Abstract

Efficient monitoring of airborne particulate matter (PM), especially particles with aerodynamic diameter less than 2.5 µm (PM2.5), is crucial for improving public health. Reliable information on the concentration, size distribution and chemical characteristics of PMs is key to evaluating air pollution and identifying its sources. Standard methods for PM2.5 characterization require sample collection from the atmosphere and post-analysis using sophisticated equipment in a laboratory environment, and are normally very time-consuming. Although optical methods based on analysis of scattering of free-space laser beams or evanescent fields are in principle suitable for real-time particle counting and sizing, lack of knowledge of the refractive index in these methods not only leads to inevitable sizing ambiguity but also prevents identification of the particle material. In the case of evanescent wave detection, the system lifetime is strongly limited by adhesion of particles to the surfaces. Here we report a novel technique for airborne particle metrology based on hollow-core photonic crystal fibre. It offers in situ particle counting, sizing and refractive index measurement with effectively unlimited device lifetime, and relies on optical forces that automatically capture airborne particles in front of the hollow core and propel them into the fibre. The resulting transmission drop, together with the time-of-flight of the particles passing through the fibre, provide unambiguous mapping of particle size and refractive index with high accuracy. The technique offers unique advantages over currently available real-time particle metrology systems, and can be directly applied to monitoring air pollution in the open atmosphere as well as precise particle characterization in a local environment such as a closed room or a reaction vessel.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Metrology of laser-guided particles in air-filled hollow-core photonic crystal fiber

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. St. J. Russell
Opt. Lett. 37(1) 91-93 (2012)

Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber

Richard Zeltner, Riccardo Pennetta, Shangran Xie, and Philip St.J. Russell
Opt. Lett. 43(7) 1479-1482 (2018)

Ultimate low loss of hollow-core photonic crystal fibres

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell
Opt. Express 13(1) 236-244 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. Schmale, D. Shindell, E. von Schneidemesser, I. Chabay, and M. Lawrence, “Air pollution: clean up our skies,” Nature (London, U. K.) 515(7527), 335–337 (2014).
    [Crossref]
  2. C. I. Davidson, R. F. Phalen, and P. A. Solomon, “Airborne particulate matter and human health: a review,” Aerosol Sci. Technol. 39(8), 737–749 (2005).
    [Crossref]
  3. D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
    [Crossref]
  4. K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
    [Crossref]
  5. C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
    [Crossref]
  6. S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
    [Crossref]
  7. X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
    [Crossref]
  8. L. S. Ruzer and N. H. Harley, Aerosols Handbook: Measurement, Dosimetry, and Health Effects (CRC Press, 2012).
  9. B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
    [Crossref]
  10. C. Orr and R. A. Martin, “Thermal precipitator for continuous aerosol sampling,” Rev. Sci. Instrum. 29(2), 129–130 (1958).
    [Crossref]
  11. D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
    [Crossref]
  12. C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
    [Crossref]
  13. R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
    [Crossref]
  14. P. Görner, D. Bemer, and J. F. Fabries, “Photometer measurement of polydisperse aerosols,” J. Aerosol Sci. 26(8), 1281–1302 (1995).
    [Crossref]
  15. R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the rayleigh scattering size range,” J. Aerosol Sci. 20(3), 331–345 (1989).
    [Crossref]
  16. R. Xu, “Light scattering: A review of particle characterization applications,” Particuology 18, 11–21 (2015).
    [Crossref]
  17. D. Mahl, J. Diendorf, W. Meyer-Zaika, and M. Epple, “Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles,” Colloids Surf., A 377(1-3), 386–392 (2011).
    [Crossref]
  18. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  19. X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
    [Crossref]
  20. W. W. Szymanski, A. Nagy, A. Czitrovszky, and P. Jani, “A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density,” Meas. Sci. Technol. 13(3), 303–307 (2002).
    [Crossref]
  21. O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21(24), 29383–29391 (2013).
    [Crossref]
  22. D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
    [Crossref]
  23. D. K. Hutchins, M. H. Harper, and R. L. Felder, “Slip correction measurements for solid spherical particles by modulated dynamic light scattering,” Aerosol Sci. Technol. 22(2), 202–218 (1995).
    [Crossref]
  24. R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Appl. Phys. Lett. 108(23), 231107 (2016).
    [Crossref]

