Abstract

Vertically-Aligned Fringe-Field Switching (VA-FFS) liquid crystal (LC) mode is known for its intrinsic submillisecond fast response time due to existence of self-imposed boundaries of virtual walls. In this paper, we investigate the effects of electrode structure and LC dielectric anisotropy. The performance of VA-FFS with conventional 2D and 3D electrode designs are compared. By using the 3D electrode design, higher transmission and faster response time are found possible as a result of having less dark states and at the same time having more virtual walls surrounding a 3D pixel. In the second part, we investigate the difference between VA-FFS LC mode employing LC materials with positive and negative dielectric anisotropy, while keeping all other factors the same. We found that, in general, positive LC materials can provide faster response time whereas negative LC materials can provide higher transmission. In the case of 2D design, however, negative LC is found to have rather unexpected slow response times due to i) existence of a 2-step switching process and ii) disappearance of virtual wall, which have never been reported or published before for VA-FFS. In this paper, we will show that, by using a 3D design, both of these problems for negative LC can be improved such that 3D design can help maintain the stability of virtual walls and also help bring the response time of negative LC closer to that of positive LC. VA-FFS LC has been actively researched for VR/AR application in recent years.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Submillisecond-response liquid crystal for high-resolution virtual reality displays

Fangwang Gou, Haiwei Chen, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 25(7) 7984-7997 (2017)

Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field

Tae-Hoon Choi, Jae-Hyeon Woo, Yeongyu Choi, and Tae-Hoon Yoon
Opt. Express 24(18) 20993-21000 (2016)

Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals

Tae-Hoon Choi, Jae-Hyeon Woo, Yeongyu Choi, and Tae-Hoon Yoon
Opt. Express 24(24) 27569-27576 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Jiao, Z. Ge, S. T. Wu, and W. K. Choi, “Sub-millisecond response liquid crystal modulators using dual field switching in a vertically aligned cell,” Appl. Phys. Lett. 92(11), 111101 (2008).
    [Crossref]
  2. M. Jiao, S. T. Wu, and W. K. Choi, “Fast Response single cell gap transflective liquid crystal displays,” J. Disp. Technol. 5(3), 83–85 (2009).
    [Crossref]
  3. W. K. Choi and S. T. Wu, “Fast response liquid crystal mode,” US Patent 7298445 B1, (2007).
  4. T. H. Choi, J. H. Woo, Y. Choi, and T. H. Yoon, “Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field,” Opt. Express 24(18), 20993–21000 (2016).
    [Crossref]
  5. T. H. Choi, Y. Choi, J. H. Woo, S. W. Oh, and T. H. Yoon, “Electro-optical characteristics of an in-plane-switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure,” Opt. Express 24(14), 15987–15996 (2016).
    [Crossref]
  6. T. H. Choi, S. W. Oh, Y. J. Park, Y. Choi, and T. H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two dimensional confinement with virtual walls,” Sci. Rep. 6(1), 27936 (2016).
    [Crossref]
  7. H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
    [Crossref]
  8. T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, and S. Komura, “The Optimal Fast Response LCD for VR-HMD,” Proceeding of IDW, 145 (2017).
  9. T. Katayama, S. Higashida, A. Kanashima, K. Hanaoka, H. Yoshida, and S. Shimada, “Development of InPlane Super-Fast Response (ip-SFR) LCD for VR-HMD,” SID Int. Symp. Dig. Tech. Pap., 671–673, (2018).
  10. T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).
  11. F. Gou, H. Chen, M. C. Li, S. L. Lee, and S.-T. Wu, “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express 25(7), 7984–7997 (2017).
    [Crossref]
  12. F. Gou, H. Chen, M. C. Li, S. L. Lee, and S. T. Wu, “Motion-blur-free LCD for High Resolution Virtual Reality Display,” SID Int. Symp. Dig. Tech. Pap, 577–580 (2018).
  13. J. R. Talukder, Y. Huang, and S. T. Wu, “High performance LCD for augmented reality and virtual reality displays,” Liq. Cryst., https://doi.org/10.1080/02678292.2018.1540067 (2018).
  14. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  15. W. K. Choi, C. H. Tung, and B. K. Tseng, “Fast-Response VA-FFS liquid crystal mode using 3D electrode design,” SID Int. Symp. Dig. Tech. Pap, 1838–1840 (2017).
  16. R. Blacker, K. Lewis, I. Mason, I. Sage, and C. Webb, “Nano-Phase Polymer Dispersed Liquid Crystals,” Mol. Cryst. Liq. Cryst. 329(1), 187–198 (1999).
    [Crossref]
  17. W. K. Choi, S. L. Hou, J. Y Chen, G. D. J. Su, and Y. M. Li, “Fast-response & Polarization-independent Optical Shutter Using Nano-PDLC Inside a Fabry-Perot Cavity,” Mol. Cryst. Liq. Cryst. 612(1), 232–237 (2015).
    [Crossref]

