Abstract

A micro-fiber Mach–Zehnder interferometer (MZI), with a thousands-µm-long ring-core fiber (RCF), is demonstrated, and its performance investigation is also implemented. In this paper, the proposed MZI is manufactured by ends-splicing the short RCF segment with single-mode fiber (SMF-28), respectively. The scheme of the MZI is a typically core-mismatch structure, which has the advantages of miniaturization and simplification. Due to the core mismatch between RCF and SMF, the light from the SMF can be well separated into ring core (RC) and silica center (SC) of the RCF at the first splicing point. After transmitting through the RC and SC, the two separated light beams encounter each other and interfere at the second splicing point. Different from conventional micro-fiber MZIs using SMFs or few-mode fibers, the RCF has a higher numerical aperture, which can generate a larger optical path-length difference with a short length fiber, accumulates a higher extinction ratio and suppresses the crosstalk between the core and cladding modes. Therefore, our proposed MZI is more stable and the best extinction ratios can reach up to 18.2 dB. Meanwhile, owing to the core structure of RCF (where SC is surrounded by high-index ring core), the power propagating through low-index area of RCF is mostly confined into SC (termed the silica-center modes). These characteristics would lead to the lower sensitivity to external disturbances.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity micro-fiber Mach-Zehnder interferometric temperature sensors with a high index ring layer

Yuqi Wu, Dong Yan, Nan-Kuang Chen, Kenneth T. V. Grattan, B. M. A. Rahman, Xuan Li, Zhen Tian, Liqiang Zhang, Xia Zhang, Xiaoguang Zhang, Lixia Xi, and Hu Zhang
Opt. Express 27(23) 34247-34257 (2019)

Optical fiber axial micro-displacement sensor based on Mach-Zehnder interferometer

Changyu Shen, Youqing Wang, Jinlei Chu, Yanfang Lu, Yi Li, and Xinyong Dong
Opt. Express 22(26) 31984-31992 (2014)

In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing

J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. F. Wang, J. Yang, and L. B. Yuan
Opt. Express 26(15) 19091-19099 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Chen, X. Shu, and K. Sugden, “Ultra-compact all-in-fiber-core Mach–Zehnder interferometer,” Opt. Lett. 42(20), 4059–4062 (2017).
    [Crossref]
  2. Y. K. Lize, B. Kuhlmey, and R. Kashyap, “Single Mach Zehnder Interferometer Design for Broadband DPSK demodulation,” in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2005), paper FThJ2.
  3. N. Chen, Z. Feng, T. Yang, Y. Chen, and C. Lin, “High sensitivity miniature Mach-Zehnder-interferometer using micro-abrupt-tapers in a cladding-depressed strongly guiding fiber for a picoliter-volume microsensing,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThQ2.
  4. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High-contrast 40-Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
    [Crossref]
  5. O. Yaghobi and H. R. Karimi-Alavijeh, “Single Step Process for Optical Microfiber In-Line Mach–Zehnder Interferometers Fabrication,” IEEE Photonics Technol. Lett. 30(10), 915–918 (2018).
    [Crossref]
  6. C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach–Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
    [Crossref]
  7. S. Pevec and D. Donlagic, “Miniature fiber-optic Fabry-Perot refractive index sensor for gas sensing with a resolution of 5×10−9 RIU,” Opt. Express 26(18), 23868–23882 (2018).
    [Crossref]
  8. K. K. C. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. D. Yang, and P. R. Herman, “Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides,” Opt. Express 21(20), 24076–24086 (2013).
    [Crossref]
  9. G. Salceda-Delgado, A. Martinez-Rios, and D. Monzón-Hernández, “Tailoring Mach–Zehnder Comb-Filters Based on Concatenated Tapers,” J. Lightwave Technol. 31(5), 761–767 (2013).
    [Crossref]
  10. Y. Qi, L. Ma, Z. Kang, Y. Bai, B. Yin, and S. Jian, “Highly sensitive curvature sensor based on a multi-cladding fiber sandwiched dual no-core fibers structure,” Appl. Opt. 53(28), 6382–6388 (2014).
    [Crossref]
  11. H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach–Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
    [Crossref]
  12. W. W. Li, D. N. Wang, Z. K. Wang, and B. Xu, “Fiber in-line Mach–Zehnder interferometer based on a pair of short sections of waveguide,” Opt. Express 26(9), 11496–11502 (2018).
    [Crossref]
  13. W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach–Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
    [Crossref]
  14. X. Wen, T. Ning, H. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell-shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
    [Crossref]
  15. X. Zhan, Y. Liu, M. Tang, L. Ma, R. Wang, L. Duan, L. Gan, C. Yang, W. Tong, S. Fu, D. Liu, and Z. He, “Few-mode multicore fiber enabled integrated Mach–Zehnder interferometers for temperature and strain discrimination,” Opt. Express 26(12), 15332–15342 (2018).
    [Crossref]
  16. Z. Tian and S. Yam, “In-Line Single-Mode Optical Fiber Interferometric Refractive Index Sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009).
    [Crossref]
  17. N. K. Chen, K. Y. Lu, and Y. H. Chang, “Wavelength-beat integrated micro Michelson fiber interferometer based on core-cladding mode interferences for real-time moving direction determination,” in CLEO:2013 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2013), ATh4 K.5.
  18. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. Yamamoto, “Design of Three-Spatial-Mode Ring-Core Fiber,” J. Lightwave Technol. 32(7), 1337–1343 (2014).
    [Crossref]
  19. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [Crossref]
  20. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer – analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [Crossref]