2019 (3)

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

2018 (2)

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
[Crossref]

D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
[Crossref]

2016 (1)

R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Appl. Phys. Lett. 108(23), 231107 (2016).
[Crossref]

2015 (3)

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

R. Xu, “Light scattering: A review of particle characterization applications,” Particuology 18, 11–21 (2015).
[Crossref]

2014 (2)

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

J. Schmale, D. Shindell, E. von Schneidemesser, I. Chabay, and M. Lawrence, “Air pollution: clean up our skies,” Nature (London, U. K.) 515(7527), 335–337 (2014).
[Crossref]

2013 (3)

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
[Crossref]

O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21(24), 29383–29391 (2013).
[Crossref]

2011 (2)

D. Mahl, J. Diendorf, W. Meyer-Zaika, and M. Epple, “Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles,” Colloids Surf., A 377(1-3), 386–392 (2011).
[Crossref]

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

2010 (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

2005 (1)

C. I. Davidson, R. F. Phalen, and P. A. Solomon, “Airborne particulate matter and human health: a review,” Aerosol Sci. Technol. 39(8), 737–749 (2005).
[Crossref]

2002 (1)

W. W. Szymanski, A. Nagy, A. Czitrovszky, and P. Jani, “A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density,” Meas. Sci. Technol. 13(3), 303–307 (2002).
[Crossref]

1995 (2)

D. K. Hutchins, M. H. Harper, and R. L. Felder, “Slip correction measurements for solid spherical particles by modulated dynamic light scattering,” Aerosol Sci. Technol. 22(2), 202–218 (1995).
[Crossref]

P. Görner, D. Bemer, and J. F. Fabries, “Photometer measurement of polydisperse aerosols,” J. Aerosol Sci. 26(8), 1281–1302 (1995).
[Crossref]

1989 (1)

R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the rayleigh scattering size range,” J. Aerosol Sci. 20(3), 331–345 (1989).
[Crossref]

1958 (1)

C. Orr and R. A. Martin, “Thermal precipitator for continuous aerosol sampling,” Rev. Sci. Instrum. 29(2), 129–130 (1958).
[Crossref]

Andersson, A.

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

Asbach, C.

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

Axmann, H.

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

Ayres, J. G.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

Azong-Wara, N.

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

Balmes, J. R.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Bemer, D.

P. Görner, D. Bemer, and J. F. Fabries, “Photometer measurement of polydisperse aerosols,” J. Aerosol Sci. 26(8), 1281–1302 (1995).
[Crossref]

Bergmann, A.

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

Bikkina, S.

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

Bisht, D. S.

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

Broßell, D.

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

Bykov, D. S.

D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
[Crossref]

R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Appl. Phys. Lett. 108(23), 231107 (2016).
[Crossref]

Chabay, I.

J. Schmale, D. Shindell, E. von Schneidemesser, I. Chabay, and M. Lawrence, “Air pollution: clean up our skies,” Nature (London, U. K.) 515(7527), 335–337 (2014).
[Crossref]

Chan, K. P.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Chen, Q.

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

Chen, Y.

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

Ciciora, S. J.

R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
[Crossref]

Cowl, C. T.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Cui, Y.

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

Czitrovszky, A.

W. W. Szymanski, A. Nagy, A. Czitrovszky, and P. Jani, “A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density,” Meas. Sci. Technol. 13(3), 303–307 (2002).
[Crossref]

Dardiotis, C.

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

Davidson, C. I.

C. I. Davidson, R. F. Phalen, and P. A. Solomon, “Airborne particulate matter and human health: a review,” Aerosol Sci. Technol. 39(8), 737–749 (2005).
[Crossref]

De Matteis, S.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Diendorf, J.

D. Mahl, J. Diendorf, W. Meyer-Zaika, and M. Epple, “Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles,” Colloids Surf., A 377(1-3), 386–392 (2011).
[Crossref]

Dziurowitz, N.

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

Epple, M.

