Abstract

We report a compact 2166 nm germania-fiber short-pulsed Raman laser based on the cavity matching scheme. The all-fiber Raman cavity is formed by a pair of 2166 nm fiber Bragg gratings. High-power noise-like pulses from a 1981 nm fiber laser are used to pump a 22 m germania-core fiber for providing Raman gain at $\sim$2166 nm, and readily realizes the Raman-cavity synchronization with high mismatching tolerance. Stable Raman pulses at 2166 nm are therefore generated with the tunable pulse width of 0.9-4.4 ns and the large pulse energy up to 12.15 nJ. This is, to the best of our knowledge, the first demonstration of all-fiber short-pulsed Raman laser in the mid-infrared region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact all-fiber 2.1-2.7 μm tunable Raman soliton source based on germania-core fiber

Yanhong Li, Tuanjie Du, Bin Xu, Huiying Xu, Zhiping Cai, Valery M. Mashinsky, and Zhengqian Luo
Opt. Express 27(20) 28544-28550 (2019)

0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser

Linyong Yang, Bin Zhang, Ke Yin, Jinmei Yao, Guangchen Liu, and Jing Hou
Opt. Express 24(12) 12600-12606 (2016)

Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers

Daojing Li, Deyuan Shen, Lei Li, Hao Chen, Dingyuan Tang, and Luming Zhao
Opt. Express 23(20) 25889-25895 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  2. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Top. Appl. Phys.89, 458–529I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).
  3. H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [Crossref]
  4. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38(15), 2865–2868 (2013).
    [Crossref]
  5. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
    [Crossref]
  6. G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B: Lasers Opt. 94(2), 187–194 (2009).
    [Crossref]
  7. T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
    [Crossref]
  8. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 μm,” Opt. Express 24(2), 1616–1623 (2016).
    [Crossref]
  9. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
    [Crossref]
  10. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
    [Crossref]
  11. H. Luo, J. Li, Y. Gao, Y. Xu, X. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 μm using PbS nanoparticles,” Opt. Lett. 44(9), 2322–2325 (2019).
    [Crossref]
  12. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
    [Crossref]
  13. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref]
  14. H. Luo, J. Li, Y. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm,” Opt. Express 26(1), 63–79 (2018).
    [Crossref]
  15. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
    [Crossref]
  16. T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
    [Crossref]
  17. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
    [Crossref]
  18. Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
    [Crossref]
  19. R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
    [Crossref]
  20. J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
    [Crossref]
  21. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  22. T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42(3), 462–465 (2017).
    [Crossref]
  23. X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
    [Crossref]
  24. J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
    [Crossref]
  25. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5014 (2017).
    [Crossref]
  26. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
    [Crossref]
  27. V. Fortin, M. Bernier, D. Faucher, J. Carrier, and R. Vallée, “3.7 W fluoride glass Raman fiber laser operating at 2231 nm,” Opt. Express 20(17), 19412–19419 (2012).
    [Crossref]
  28. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
    [Crossref]
  29. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
    [Crossref]
  30. S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
    [Crossref]
  31. V. Fortin, M. Bernier, J. Carrier, and R. Vallée, “Fluoride glass Raman fiber laser at 2185 nm,” Opt. Lett. 36(21), 4152–4154 (2011).
    [Crossref]
  32. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
    [Crossref]
  33. R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30(7), 340–342 (1977).
    [Crossref]
  34. R. H. Stolen, C. Lin, J. Shah, and R. F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electron. 14(11), 860–862 (1978).
    [Crossref]
  35. J. C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photonics Technol. Lett. 15(12), 1698–1700 (2003).
    [Crossref]
  36. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
    [Crossref]

2019 (2)

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

H. Luo, J. Li, Y. Gao, Y. Xu, X. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 μm using PbS nanoparticles,” Opt. Lett. 44(9), 2322–2325 (2019).
[Crossref]

2018 (5)

2017 (2)

2016 (2)

2015 (3)

2014 (3)

2013 (3)

2012 (4)

V. Fortin, M. Bernier, D. Faucher, J. Carrier, and R. Vallée, “3.7 W fluoride glass Raman fiber laser operating at 2231 nm,” Opt. Express 20(17), 19412–19419 (2012).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

