Abstract

The ambient temperature fluctuation is a long-standing challenge for the hot wire anemometer due to the strong cross-talk. Here, a graphene-coated elliptical core micro-fiber Bragg grating has been proposed for the detection of flow rate with the temperature compensation. With the strong interaction between the graphene layers and the heating light, the graphene coat on the surface of the microfiber can be heated, acting as a heater. The flow rate can be measured through the different responses of two orthogonal polarization modes to the refractive index change of the graphene layer induced by the heat transfer. More importantly, due to the identical response of two polarization modes to the ambient temperature, the fiber-optic anemometer could compensate the temperature cross-talk effectively. The experimental results show that the sensitivity of the 0.42 nm/(m/s) for the fiber anemometer can be achieved, and the temperature standard variation is only 0.084 nm with the range from 20°C to 50°C. The proposed fiber-optic anemometer is very attractive in the fields of various industries for the temperature self-compensation detection of gas flow.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating

Yang Zhang, Fang Wang, Zigeng Liu, Zhihui Duan, Wenli Cui, Jie Han, Yiying Gu, Zhenlin Wu, Zhenguo Jing, Changsen Sun, and Wei Peng
Opt. Express 25(20) 24521-24530 (2017)

All-optical fiber anemometer based on laser heated fiber Bragg gratings

Shaorui Gao, A. Ping Zhang, Hwa-Yaw Tam, L. H. Cho, and Chao Lu
Opt. Express 19(11) 10124-10130 (2011)

Fast-response fiber-optic anemometer with temperature self-compensation

Guigen Liu, Weilin Hou, Wei Qiao, and Ming Han
Opt. Express 23(10) 13562-13570 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Lamb and A. Hooper, “Laser-optical fiber Bragg grating anemometer for measuring gas flows: application to measuring the electric wind,” Opt. Lett. 31(8), 1035–1037 (2006).
    [Crossref]
  2. L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–93 (2011).
  3. J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
    [Crossref]
  4. J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators, A 97-98, 68–74 (2002).
    [Crossref]
  5. O. Frazão, P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Optical flowmeter using a modal interferometer based on a single nonadiabatic fiber taper,” Opt. Lett. 32(14), 1974–1976 (2007).
    [Crossref]
  6. S. Gao, A. P. Zhang, H.-Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19(11), 10124–10130 (2011).
    [Crossref]
  7. Z. Y. Liu, L. Htein, L. K. Cheng, Q. Martina, R. Jansen, and H. Y. Tam, “Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber,” Opt. Express 25(4), 4393–4402 (2017).
    [Crossref]
  8. P. Caldas, P. A. Jorge, G. Rego, O. Frazão, J. L. Santos, L. A. Ferreira, and F. Araújo, “Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure,” Appl. Opt. 50(17), 2738–2743 (2011).
    [Crossref]
  9. Y. Zhang, F. Wang, Z. G. Liu, Z. H. Duan, W. L. Cui, J. Han, Y. Y. Gu, Z. L. Wu, Z. G. Jing, C. S. Sun, and W. Peng, “Fiber-optic anemometer based on single walled carbon nanotube coated tilted fiber Bragg grating,” Opt. Express 25(20), 24521–24530 (2017).
    [Crossref]
  10. G. Liu, W. Hou, W. Qiao, and M. Han, “Fast-response fiber-optic anemometer with temperature self-compensation,” Opt. Express 23(10), 13562–13570 (2015).
    [Crossref]
  11. Y. Li, G. F. Yan, L. Zhang, and S. L. He, “Microfluidic flowmeter based on micro “hotwire” sandwiched Fabry-Perot interferometer,” Opt. Express 23(7), 9483–9493 (2015).
    [Crossref]
  12. B. Zhou, H. H. Jiang, C. T. Lu, and S. L. He, “Hot Cavity Optical Fiber Fabry–Perot Interferometer as a Flow Sensor With Temperature Self-Calibrated,” J. Lightwave Technol. 34(21), 5044–5048 (2016).
    [Crossref]
  13. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
    [Crossref]
  14. W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref]
  15. J. L. Benítez, J. H. cordero, S. Muhl, and D. Mendoza, “Few layers graphene as thermally activatedoptical modulator in the visible-near IR spectral range,” Opt. Lett. 41(1), 167–170 (2016).
    [Crossref]
  16. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  17. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref]
  18. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
    [Crossref]
  19. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref]
  20. X. Y. Dong, Y. Zhou, W. J. Zhou, J. Cheng, and Z. D. Su, “Compact Anemometer Using Silver-Coated Fiber Bragg Grating,” IEEE Photonics J. 4(5), 1381–1386 (2012).
    [Crossref]
  21. Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
    [Crossref]
  22. Y. K. Liu, B. H. Liang, X. J. Zhang, N. Hu, K. W. Li, F. Chiavaioli, X. C. Gui, and T. Guo, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” J. Lightwave Technol. 37(13), 3373–3380 (2019).
    [Crossref]
  23. M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006).
    [Crossref]
  24. M. Sumetsky, Y. Dulashko, P. Domachuk, and B. J. Eggleton, “Thinnest optical waveguide: experimental test,” Opt. Lett. 32(7), 754–756 (2007).
    [Crossref]
  25. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref]