2018 (4)

2017 (1)

2015 (1)

2014 (3)

2013 (3)

2012 (1)

2011 (3)

2009 (1)

Bai, Y.

Bennion, I.

H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach–Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Brunet, C.

Chang, Y. H.

N. K. Chen, K. Y. Lu, and Y. H. Chang, “Wavelength-beat integrated micro Michelson fiber interferometer based on core-cladding mode interferences for real-time moving direction determination,” in CLEO:2013 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2013), ATh4 K.5.

Chen, N.

N. Chen, Z. Feng, T. Yang, Y. Chen, and C. Lin, “High sensitivity miniature Mach-Zehnder-interferometer using micro-abrupt-tapers in a cladding-depressed strongly guiding fiber for a picoliter-volume microsensing,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThQ2.

Chen, N. K.

N. K. Chen, K. Y. Lu, and Y. H. Chang, “Wavelength-beat integrated micro Michelson fiber interferometer based on core-cladding mode interferences for real-time moving direction determination,” in CLEO:2013 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2013), ATh4 K.5.

Chen, P.

Chen, Y.

N. Chen, Z. Feng, T. Yang, Y. Chen, and C. Lin, “High sensitivity miniature Mach-Zehnder-interferometer using micro-abrupt-tapers in a cladding-depressed strongly guiding fiber for a picoliter-volume microsensing,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThQ2.

Chitaree, R.

Chu, J.

Dong, X.

Donlagic, D.

Duan, L.

Farrell, G.

Fedeli, J.-M.

Feng, T.

X. Wen, T. Ning, H. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell-shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
[Crossref]

Feng, Z.

N. Chen, Z. Feng, T. Yang, Y. Chen, and C. Lin, “High sensitivity miniature Mach-Zehnder-interferometer using micro-abrupt-tapers in a cladding-depressed strongly guiding fiber for a picoliter-volume microsensing,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThQ2.

Fournier, M.

Fu, H.

H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach–Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Fu, S.

Gan, L.

Gardes, F. Y.

Gong, H.

Grosse, P.

Hanzawa, N.

Haque, M.

He, S.

H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach–Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

He, Z.

Herman, P. R.

Hu, Y.

Jian, S.

Jian, W.

X. Wen, T. Ning, H. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell-shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
[Crossref]

Jin, Y.

Kang, Z.

Karimi-Alavijeh, H. R.