2011 (3)

2009 (1)

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B: Lasers Opt. 94(2), 187–194 (2009).
[Crossref]

2008 (1)

2006 (1)

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[Crossref]

2005 (1)

2004 (1)

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

2003 (1)

J. C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photonics Technol. Lett. 15(12), 1698–1700 (2003).
[Crossref]

1978 (1)

R. H. Stolen, C. Lin, J. Shah, and R. F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electron. 14(11), 860–862 (1978).
[Crossref]

1977 (1)

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30(7), 340–342 (1977).
[Crossref]

Anzueto-Sánchez, G.

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[Crossref]

Babin, S. A.

Balakrishnan, K.

Bekman, H. H. P. T.

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Bernier, M.

Bouteiller, J. C.

J. C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photonics Technol. Lett. 15(12), 1698–1700 (2003).
[Crossref]

Byer, R. L.

Cai, Z.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42(3), 462–465 (2017).
[Crossref]

Caron, N.

Carrier, J.

Chen, H.

Churkin, D. V.

Dianov, E. M.

Du, T.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42(3), 462–465 (2017).
[Crossref]

Dudley, J. M.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B: Lasers Opt. 94(2), 187–194 (2009).
[Crossref]

Duval, S.

Eggleton, B. J.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B: Lasers Opt. 94(2), 187–194 (2009).
[Crossref]

El-Amraoui, M.

Faucher, D.

Fortin, V.

Fried, A.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Top. Appl. Phys.89, 458–529I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).

Gao, Y.

Gapontsev, V.

Genest, J.

Genty, G.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B: Lasers Opt. 94(2), 187–194 (2009).
[Crossref]

Hai, T.

Hai, Y.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hashida, M.

He, T.

He, X.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Heuvel, J. C. V. D.

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Hu, T.

Huang, Y.

Hudson, D. D.

Ismagulov, A. E.

Jackson, S. D.

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[Crossref]

Jain, R. K.

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30(7), 340–342 (1977).
[Crossref]

Jiang, Z.

Kablukov, S. I.

Lai, X.

Leheny, R. F.

R. H. Stolen, C. Lin, J. Shah, and R. F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electron. 14(11), 860–862 (1978).
[Crossref]

Leindecker, N.

Li, J.

Li, L.

Li, X.

Li, Y.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

Lin, C.

R. H. Stolen, C. Lin, J. Shah, and R. F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electron. 14(11), 860–862 (1978).
[Crossref]

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30(7), 340–342 (1977).
[Crossref]

Lin, W.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Liu, J.

Liu, K.

Liu, Y.

Luo, A.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Luo, H.

Luo, Z.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42(3), 462–465 (2017).
[Crossref]

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Ma, J.

Majewski, M. R.

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
[Crossref]

Marandi, A.

Mashinsky, V. M.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

Messaddeq, Y.

Mirov, M.

Mirov, S.

Moskalev, I.

Murakami, M.

Norwood, R. A.

Peyghambarian, N.

Piché, M.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Podivilov, E. V.

Putten, F. J. M. V.

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Qian, L.

Qin, Z.

Richter, D.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Top. Appl. Phys.89, 458–529I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).

Ruan, Q.

Ruan, S.

Rudy, C. W.

Sakabe, S.

Schleijpen, R.

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Shah, J.

R. H. Stolen, C. Lin, J. Shah, and R. F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electron. 14(11), 860–862 (1978).
[Crossref]

Shen, D.

Shi, H.

Shimizu, S.

Song, F.

Stolen, R. H.

R. H. Stolen, C. Lin, J. Shah, and R. F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electron. 14(11), 860–862 (1978).
[Crossref]

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30(7), 340–342 (1977).
[Crossref]

Tan, F.

Tittel, F. K.

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Top. Appl. Phys.89, 458–529I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).

Tokita, S.

Vallée, R.

Vasilyev, S.

Vodopyanov, K. L.

Wang, F.

Wang, J.

Wang, K.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

Wang, P.

Wei, C.

Wen, S.

Woodward, R. I.