2019 (1)

2017 (3)

2016 (3)

2015 (2)

2014 (1)

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

2012 (1)

X. Y. Dong, Y. Zhou, W. J. Zhou, J. Cheng, and Z. D. Su, “Compact Anemometer Using Silver-Coated Fiber Bragg Grating,” IEEE Photonics J. 4(5), 1381–1386 (2012).
[Crossref]

2011 (5)

2010 (1)

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

2009 (1)

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (2)

2006 (2)

2004 (1)

2002 (1)

J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators, A 97-98, 68–74 (2002).
[Crossref]

Ahn, J.-H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Araújo, F.

Araújo, F. M.

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Bao, J. M.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Benítez, J. L.

Brodzeli, Z.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Caldas, P.

Chen, B. G.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Cheng, J.

X. Y. Dong, Y. Zhou, W. J. Zhou, J. Cheng, and Z. D. Su, “Compact Anemometer Using Silver-Coated Fiber Bragg Grating,” IEEE Photonics J. 4(5), 1381–1386 (2012).
[Crossref]

Cheng, L. K.

Chiavaioli, F.

Cho, L. H.

cordero, J. H.

Cui, W. L.

Domachuk, P.

Dong, X. Y.

X. Y. Dong, Y. Zhou, W. J. Zhou, J. Cheng, and Z. D. Su, “Compact Anemometer Using Silver-Coated Fiber Bragg Grating,” IEEE Photonics J. 4(5), 1381–1386 (2012).
[Crossref]

Dresselhaus, G.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Dresselhaus, M. S.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Duan, Z. H.

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Y. Zhang, F. Wang, Z. G. Liu, Z. H. Duan, W. L. Cui, J. Han, Y. Y. Gu, Z. L. Wu, Z. G. Jing, C. S. Sun, and W. Peng, “Fiber-optic anemometer based on single walled carbon nanotube coated tilted fiber Bragg grating,” Opt. Express 25(20), 24521–24530 (2017).
[Crossref]

Dulashko, Y.

Eggleton, B. J.

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Fang, W.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Ferreira, L. A.

Firth, J.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Frazão, O.

Gao, S.

Gu, Y. Y.

Y. Zhang, F. Wang, Z. G. Liu, Z. H. Duan, W. L. Cui, J. Han, Y. Y. Gu, Z. L. Wu, Z. G. Jing, C. S. Sun, and W. Peng, “Fiber-optic anemometer based on single walled carbon nanotube coated tilted fiber Bragg grating,” Opt. Express 25(20), 24521–24530 (2017).
[Crossref]

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Guan, B. O.

Gui, X. C.

Guo, T.

Han, J.

Han, M.

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

He, S. L.

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Hooper, A.

Hou, W.

Htein, L.

Hu, N.

Hu, Z. F.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Jansen, R.

Jiang, H. H.

Jin, L.

Jing, Z. G.

Jorge, P. A.

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Ladouceur, F.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Lamb, D. W.

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Li, J.

Li, K. W.

Li, W.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Li, X. Y.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Li, Y.

Liang, B. H.

Liu, G.

Liu, W. T.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Liu, Y. K.

Liu, Z. G.

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Y. Zhang, F. Wang, Z. G. Liu, Z. H. Duan, W. L. Cui, J. Han, Y. Y. Gu, Z. L. Wu, Z. G. Jing, C. S. Sun, and W. Peng, “Fiber-optic anemometer based on single walled carbon nanotube coated tilted fiber Bragg grating,” Opt. Express 25(20), 24521–24530 (2017).
[Crossref]

Liu, Z. X.

