terms of the full-width half-maximum of the resonator transmission spectrum, which, for over-coupled resonators, consists of $\textrm {FWHM} = \omega _0/Q_c$. Note that from both symmetry and Eq. (11), we expect curves associated with $n$ and $N-1-n$ to be identical.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T = j 2 ( ω ω 0 ) / ω 0 + 1 / Q 0 1 / Q c j 2 ( ω ω 0 ) / ω 0 + 1 / Q 0 + 1 / Q c ,
ϕ 2 tan 1 ( 2 Q c ( ω ω 0 ) ω 0 ) ,
SDFI n ( λ ) = 16 sin 2 ( Δ ϕ ( λ ) 2 ) [ ( N 1 ) sin 2 ( Δ ϕ ( λ ) 2 ) + | 2 n N 1 2 | cos ( Δ ϕ ( λ ) ) ]
f ( λ ) = i , j ( I i , j ( V = V 0 , λ ) I i , j ( V = V 0 + δ V , λ ) ) 2 ,
u ( x , y , z ) U 0 ( k x z , k y z ) A ( x , z ) ,
A ( x , z ) = m = 0 N 1 exp ( j m k Λ x / z ) ,
A ( α = k Λ x / z , Δ ϕ ) = m = 0 N 1 exp ( j m α + δ m n Δ ϕ ) = m = 0 n 2 e j m α + e j ( n 1 ) α + Δ ϕ + e j n α m = 0 N n 1 e j m α = 1 e j ( n 1 ) α 1 e j α + e j ( n 1 ) α + Δ ϕ + e j n α e j N α 1 e j α ,
I ( x , y , z , Δ ϕ ) | U 0 ( α Λ , k y z ) | 2 | A ( α , Δ ϕ ) | 2 ,
I ( x , y , z , Δ Φ ) I ( x , y , z , 0 ) | A ( α , Δ ϕ ) | 2 | A ( α , 0 ) | 2 = 4 sin ( Δ ϕ / 2 ) sin ( α / 2 ) [ sin ( α 2 ) sin ( Δ ϕ 2 ) sin ( N α 2 ) sin ( Δ ϕ ( N + 1 2 n ) α 2 ) ]
f ( λ ) = 4 sin 2 ( Δ ϕ ( λ ) / 2 ) [ 2 | N | + ( 2 | 1 + N 2 n | | 1 + 2 N 2 n | | 1 2 n | ) cos ( Δ ϕ ( λ ) ) + 4 ( 1 | 1 + N n | | n | + | n N | + 2 | 1 n | ) sin 2 ( Δ ϕ ( λ ) / 2 ) ] .
f ( λ ) = 16 sin 2 ( Δ ϕ ( λ ) 2 ) [ ( N 1 ) sin 2 ( Δ ϕ ( λ ) 2 ) + | 2 n N 1 2 | cos ( Δ ϕ ( λ ) ) ] .

Metrics