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
[Crossref]

Xie, G.

Xu, B.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

Xu, H.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42(3), 462–465 (2017).
[Crossref]

Xu, S.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Xu, W.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Xu, Y.

Yan, P.

Yang, Q.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Yang, R.

Yang, T.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Yang, Z.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Yin, J.

Yuan, P.

Yuan, X.

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Zhang, H.

Zhang, M.

Zhao, C.

Zhao, L.

Zhu, X.

APL Photonics (1)

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photonics 3(11), 116106 (2018).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B: Lasers Opt. 94(2), 187–194 (2009).
[Crossref]

Appl. Phys. Lett. (2)

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30(7), 340–342 (1977).
[Crossref]

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

R. H. Stolen, C. Lin, J. Shah, and R. F. Leheny, “A fiber Raman ring laser,” IEEE J. Quantum Electron. 14(11), 860–862 (1978).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1–7 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photonics Technol. Lett. 15(12), 1698–1700 (2003).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. (1)

X. He, A. Luo, W. Lin, Q. Yang, T. Yang, X. Yuan, S. Xu, W. Xu, Z. Luo, and Z. Yang, “A stable 2 μm passively Q-switched fiber laser based on nonlinear polarization evolution,” Laser Phys. 24(8), 085102 (2014).
[Crossref]

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Express (7)

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 μm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref]

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref]

H. Luo, J. Li, Y. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm,” Opt. Express 26(1), 63–79 (2018).
[Crossref]

V. Fortin, M. Bernier, D. Faucher, J. Carrier, and R. Vallée, “3.7 W fluoride glass Raman fiber laser operating at 2231 nm,” Opt. Express 20(17), 19412–19419 (2012).
[Crossref]

Opt. Lett. (14)

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
[Crossref]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref]

T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42(3), 462–465 (2017).
[Crossref]

J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5014 (2017).
[Crossref]

V. Fortin, M. Bernier, J. Carrier, and R. Vallée, “Fluoride glass Raman fiber laser at 2185 nm,” Opt. Lett. 36(21), 4152–4154 (2011).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
[Crossref]

H. Luo, J. Li, Y. Gao, Y. Xu, X. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 μm using PbS nanoparticles,” Opt. Lett. 44(9), 2322–2325 (2019).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref]

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38(15), 2865–2868 (2013).
[Crossref]

Optica (1)

Photonics Res. (1)

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

Proc. SPIE (1)

H. H. P. T. Bekman, J. C. V. D. Heuvel, F. J. M. V. Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Other (1)

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” Top. Appl. Phys.89, 458–529I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Experiment setup of the 2166 nm all-fiber germania-core Raman laser system. LD: laser diode, HR FBG: high reflectivity fiber Bragg grating, TDF: thulium-doped fiber, OC: optical coupler, PC: polarization controller, FLM: fiber loop mirror. (b) The transmission spectra of the two HR FBGs at 2166 nm. (c) The Raman spectrum of the GeO$_2$ fiber.
Fig. 2.
Fig. 2. The characteristics of the 1981 nm NLP mode-locking laser at a pump power of 5.48 W. (a) Optical spectrum of the NLP operation. (b) Typical oscilloscope trace. (c) Evolution of the NLP. (d) RF output spectrum at the fundamental frequency. Inset: wideband RF spectra up to 50 and 500 MHz, respectively.
Fig. 3.
Fig. 3. (a) Average output power and pulse duration, and (b) Pulse energy and peak power as a function of the 793 nm pump power.
Fig. 4.
Fig. 4. Characteristics of the 2166 nm Raman fiber laser under 1981 nm pump power of 0.996 W. (a) Optical spectrum of the 2166 nm Raman laser. Inset: both the optical spectra of mode-locking and unlocked. (b) The typical oscilloscope trace. (c) Evolution of the Raman laser as the pump power of 1981 nm increased. (d) RF output spectrum at the fundamental frequency. Inset: wideband RF spectra up to 100 MHz.
Fig. 5.
Fig. 5. (a) Average output power, pulse duration and 1981 nm residual power, and (b) Raman pulse energy and peak power as a function of the 1981 nm pump power.

Metrics