D. Mahl, J. Diendorf, W. Meyer-Zaika, and M. Epple, “Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles,” Colloids Surf., A 377(1-3), 386–392 (2011).
[Crossref]

Euser, T. G.

D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
[Crossref]

R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Appl. Phys. Lett. 108(23), 231107 (2016).
[Crossref]

O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21(24), 29383–29391 (2013).
[Crossref]

Fabries, J. F.

P. Görner, D. Bemer, and J. F. Fabries, “Photometer measurement of polydisperse aerosols,” J. Aerosol Sci. 26(8), 1281–1302 (1995).
[Crossref]

Fahey, D. W.

R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
[Crossref]

Felder, R. L.

D. K. Hutchins, M. H. Harper, and R. L. Felder, “Slip correction measurements for solid spherical particles by modulated dynamic light scattering,” Aerosol Sci. Technol. 22(2), 202–218 (1995).
[Crossref]

Fissan, H.

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

Gao, R. S.

R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
[Crossref]

Giechaskiel, B.

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

Gong, Q.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Görner, P.

P. Görner, D. Bemer, and J. F. Fabries, “Photometer measurement of polydisperse aerosols,” J. Aerosol Sci. 26(8), 1281–1302 (1995).
[Crossref]

Gustafsson, Ö

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

Harley, N. H.

L. S. Ruzer and N. H. Harley, Aerosols Handbook: Measurement, Dosimetry, and Health Effects (CRC Press, 2012).

Harper, M. H.

D. K. Hutchins, M. H. Harper, and R. L. Felder, “Slip correction measurements for solid spherical particles by modulated dynamic light scattering,” Aerosol Sci. Technol. 22(2), 202–218 (1995).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Holmstrand, H.

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

Hsu, P.-C.

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

Hutchins, D. K.

D. K. Hutchins, M. H. Harper, and R. L. Felder, “Slip correction measurements for solid spherical particles by modulated dynamic light scattering,” Aerosol Sci. Technol. 22(2), 202–218 (1995).
[Crossref]

Jani, P.

W. W. Szymanski, A. Nagy, A. Czitrovszky, and P. Jani, “A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density,” Meas. Sci. Technol. 13(3), 303–307 (2002).
[Crossref]

Jung, S.-H.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Katanoda, K.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Kirillova, E. N.

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

Knollenberg, R. G.

R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the rayleigh scattering size range,” J. Aerosol Sci. 20(3), 331–345 (1989).
[Crossref]

Lai, H. K.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

Lam, K. B. H.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

Lau, A. K.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

Lawrence, M.

J. Schmale, D. Shindell, E. von Schneidemesser, I. Chabay, and M. Lawrence, “Air pollution: clean up our skies,” Nature (London, U. K.) 515(7527), 335–337 (2014).
[Crossref]

Lee, H.-W.

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

Li, B.-B.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Li, W.

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

Linsel, G.

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

Liu, C.

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

Liu, N.

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

Luo, X.-S.

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

Machnev, A.

D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
[Crossref]

Mahl, D.

D. Mahl, J. Diendorf, W. Meyer-Zaika, and M. Epple, “Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles,” Colloids Surf., A 377(1-3), 386–392 (2011).
[Crossref]

Maricq, M.

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

Martin, R. A.

C. Orr and R. A. Martin, “Thermal precipitator for continuous aerosol sampling,” Rev. Sci. Instrum. 29(2), 129–130 (1958).
[Crossref]

Meyer-Zaika, W.

D. Mahl, J. Diendorf, W. Meyer-Zaika, and M. Epple, “Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles,” Colloids Surf., A 377(1-3), 386–392 (2011).
[Crossref]

Mortimer, K.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Nagy, A.

W. W. Szymanski, A. Nagy, A. Czitrovszky, and P. Jani, “A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density,” Meas. Sci. Technol. 13(3), 303–307 (2002).
[Crossref]

Nakatsuka, H.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Nakayama, T.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Nitta, H.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Ntziachristos, L.

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

Orr, C.

C. Orr and R. A. Martin, “Thermal precipitator for continuous aerosol sampling,” Rev. Sci. Instrum. 29(2), 129–130 (1958).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Perez-Padilla, R.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Perring, A. E.