2017 (2)

H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
[Crossref]

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S.-T. Wu, “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express 25(7), 7984–7997 (2017).
[Crossref]

2016 (3)

2015 (1)

W. K. Choi, S. L. Hou, J. Y Chen, G. D. J. Su, and Y. M. Li, “Fast-response & Polarization-independent Optical Shutter Using Nano-PDLC Inside a Fabry-Perot Cavity,” Mol. Cryst. Liq. Cryst. 612(1), 232–237 (2015).
[Crossref]

2009 (1)

M. Jiao, S. T. Wu, and W. K. Choi, “Fast Response single cell gap transflective liquid crystal displays,” J. Disp. Technol. 5(3), 83–85 (2009).
[Crossref]

2008 (1)

M. Jiao, Z. Ge, S. T. Wu, and W. K. Choi, “Sub-millisecond response liquid crystal modulators using dual field switching in a vertically aligned cell,” Appl. Phys. Lett. 92(11), 111101 (2008).
[Crossref]

1999 (1)

R. Blacker, K. Lewis, I. Mason, I. Sage, and C. Webb, “Nano-Phase Polymer Dispersed Liquid Crystals,” Mol. Cryst. Liq. Cryst. 329(1), 187–198 (1999).
[Crossref]

1998 (1)

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Blacker, R.

R. Blacker, K. Lewis, I. Mason, I. Sage, and C. Webb, “Nano-Phase Polymer Dispersed Liquid Crystals,” Mol. Cryst. Liq. Cryst. 329(1), 187–198 (1999).
[Crossref]

Chen, H.

H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
[Crossref]

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S.-T. Wu, “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express 25(7), 7984–7997 (2017).
[Crossref]

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S. T. Wu, “Motion-blur-free LCD for High Resolution Virtual Reality Display,” SID Int. Symp. Dig. Tech. Pap, 577–580 (2018).

Chen, J. Y

W. K. Choi, S. L. Hou, J. Y Chen, G. D. J. Su, and Y. M. Li, “Fast-response & Polarization-independent Optical Shutter Using Nano-PDLC Inside a Fabry-Perot Cavity,” Mol. Cryst. Liq. Cryst. 612(1), 232–237 (2015).
[Crossref]

Choi, T. H.

H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
[Crossref]

T. H. Choi, S. W. Oh, Y. J. Park, Y. Choi, and T. H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two dimensional confinement with virtual walls,” Sci. Rep. 6(1), 27936 (2016).
[Crossref]

T. H. Choi, Y. Choi, J. H. Woo, S. W. Oh, and T. H. Yoon, “Electro-optical characteristics of an in-plane-switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure,” Opt. Express 24(14), 15987–15996 (2016).
[Crossref]

T. H. Choi, J. H. Woo, Y. Choi, and T. H. Yoon, “Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field,” Opt. Express 24(18), 20993–21000 (2016).
[Crossref]

Choi, W. K.