O. Yaghobi and H. R. Karimi-Alavijeh, “Single Step Process for Optical Microfiber In-Line Mach–Zehnder Interferometers Fabrication,” IEEE Photonics Technol. Lett. 30(10), 915–918 (2018).
[Crossref]

Kasahara, M.

Kashyap, R.

Y. K. Lize, B. Kuhlmey, and R. Kashyap, “Single Mach Zehnder Interferometer Design for Broadband DPSK demodulation,” in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2005), paper FThJ2.

Kuhlmey, B.

Y. K. Lize, B. Kuhlmey, and R. Kashyap, “Single Mach Zehnder Interferometer Design for Broadband DPSK demodulation,” in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2005), paper FThJ2.

LaRochelle, S.

Lee, K. K. C.

Li, J.

X. Wen, T. Ning, H. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell-shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
[Crossref]

Li, W. W.

Liao, C. R.

Lin, C.

N. Chen, Z. Feng, T. Yang, Y. Chen, and C. Lin, “High sensitivity miniature Mach-Zehnder-interferometer using micro-abrupt-tapers in a cladding-depressed strongly guiding fiber for a picoliter-volume microsensing,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThQ2.

Liu, D.

Liu, W.

H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach–Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Liu, Y.

Lize, Y. K.

Y. K. Lize, B. Kuhlmey, and R. Kashyap, “Single Mach Zehnder Interferometer Design for Broadband DPSK demodulation,” in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2005), paper FThJ2.

Lu, K. Y.

N. K. Chen, K. Y. Lu, and Y. H. Chang, “Wavelength-beat integrated micro Michelson fiber interferometer based on core-cladding mode interferences for real-time moving direction determination,” in CLEO:2013 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2013), ATh4 K.5.

Ma, L.

Mariampillai, A.

Martinez-Rios, A.

Mashanovich, G.

Matsui, T.

Messaddeq, Y.

Monzón-Hernández, D.

Ning, T.

X. Wen, T. Ning, H. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell-shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
[Crossref]

Pei, L.

X. Wen, T. Ning, H. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell-shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
[Crossref]

Pevec, S.

Qi, Y.

Reed, G. T.

Rusch, L. A.

Saitoh, K.

Sakamoto, T.

Salceda-Delgado, G.

Semenova, Y.

Shen, C.

Shu, X.

P. Chen, X. Shu, and K. Sugden, “Ultra-compact all-in-fiber-core Mach–Zehnder interferometer,” Opt. Lett. 42(20), 4059–4062 (2017).
[Crossref]

H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach–Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Standish, B. A.

Sugden, K.

Talataisong, W.

Tang, M.

Thomson, D. J.

Tian, Z.

Tong, W.

Tsujikawa, K.

Vaity, P.

Wang, C.

Wang, D. N.

Wang, J.

Wang, P.

Wang, R.

Wang, Z. K.

Wen, X.

X. Wen, T. Ning, H. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell-shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
[Crossref]

Wu, Q.

Xu, B.

Yaghobi, O.

O. Yaghobi and H. R. Karimi-Alavijeh, “Single Step Process for Optical Microfiber In-Line Mach–Zehnder Interferometers Fabrication,” IEEE Photonics Technol. Lett. 30(10), 915–918 (2018).
[Crossref]

Yam, S.

Yamamoto, F.

Yang, C.

Yang, T.

N. Chen, Z. Feng, T. Yang, Y. Chen, and C. Lin, “High sensitivity miniature Mach-Zehnder-interferometer using micro-abrupt-tapers in a cladding-depressed strongly guiding fiber for a picoliter-volume microsensing,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThQ2.

Yang, V. X. D.

Yin, B.

You, H.

X. Wen, T. Ning, H. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell-shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
[Crossref]

You, Y.

Zhan, X.

Zhang, A.

H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach–Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Zhang, L.

H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach–Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Zhong, C.

Zou, X.