R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
[Crossref]

Phalen, R. F.

C. I. Davidson, R. F. Phalen, and P. A. Solomon, “Airborne particulate matter and human health: a review,” Aerosol Sci. Technol. 39(8), 737–749 (2005).
[Crossref]

Plitzko, S.

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

Qiu, C.-W.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Rice, M. B.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Riojas-Rodriguez, H.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Rollins, A. W.

R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
[Crossref]

Russell, P. S. J.

D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
[Crossref]

R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Appl. Phys. Lett. 108(23), 231107 (2016).
[Crossref]

O. A. Schmidt, T. G. Euser, and P. S. J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21(24), 29383–29391 (2013).
[Crossref]

Ruzer, L. S.

L. S. Ruzer and N. H. Harley, Aerosols Handbook: Measurement, Dosimetry, and Health Effects (CRC Press, 2012).

Satoh, H.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Schindler, W.

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

Schmale, J.

J. Schmale, D. Shindell, E. von Schneidemesser, I. Chabay, and M. Lawrence, “Air pollution: clean up our skies,” Nature (London, U. K.) 515(7527), 335–337 (2014).
[Crossref]

Schmidt, O. A.

Schmidt-Ott, A.

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

Schraufnagel, D. E.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Schwarz, J. P.

R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
[Crossref]

Shindell, D.

J. Schmale, D. Shindell, E. von Schneidemesser, I. Chabay, and M. Lawrence, “Air pollution: clean up our skies,” Nature (London, U. K.) 515(7527), 335–337 (2014).
[Crossref]

Sobue, T.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Solomon, P. A.

C. I. Davidson, R. F. Phalen, and P. A. Solomon, “Airborne particulate matter and human health: a review,” Aerosol Sci. Technol. 39(8), 737–749 (2005).
[Crossref]

Sood, A.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Srivastava, A. K.

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

Sun, X.

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

Suzuki, T.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Szymanski, W. W.

W. W. Szymanski, A. Nagy, A. Czitrovszky, and P. Jani, “A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density,” Meas. Sci. Technol. 13(3), 303–307 (2002).
[Crossref]

Tajima, K.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Takezaki, T.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Tanabe, K.

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Tang, S.-J.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Thach, T. Q.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

Thomas, G. N.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

Thornberry, T. D.

R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
[Crossref]

Thurston, G. D.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Tiwari, S.

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

To, T.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Tröller, S.

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

Tsang, H.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

Vanker, A.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

von Schneidemesser, E.

J. Schmale, D. Shindell, E. von Schneidemesser, I. Chabay, and M. Lawrence, “Air pollution: clean up our skies,” Nature (London, U. K.) 515(7527), 335–337 (2014).
[Crossref]

Wang, X.

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

Wong, C. M.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

Wong, G. K.

D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
[Crossref]

Wu, L.

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

Wuebbles, D. J.

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Xiao, Y.-F.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xie, S.

D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
[Crossref]

R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Appl. Phys. Lett. 108(23), 231107 (2016).
[Crossref]

Xu, J.

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

Xu, R.

R. Xu, “Light scattering: A review of particle characterization applications,” Particuology 18, 11–21 (2015).
[Crossref]

Yang, L.

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Ye, M.

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

Yu, X.-C.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Zeltner, R.

D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
[Crossref]

R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Appl. Phys. Lett. 108(23), 231107 (2016).
[Crossref]

Zhang, D.

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

Zhao, Z.

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

Zheng, G.

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

Zhi, Y.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Aerosol Sci. Technol. (3)

C. I. Davidson, R. F. Phalen, and P. A. Solomon, “Airborne particulate matter and human health: a review,” Aerosol Sci. Technol. 39(8), 737–749 (2005).
[Crossref]

R. S. Gao, A. E. Perring, T. D. Thornberry, A. W. Rollins, J. P. Schwarz, S. J. Ciciora, and D. W. Fahey, “A high-sensitivity low-cost optical particle counter design,” Aerosol Sci. Technol. 47(2), 137–145 (2013).
[Crossref]