W. K. Choi, S. L. Hou, J. Y Chen, G. D. J. Su, and Y. M. Li, “Fast-response & Polarization-independent Optical Shutter Using Nano-PDLC Inside a Fabry-Perot Cavity,” Mol. Cryst. Liq. Cryst. 612(1), 232–237 (2015).
[Crossref]

M. Jiao, S. T. Wu, and W. K. Choi, “Fast Response single cell gap transflective liquid crystal displays,” J. Disp. Technol. 5(3), 83–85 (2009).
[Crossref]

M. Jiao, Z. Ge, S. T. Wu, and W. K. Choi, “Sub-millisecond response liquid crystal modulators using dual field switching in a vertically aligned cell,” Appl. Phys. Lett. 92(11), 111101 (2008).
[Crossref]

W. K. Choi and S. T. Wu, “Fast response liquid crystal mode,” US Patent 7298445 B1, (2007).

W. K. Choi, C. H. Tung, and B. K. Tseng, “Fast-Response VA-FFS liquid crystal mode using 3D electrode design,” SID Int. Symp. Dig. Tech. Pap, 1838–1840 (2017).

Choi, Y.

Ge, Z.

M. Jiao, Z. Ge, S. T. Wu, and W. K. Choi, “Sub-millisecond response liquid crystal modulators using dual field switching in a vertically aligned cell,” Appl. Phys. Lett. 92(11), 111101 (2008).
[Crossref]

Gou, F.

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S.-T. Wu, “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express 25(7), 7984–7997 (2017).
[Crossref]

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S. T. Wu, “Motion-blur-free LCD for High Resolution Virtual Reality Display,” SID Int. Symp. Dig. Tech. Pap, 577–580 (2018).

Hanaoka, K.

T. Katayama, S. Higashida, A. Kanashima, K. Hanaoka, H. Yoshida, and S. Shimada, “Development of InPlane Super-Fast Response (ip-SFR) LCD for VR-HMD,” SID Int. Symp. Dig. Tech. Pap., 671–673, (2018).

Higashida, S.

T. Katayama, S. Higashida, A. Kanashima, K. Hanaoka, H. Yoshida, and S. Shimada, “Development of InPlane Super-Fast Response (ip-SFR) LCD for VR-HMD,” SID Int. Symp. Dig. Tech. Pap., 671–673, (2018).

Hou, S. L.

W. K. Choi, S. L. Hou, J. Y Chen, G. D. J. Su, and Y. M. Li, “Fast-response & Polarization-independent Optical Shutter Using Nano-PDLC Inside a Fabry-Perot Cavity,” Mol. Cryst. Liq. Cryst. 612(1), 232–237 (2015).
[Crossref]

Huang, Y.

H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
[Crossref]

J. R. Talukder, Y. Huang, and S. T. Wu, “High performance LCD for augmented reality and virtual reality displays,” Liq. Cryst., https://doi.org/10.1080/02678292.2018.1540067 (2018).

Iwakabe, Y.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, and S. Komura, “The Optimal Fast Response LCD for VR-HMD,” Proceeding of IDW, 145 (2017).

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

Jiao, M.

M. Jiao, S. T. Wu, and W. K. Choi, “Fast Response single cell gap transflective liquid crystal displays,” J. Disp. Technol. 5(3), 83–85 (2009).
[Crossref]

M. Jiao, Z. Ge, S. T. Wu, and W. K. Choi, “Sub-millisecond response liquid crystal modulators using dual field switching in a vertically aligned cell,” Appl. Phys. Lett. 92(11), 111101 (2008).
[Crossref]

Kanashima, A.

T. Katayama, S. Higashida, A. Kanashima, K. Hanaoka, H. Yoshida, and S. Shimada, “Development of InPlane Super-Fast Response (ip-SFR) LCD for VR-HMD,” SID Int. Symp. Dig. Tech. Pap., 671–673, (2018).

Katayama, T.

T. Katayama, S. Higashida, A. Kanashima, K. Hanaoka, H. Yoshida, and S. Shimada, “Development of InPlane Super-Fast Response (ip-SFR) LCD for VR-HMD,” SID Int. Symp. Dig. Tech. Pap., 671–673, (2018).

Kim, H. Y.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Kimura, S.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, and S. Komura, “The Optimal Fast Response LCD for VR-HMD,” Proceeding of IDW, 145 (2017).

Komura, S.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, and S. Komura, “The Optimal Fast Response LCD for VR-HMD,” Proceeding of IDW, 145 (2017).