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (2)

X. Wen, T. Ning, H. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell-shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photonics Technol. Lett. 25(18), 1839–1842 (2013).
[Crossref]

O. Yaghobi and H. R. Karimi-Alavijeh, “Single Step Process for Optical Microfiber In-Line Mach–Zehnder Interferometers Fabrication,” IEEE Photonics Technol. Lett. 30(10), 915–918 (2018).
[Crossref]

IEEE Sens. J. (1)

H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach–Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (8)

C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
[Crossref]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer – analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High-contrast 40-Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[Crossref]

C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach–Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
[Crossref]

S. Pevec and D. Donlagic, “Miniature fiber-optic Fabry-Perot refractive index sensor for gas sensing with a resolution of 5×10−9 RIU,” Opt. Express 26(18), 23868–23882 (2018).
[Crossref]

K. K. C. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. D. Yang, and P. R. Herman, “Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides,” Opt. Express 21(20), 24076–24086 (2013).
[Crossref]

X. Zhan, Y. Liu, M. Tang, L. Ma, R. Wang, L. Duan, L. Gan, C. Yang, W. Tong, S. Fu, D. Liu, and Z. He, “Few-mode multicore fiber enabled integrated Mach–Zehnder interferometers for temperature and strain discrimination,” Opt. Express 26(12), 15332–15342 (2018).
[Crossref]

W. W. Li, D. N. Wang, Z. K. Wang, and B. Xu, “Fiber in-line Mach–Zehnder interferometer based on a pair of short sections of waveguide,” Opt. Express 26(9), 11496–11502 (2018).
[Crossref]

Opt. Lett. (2)

Other (3)

Y. K. Lize, B. Kuhlmey, and R. Kashyap, “Single Mach Zehnder Interferometer Design for Broadband DPSK demodulation,” in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2005), paper FThJ2.

N. Chen, Z. Feng, T. Yang, Y. Chen, and C. Lin, “High sensitivity miniature Mach-Zehnder-interferometer using micro-abrupt-tapers in a cladding-depressed strongly guiding fiber for a picoliter-volume microsensing,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThQ2.

N. K. Chen, K. Y. Lu, and Y. H. Chang, “Wavelength-beat integrated micro Michelson fiber interferometer based on core-cladding mode interferences for real-time moving direction determination,” in CLEO:2013 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2013), ATh4 K.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) The schematic of measured reflective index profile and (b) cross-sectional views of RCF. $D$: cladding diameter of RCF; ${d_1}$: outer diameter of RC; and ${d_2}$: inner diameter of RC.
Fig. 2.
Fig. 2. Schematic of the proposed MZI with RCF. $L$: length of RCF; $D$: cladding diameter of RCF; ${d_1}$: outer diameter of RC; and ${d_2}$: inner diameter of RC.
Fig. 3.
Fig. 3. (a) Propagation field distribution along the MZI with 5,000-µm-long RCF and (b)-(e) simulated mode field distribution in the RCF region at L = 2000, 2500, 3000, 3500 µm under input wavelengths of 1,550 nm, respectively.
Fig. 4.
Fig. 4. Transmission spectra of MZIs with different RCF lengths along (a) 1,250–1,650 nm and (b) 1,500–1,650 nm.
Fig. 5.
Fig. 5. Simulated and experimental FSRs of interference fringes of the device.
Fig. 6.
Fig. 6. Spatial frequency spectra of MZIs with (a) 5,000-µm and (b) 20,000-µm RCFs, taken by FFT.
Fig. 7.
Fig. 7. (a) Spectral responses of temperature variations and (b) temperature sensitivity of MZI with a 5,000-µm-long RCF.
Fig. 8.
Fig. 8. (a) Spectral responses of RI variations and (b) RI sensitivity of MZI with a 5,000-µm-long RCF.

Tables (1)

Tables Icon

Table 1. Measured parameters for MZIs with different RCF lengths

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I O = I R C + I S C + 2 I R C I S C cos ( 2 π Δ n e f f L λ ) ,
λ d i p = 2 Δ n e f f L 2 m + 1 .
F S R = λ 2 Δ n e f f L .

Metrics