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Liu, Z. Y.

Lou, J. Y.

Lu, C.

Lu, C. T.

Ma, Y. F.

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–93 (2011).

Malard, L. M.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Martina, Q.

Mazur, E.

Mendoza, D.

Meng, C.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Muhl, S.

Özyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Park, J. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Peng, W.

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Y. Zhang, F. Wang, Z. G. Liu, Z. H. Duan, W. L. Cui, J. Han, Y. Y. Gu, Z. L. Wu, Z. G. Jing, C. S. Sun, and W. Peng, “Fiber-optic anemometer based on single walled carbon nanotube coated tilted fiber Bragg grating,” Opt. Express 25(20), 24521–24530 (2017).
[Crossref]

Piao, L. H.

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–93 (2011).

Pimenta, M. A.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Qiao, W.

Ran, Y.

Rego, G.

Sansen, W.

J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators, A 97-98, 68–74 (2002).
[Crossref]

Santos, J. L.

Shen, Y. R.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Silvestri, L.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Song, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Su, Z. D.

X. Y. Dong, Y. Zhou, W. J. Zhou, J. Cheng, and Z. D. Su, “Compact Anemometer Using Silver-Coated Fiber Bragg Grating,” IEEE Photonics J. 4(5), 1381–1386 (2012).
[Crossref]

Sumetsky, M.

Sun, C. S.

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Y. Zhang, F. Wang, Z. G. Liu, Z. H. Duan, W. L. Cui, J. Han, Y. Y. Gu, Z. L. Wu, Z. G. Jing, C. S. Sun, and W. Peng, “Fiber-optic anemometer based on single walled carbon nanotube coated tilted fiber Bragg grating,” Opt. Express 25(20), 24521–24530 (2017).
[Crossref]

Sun, L. P.

Tam, H. Y.

Tam, H.-Y.

Tan, Y. N.

Tong, L. M.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Wang, F.

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Y. Zhang, F. Wang, Z. G. Liu, Z. H. Duan, W. L. Cui, J. Han, Y. Y. Gu, Z. L. Wu, Z. G. Jing, C. S. Sun, and W. Peng, “Fiber-optic anemometer based on single walled carbon nanotube coated tilted fiber Bragg grating,” Opt. Express 25(20), 24521–24530 (2017).
[Crossref]

Wang, H. Q.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Wang, J. P.

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–93 (2011).

Wu, J.

J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators, A 97-98, 68–74 (2002).
[Crossref]

Wu, Z. L.

Y. Zhang, F. Wang, Z. G. Liu, Z. H. Duan, W. L. Cui, J. Han, Y. Y. Gu, Z. L. Wu, Z. G. Jing, C. S. Sun, and W. Peng, “Fiber-optic anemometer based on single walled carbon nanotube coated tilted fiber Bragg grating,” Opt. Express 25(20), 24521–24530 (2017).
[Crossref]

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Wyres, M.

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

Xiao, Y.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Xu, Y. X.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Yan, G. F.

Zhang, A. P.

Zhang, L.

Zhang, T.

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–93 (2011).

Zhang, X. J.

Zhang, Y.

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Y. Zhang, F. Wang, Z. G. Liu, Z. H. Duan, W. L. Cui, J. Han, Y. Y. Gu, Z. L. Wu, Z. G. Jing, C. S. Sun, and W. Peng, “Fiber-optic anemometer based on single walled carbon nanotube coated tilted fiber Bragg grating,” Opt. Express 25(20), 24521–24530 (2017).
[Crossref]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Zhou, B.

Zhou, W. J.

X. Y. Dong, Y. Zhou, W. J. Zhou, J. Cheng, and Z. D. Su, “Compact Anemometer Using Silver-Coated Fiber Bragg Grating,” IEEE Photonics J. 4(5), 1381–1386 (2012).
[Crossref]

Zhou, Y.