Lee, S. H.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S.-T. Wu, “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express 25(7), 7984–7997 (2017).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S. T. Wu, “Motion-blur-free LCD for High Resolution Virtual Reality Display,” SID Int. Symp. Dig. Tech. Pap, 577–580 (2018).

Lewis, K.

R. Blacker, K. Lewis, I. Mason, I. Sage, and C. Webb, “Nano-Phase Polymer Dispersed Liquid Crystals,” Mol. Cryst. Liq. Cryst. 329(1), 187–198 (1999).
[Crossref]

Li, M. C.

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S.-T. Wu, “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express 25(7), 7984–7997 (2017).
[Crossref]

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S. T. Wu, “Motion-blur-free LCD for High Resolution Virtual Reality Display,” SID Int. Symp. Dig. Tech. Pap, 577–580 (2018).

Li, Y. M.

W. K. Choi, S. L. Hou, J. Y Chen, G. D. J. Su, and Y. M. Li, “Fast-response & Polarization-independent Optical Shutter Using Nano-PDLC Inside a Fabry-Perot Cavity,” Mol. Cryst. Liq. Cryst. 612(1), 232–237 (2015).
[Crossref]

Mason, I.

R. Blacker, K. Lewis, I. Mason, I. Sage, and C. Webb, “Nano-Phase Polymer Dispersed Liquid Crystals,” Mol. Cryst. Liq. Cryst. 329(1), 187–198 (1999).
[Crossref]

Matsushima, T.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, and S. Komura, “The Optimal Fast Response LCD for VR-HMD,” Proceeding of IDW, 145 (2017).

Nakamura, T.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

Oh, S. W.

T. H. Choi, S. W. Oh, Y. J. Park, Y. Choi, and T. H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two dimensional confinement with virtual walls,” Sci. Rep. 6(1), 27936 (2016).
[Crossref]

T. H. Choi, Y. Choi, J. H. Woo, S. W. Oh, and T. H. Yoon, “Electro-optical characteristics of an in-plane-switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure,” Opt. Express 24(14), 15987–15996 (2016).
[Crossref]

Park, Y. J.

T. H. Choi, S. W. Oh, Y. J. Park, Y. Choi, and T. H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two dimensional confinement with virtual walls,” Sci. Rep. 6(1), 27936 (2016).
[Crossref]

Sage, I.

R. Blacker, K. Lewis, I. Mason, I. Sage, and C. Webb, “Nano-Phase Polymer Dispersed Liquid Crystals,” Mol. Cryst. Liq. Cryst. 329(1), 187–198 (1999).
[Crossref]

Seki, K.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, and S. Komura, “The Optimal Fast Response LCD for VR-HMD,” Proceeding of IDW, 145 (2017).

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

Shimada, S.

T. Katayama, S. Higashida, A. Kanashima, K. Hanaoka, H. Yoshida, and S. Shimada, “Development of InPlane Super-Fast Response (ip-SFR) LCD for VR-HMD,” SID Int. Symp. Dig. Tech. Pap., 671–673, (2018).

Su, G. D. J.

W. K. Choi, S. L. Hou, J. Y Chen, G. D. J. Su, and Y. M. Li, “Fast-response & Polarization-independent Optical Shutter Using Nano-PDLC Inside a Fabry-Perot Cavity,” Mol. Cryst. Liq. Cryst. 612(1), 232–237 (2015).
[Crossref]

Talukder, J. R.

J. R. Talukder, Y. Huang, and S. T. Wu, “High performance LCD for augmented reality and virtual reality displays,” Liq. Cryst., https://doi.org/10.1080/02678292.2018.1540067 (2018).

Tan, G.

H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
[Crossref]

Tseng, B. K.

W. K. Choi, C. H. Tung, and B. K. Tseng, “Fast-Response VA-FFS liquid crystal mode using 3D electrode design,” SID Int. Symp. Dig. Tech. Pap, 1838–1840 (2017).

Tung, C. H.

W. K. Choi, C. H. Tung, and B. K. Tseng, “Fast-Response VA-FFS liquid crystal mode using 3D electrode design,” SID Int. Symp. Dig. Tech. Pap, 1838–1840 (2017).