D. K. Hutchins, M. H. Harper, and R. L. Felder, “Slip correction measurements for solid spherical particles by modulated dynamic light scattering,” Aerosol Sci. Technol. 22(2), 202–218 (1995).
[Crossref]

Appl. Phys. Lett. (1)

R. Zeltner, D. S. Bykov, S. Xie, T. G. Euser, and P. S. J. Russell, “Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber,” Appl. Phys. Lett. 108(23), 231107 (2016).
[Crossref]

Chest (1)

D. E. Schraufnagel, J. R. Balmes, C. T. Cowl, S. De Matteis, S.-H. Jung, K. Mortimer, R. Perez-Padilla, M. B. Rice, H. Riojas-Rodriguez, A. Sood, G. D. Thurston, T. To, A. Vanker, and D. J. Wuebbles, “Air Pollution and Noncommunicable Diseases,” Chest 155(2), 409–416 (2019).
[Crossref]

Colloids Surf., A (1)

D. Mahl, J. Diendorf, W. Meyer-Zaika, and M. Epple, “Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles,” Colloids Surf., A 377(1-3), 386–392 (2011).
[Crossref]

Environ. Health Perspect. (1)

C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, K. P. Chan, L. Yang, A. K. Lau, and J. G. Ayres, “Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents,” Environ. Health Perspect. 123(11), 1167–1172 (2015).
[Crossref]

J. Aerosol Sci. (4)

B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler, “Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number,” J. Aerosol Sci. 67, 48–86 (2014).
[Crossref]

D. Broßell, S. Tröller, N. Dziurowitz, S. Plitzko, G. Linsel, C. Asbach, N. Azong-Wara, H. Fissan, and A. Schmidt-Ott, “A thermal precipitator for the deposition of airborne nanoparticles onto living cells—Rationale and development,” J. Aerosol Sci. 63, 75–86 (2013).
[Crossref]

P. Görner, D. Bemer, and J. F. Fabries, “Photometer measurement of polydisperse aerosols,” J. Aerosol Sci. 26(8), 1281–1302 (1995).
[Crossref]

R. G. Knollenberg, “The measurement of latex particle sizes using scattering ratios in the rayleigh scattering size range,” J. Aerosol Sci. 20(3), 331–345 (1989).
[Crossref]

J. Epidemiol. (1)

K. Katanoda, T. Sobue, H. Satoh, K. Tajima, T. Suzuki, H. Nakatsuka, T. Takezaki, T. Nakayama, H. Nitta, and K. Tanabe, “An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan,” J. Epidemiol. 21(2), 132–143 (2011).
[Crossref]

Light: Sci. Appl. (2)

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Sci. Appl. 7(4), 18003 (2018).
[Crossref]

D. S. Bykov, S. Xie, R. Zeltner, A. Machnev, G. K. Wong, T. G. Euser, and P. S. J. Russell, “Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre,” Light: Sci. Appl. 7(1), 22 (2018).
[Crossref]

Meas. Sci. Technol. (1)

W. W. Szymanski, A. Nagy, A. Czitrovszky, and P. Jani, “A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density,” Meas. Sci. Technol. 13(3), 303–307 (2002).
[Crossref]

Nat. Commun. (1)

C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, “Transparent air filter for high-efficiency PM 2.5 capture,” Nat. Commun. 6(1), 6205 (2015).
[Crossref]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Nat. Sustain. (1)

S. Bikkina, A. Andersson, E. N. Kirillova, H. Holmstrand, S. Tiwari, A. K. Srivastava, D. S. Bisht, and Ö Gustafsson, “Air quality in megacity Delhi affected by countryside biomass burning,” Nat. Sustain. 2(3), 200–205 (2019).
[Crossref]

Nature (London, U. K.) (1)

J. Schmale, D. Shindell, E. von Schneidemesser, I. Chabay, and M. Lawrence, “Air pollution: clean up our skies,” Nature (London, U. K.) 515(7527), 335–337 (2014).
[Crossref]

Opt. Express (1)

Particuology (1)

R. Xu, “Light scattering: A review of particle characterization applications,” Particuology 18, 11–21 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

C. Orr and R. A. Martin, “Thermal precipitator for continuous aerosol sampling,” Rev. Sci. Instrum. 29(2), 129–130 (1958).
[Crossref]