X. Y. Dong, Y. Zhou, W. J. Zhou, J. Cheng, and Z. D. Su, “Compact Anemometer Using Silver-Coated Fiber Bragg Grating,” IEEE Photonics J. 4(5), 1381–1386 (2012).
[Crossref]

Appl. Opt. (1)

Flow Meas. Instrum. (1)

J. Firth, F. Ladouceur, Z. Brodzeli, M. Wyres, and L. Silvestri, “A novel optical telemetry system applied to flowmeter networks,” Flow Meas. Instrum. 48, 15–19 (2016).
[Crossref]

IEEE Photonics J. (1)

X. Y. Dong, Y. Zhou, W. J. Zhou, J. Cheng, and Z. D. Su, “Compact Anemometer Using Silver-Coated Fiber Bragg Grating,” IEEE Photonics J. 4(5), 1381–1386 (2012).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Lightwave Technol. (2)

Nano Lett. (1)

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast All-Optical Graphene Modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref]

Nat. Nanotechnol. (1)

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Phys. Rep. (1)

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5-6), 51–87 (2009).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Sens. Actuators, A (1)

J. Wu and W. Sansen, “Electrochemical time of flight flow sensor,” Sens. Actuators, A 97-98, 68–74 (2002).
[Crossref]

Sensors (1)

Y. Zhang, F. Wang, Z. H. Duan, Z. X. Liu, Z. G. Liu, Z. L. Wu, Y. Y. Gu, C. S. Sun, and W. Peng, “Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings,” Sensors 17(9), 2107 (2017).
[Crossref]

Transduc. Microsyst. Technol. (1)

L. H. Piao, T. Zhang, Y. F. Ma, and J. P. Wang, “Structural optimization of mental cone rotameter based on CFD,” Transduc. Microsyst. Technol. 30(3), 90–93 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Cross section of the elliptical core fiber. The microfiber with the diameter of (b) 9, (c) 11, and (d) 13 µm. (e) Mode field distribution. (f) SEM of the graphene coated microfiber.
Fig. 2.
Fig. 2. Reflected spectra of microfiber (a) with and without graphene. (b)with different diamater.
Fig. 3.
Fig. 3. Simulation of (a) the relationship between the real part of the refractive index for the graphene and the temperature and the refractive index sensitivity of the graphene. (b) the effective refractive index change of two polarizations with different refractive index of graphene. Insert shows the mode field distribution by using COMSOL. (c) the wavelength shifts of two polarizations and the wavelength interval change response for the flow rate. (d) the wavelength shifts of two polarizations and the wavelength interval change at the temperature range from 0 to 80°C. (e) the wavelength shifts of two polarizations and the wavelength interval change with different refractive index change of graphene. (f) the entire wavelength shifts of two polarizations and wavelength interval change for temperature cross-sensitivity. Insert shows the wavelength interval change at the temperature range from 0 to 80°C.
Fig. 4.
Fig. 4. (a) A steel square plane with a hollow square hole. (b) evanescent field of the 532 nm laser. (c) Thermal image. (d) Experimental setup. (e) Temperature change of graphene with different pump laser. (e) Raman spectrum of the graphene and transmittance of the graphene in visible range.
Fig. 5.
Fig. 5. (a) Reflected spectra of the micro-FBG with different wind speeds. (b)Wavelength shift of two peaks and wavelength interval between two peaks. (c) Response time from 0–0.2 m/s. (d) Wavelength interval between two peaks with different diameter.
Fig. 6.
Fig. 6. (a) Reflected spectra of the micro-FBG at different temperature with the wind speed of 1.0m/s. (b) Wavelength interval between two peaks with different wind speed at different temperature.
Fig. 7.
Fig. 7. The mode field distribution of the elliptical core micro-FBG with the diameter of (a) 7.6 µm, (b) 9 µm, and (c) 13 µm. Figures below show the enlarge views of the evanescent field three microfibers with different diameter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω , T ) = j e 2 k B T π 2 ( ω j 2 Γ ) [ u c k B T + 2 ln ( e ( u c / k B T ) )  + 1 ] + j e 2 4 π ln [ 2 | u c | ( ω + j 2 Γ ) 2 | u c | + ( ω + j 2 Γ ) ] .
Re ( n e f f ) = ( 1 / 2 ω Δ ε 0 ) 1 / 2 [ σ i ( T ) + 4 σ r 2 ( T ) + σ i 2 ( T ) ] 1 / 2 .
H p o w e r = Δ T h ( A + B υ ) .
Δ λ = 2 Λ [ α ( n e f f 1 n e f f 2 ) + ( d n e f f 1 d T d n e f f 2 d T ) ] H p o w e r A + B υ + 2 Λ d n d T ( d n n e f f 1 d n d n n e f f 2 d n ) H p o w e r A + B υ .

Metrics