Uchida, M.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

Watanabe, Y.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, and S. Komura, “The Optimal Fast Response LCD for VR-HMD,” Proceeding of IDW, 145 (2017).

Webb, C.

R. Blacker, K. Lewis, I. Mason, I. Sage, and C. Webb, “Nano-Phase Polymer Dispersed Liquid Crystals,” Mol. Cryst. Liq. Cryst. 329(1), 187–198 (1999).
[Crossref]

Weng, Y.

H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
[Crossref]

Woo, J. H.

Wu, S. T.

H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
[Crossref]

M. Jiao, S. T. Wu, and W. K. Choi, “Fast Response single cell gap transflective liquid crystal displays,” J. Disp. Technol. 5(3), 83–85 (2009).
[Crossref]

M. Jiao, Z. Ge, S. T. Wu, and W. K. Choi, “Sub-millisecond response liquid crystal modulators using dual field switching in a vertically aligned cell,” Appl. Phys. Lett. 92(11), 111101 (2008).
[Crossref]

W. K. Choi and S. T. Wu, “Fast response liquid crystal mode,” US Patent 7298445 B1, (2007).

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S. T. Wu, “Motion-blur-free LCD for High Resolution Virtual Reality Display,” SID Int. Symp. Dig. Tech. Pap, 577–580 (2018).

J. R. Talukder, Y. Huang, and S. T. Wu, “High performance LCD for augmented reality and virtual reality displays,” Liq. Cryst., https://doi.org/10.1080/02678292.2018.1540067 (2018).

Wu, S.-T.

Yata, T.

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, and S. Komura, “The Optimal Fast Response LCD for VR-HMD,” Proceeding of IDW, 145 (2017).

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

Yoon, T. H

H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
[Crossref]

Yoon, T. H.

Yoshida, H.

T. Katayama, S. Higashida, A. Kanashima, K. Hanaoka, H. Yoshida, and S. Shimada, “Development of InPlane Super-Fast Response (ip-SFR) LCD for VR-HMD,” SID Int. Symp. Dig. Tech. Pap., 671–673, (2018).

Appl. Phys. Lett. (2)

M. Jiao, Z. Ge, S. T. Wu, and W. K. Choi, “Sub-millisecond response liquid crystal modulators using dual field switching in a vertically aligned cell,” Appl. Phys. Lett. 92(11), 111101 (2008).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

J. Disp. Technol. (1)

M. Jiao, S. T. Wu, and W. K. Choi, “Fast Response single cell gap transflective liquid crystal displays,” J. Disp. Technol. 5(3), 83–85 (2009).
[Crossref]

Mol. Cryst. Liq. Cryst. (2)

R. Blacker, K. Lewis, I. Mason, I. Sage, and C. Webb, “Nano-Phase Polymer Dispersed Liquid Crystals,” Mol. Cryst. Liq. Cryst. 329(1), 187–198 (1999).
[Crossref]

W. K. Choi, S. L. Hou, J. Y Chen, G. D. J. Su, and Y. M. Li, “Fast-response & Polarization-independent Optical Shutter Using Nano-PDLC Inside a Fabry-Perot Cavity,” Mol. Cryst. Liq. Cryst. 612(1), 232–237 (2015).
[Crossref]

Opt. Express (3)

Sci. Rep. (2)

T. H. Choi, S. W. Oh, Y. J. Park, Y. Choi, and T. H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two dimensional confinement with virtual walls,” Sci. Rep. 6(1), 27936 (2016).
[Crossref]

H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H Yoon, and S. T. Wu, “A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles,” Sci. Rep. 7(1), 39923 (2017).
[Crossref]

Other (7)

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, and S. Komura, “The Optimal Fast Response LCD for VR-HMD,” Proceeding of IDW, 145 (2017).

T. Katayama, S. Higashida, A. Kanashima, K. Hanaoka, H. Yoshida, and S. Shimada, “Development of InPlane Super-Fast Response (ip-SFR) LCD for VR-HMD,” SID Int. Symp. Dig. Tech. Pap., 671–673, (2018).