Sci. Rep. (1)

X. Sun, X.-S. Luo, J. Xu, Z. Zhao, Y. Chen, L. Wu, Q. Chen, and D. Zhang, “Spatio-temporal variations and factors of a provincial PM 2.5 pollution in eastern China during 2013–2017 by geostatistics,” Sci. Rep. 9(1), 3613 (2019).
[Crossref]

Other (1)

L. S. Ruzer and N. H. Harley, Aerosols Handbook: Measurement, Dosimetry, and Health Effects (CRC Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Particle metrology in HC-PCF. a, Sketch illustrating the operating principle of the particle detector. A focused laser beam captures an airborne particle in front of the fibre endface, where the optical gradient force (Fg) counter-balances gravity, and a strong scattering force (Fs) propels the particle into and along the hollow core. The transmission drops when the particle is in the core, and recovers after the particle has been expelled. Inset: measured near-field optical micrograph of the core mode superimposed on a scanning electron micrograph of the HC-PCF structure. b, Measured transmission drops δτ when polystyrene particles of different diameter were detected. c, Upper: transmission drop for silica particles. Lower: zoom-in of the yellow-shaded area in the upper panel, showing the effects of intermodal beating. The black-dashed line marks the average value. d, Transmission drop when polystyrene particles with 1.65 µm (yellow) and 1 µm diameter (red) were sequentially launched into the HC-PCF. The drop in transmission after the two particles have left the fibre is caused by a slow drift in the laser power.
Fig. 2.
Fig. 2. Mapping of particle diameter d and refractive index by transmission drop δτ and time-of-flight Tf. a, Two-dimensional scatterplot of δτ and Tf for polystyrene (dots) and silica (squares with black outlines) particles, together with histograms for polystyrene particles. The histograms for silica particles are shown in Fig. 6. The black lines in the histograms represent Gaussian fits. The solid grey lines are contours of constant refractive index and the dashed grey lines contours of constant d. We attribute the out-lying points, marked with triangles, to occasional particle clusters. b, δτ (upper) and and Tf (lower) plotted against particle diameter d for polystyrene (blue circles) and silica particles (orange squares). The error-bars mark the standard deviations of Gaussian fits to the histograms, and are smaller for Tf than δτ. The dashed curves are predictions from the theory described in the text, without any free parameters.
Fig. 3.
Fig. 3. Measurements of particle diameter d and refractive index np. a, Contour plots mapping the particle diameter d (black full curves) and refractive index np (dark blue dashed curves) to transmission drop δτ and time-of-flight Tf. Unambiguous estimates of both d and np are possible. b, The white squares mark the retrieved particle diameter and refractive index, and the horizontal (blue) and vertical (orange) bars mark the standard errors. The pink dots mark the particle diameter d and refractive index, and the green error-bars the standard deviation of d, specified by the manufacturer.
Fig. 4.
Fig. 4. Simulated reflected (ρ) and forward intermodal (Στ0m) contributions to the transmission drop. The sum of those two, δτ, matches very well to the experimental data-points.
Fig. 5.
Fig. 5. Comparison between analytical (orange-dashed line) and numerical (FEM, black circles) values of the optical scattering forces for polystyrene particles, plotted as a function of d. The hollow core diameter is 17.7 µm, the wavelength is 1064 nm and the incident light is in the LP01 mode.
Fig. 6.
Fig. 6. Measured histograms of (a) the transmission drop and (b) time-of-flight for silica particles. The black curves represent fits to Gaussian distributions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ = ( n p 1 n p + 1 ) 2 0 d / 2 J 0 2 ( 2 u 01 r / D ) r d r 0 D / 2 J 0 2 ( 2 u 01 r / D ) r d r
τ 0 m = | e s e 0 m d A | e 01 | 2 d A | 2
v p ( t ) = v pT ( 1 exp ( γ t / m ) )
σ d = ( d ( δ τ ) ) 2 σ δ τ 2 + ( d ( T f ) ) 2 σ Tf 2 σ n = ( n p ( δ τ ) ) 2 σ δ τ 2 + ( n p ( T f ) ) 2 σ Tf 2