T. Matsushima, K. Seki, S. Kimura, Y. Iwakabe, T. Yata, Y. Watanabe, S. Komura, M. Uchida, and T. Nakamura, “Optimal Fast-Response LCD for High-Definition Virtual Reality Head Mounted Display,” SID Int. Symp. Dig. Tech. Pap., 667–670 (2018).

F. Gou, H. Chen, M. C. Li, S. L. Lee, and S. T. Wu, “Motion-blur-free LCD for High Resolution Virtual Reality Display,” SID Int. Symp. Dig. Tech. Pap, 577–580 (2018).

J. R. Talukder, Y. Huang, and S. T. Wu, “High performance LCD for augmented reality and virtual reality displays,” Liq. Cryst., https://doi.org/10.1080/02678292.2018.1540067 (2018).

W. K. Choi and S. T. Wu, “Fast response liquid crystal mode,” US Patent 7298445 B1, (2007).

W. K. Choi, C. H. Tung, and B. K. Tseng, “Fast-Response VA-FFS liquid crystal mode using 3D electrode design,” SID Int. Symp. Dig. Tech. Pap, 1838–1840 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Structure and switching of a VA-FFS LC cell at field-on state showing the existence of disclinations which can help create the “self-imposed boundaries” or “virtual walls.”
Fig. 2.
Fig. 2. Electrode structure of (a) 2D VA-FFS and (b) 3D VA-FFS at voltage-on state.
Fig. 3.
Fig. 3. Comparison of the Transmission vs. voltage (T-V) curves between VA-FFS mode with 2D and 3D electrode designs. Use of 3D VA-FFS with circular polarizers indeed improves the overall transmission of VA-FFS (note that without circular polarizers, transmission may decrease since LC molecules rotate along the polarizer axes.)
Fig. 4.
Fig. 4. Top-view of the transmission of (a) 2D VA-FFS with linear polarizers and (b) 3D VA-FFS with linear polarizers and (c) 3D VA-FFS with circular polarizers.
Fig. 5.
Fig. 5. Device structure of 3D electrode design with connected pixel electrode.
Fig. 6.
Fig. 6. V-T curve of negative and positive LC for 2D electrode (w = 2µm, g = 3µm)
Fig. 7.
Fig. 7. Comparison of rise time between negative and positive LC for 2D electrode with (a) different gap, w = 3µm (b) different width, g = 3µm
Fig. 8.
Fig. 8. Comparison of turn-on process between (a) positive and (b) negative LC with 2D electrode. Note that with negative LC it takes longer time to switch (become brighter).
Fig. 9.
Fig. 9. The cross-sectional LC director profile in (a) positive VA-FFS (b) negative VA-FFS. The A to F regions correspond to the A to F regions in Fig. 8.
Fig. 10.
Fig. 10. LC director profile from top view at the depth of 0.9µm from bottom substrate surface of LC layer for (a) positive VA-FFS at 5ms (b) negative VA-FFS at 3ms (c) negative VA-FFS at 7ms and (d) negative VA-FFS at 30ms
Fig. 11.
Fig. 11. Comparison of fall time between negative and positive LC w = 3µm, g = 3-6 µm (b) g = 3µm, w = 2-5µm
Fig. 12.
Fig. 12. Comparison of a) V-T and b) T-t curves for negative and positive LC with 3D electrode design (w = 3µm, g = 5 µm).
Fig. 13.
Fig. 13. Comparison of rise time between negative and positive LC (a) w = 3µm, g = 3-7µm (b) g = 3µm, w = 1-5µm.
Fig. 14.
Fig. 14. Comparison of fall time between negative and positive LC (a) w = 3µm, g = 3-7µm (b) g = 3µm, w = 1-5µm.
Fig. 15.
Fig. 15. The top-view brightness profile at ON-state for (a) positive and (b) negative LC in 3D electrode design
Fig. 16.
Fig. 16. The LC direction distribution profiles at ON-state for (a) positive and (b) negative LC in 3D electrode design. Circled regions correspond to the disclinations or “virtual walls” regions.

Tables (2)

Tables Icon

Table 1. Comparison of the response time between 2D VA-FFS and 3D VA-FFS (circular polarizer) LC modes

Tables Icon

Table 2. Material properties of LC molecules for simulation