Abstract

We propose a tunable dual-band reflective cross-polarization converter composed of periodically arranged single layer U-shaped graphene nanostructures in mid-infrared region. The proposed dual-band reflective cross-polarization converter can convert the polarization state of an incident wave from the linear polarization state to its cross polarization state at the operating frequencies of 34.67 and 44.13 THz with the high-efficiency polarization conversion ratio (PCR) approaching 100%. Furthermore, as a complementary structure, a reflective cross-polarization converter with a hollow-carved U-shaped graphene sheet shows a broadband polarization conversion performance with a bandwidth of 1 THz and the PCR over 90%. The bandwidth of this broadband converter can be further extended to 2 THz after certain geometric parameter optimization. More importantly, both the dual-band and broadband cross-polarization converters not only can dynamically tune their PCR peak frequencies and magnitudes by adjusting the chemical potential and relaxation time of graphene without changing the geometric structure but also have good angular stability with high PCR in a wide range of incident angle up to 55°. These polarization converters may have great potential applications in mid-infrared spectroscopy, radiometer, sensor, and other photonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial

Jianfeng Zhu, Shufang Li, Li Deng, Chen Zhang, Yang Yang, and Hongbo Zhu
Opt. Mater. Express 8(5) 1164-1173 (2018)

Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene

Chen Yang, Yi Luo, Jiaxin Guo, Yang Pu, De He, Yadong Jiang, Jimmy Xu, and Zhijun Liu
Opt. Express 24(15) 16913-16922 (2016)

Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence

Vinit Singh Yadav, Sambit Kumar Ghosh, Somak Bhattacharyya, and Santanu Das
Appl. Opt. 57(29) 8720-8726 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
    [Crossref]
  2. E. Petroff, M. Bailes, and E. D. Barr, “A real-time fast radio burst: polarization detection and multiwave length follow-up,” Mon. Not. R. Astron. Soc. 447(1), 246–255 (2015).
    [Crossref]
  3. S. Ding, R. Li, and Y. Luo, “Polarization coherent optical communications with adaptive polarization control over atmospheric turbulence,” J. Opt. Soc. Am. A 35(7), 1204–1211 (2018).
    [Crossref]
  4. C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
    [Crossref]
  5. L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Characterization of birefringent material using polarization-controlled terahertz spectroscopy,” Opt. Express 18(19), 20491–20497 (2010).
    [Crossref]
  6. S. R. Seshadri, “Polarization conversion by reflection in a thin-film grating,” J. Opt. Soc. Am. A 18(7), 1765–1776 (2001).
    [Crossref]
  7. S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
    [Crossref]
  8. X. Huang, D. Yang, and S. Yu, “Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial,” Appl. Phys. B: Lasers Opt. 117(2), 633–638 (2014).
    [Crossref]
  9. H. Cheng, S. Chen, and P. Yu, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
    [Crossref]
  10. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref]
  11. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
    [Crossref]
  12. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
    [Crossref]
  13. S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
    [Crossref]
  14. X. F. Zang, S. J. Liu, H. H. Gong, Y. Wang, and Y. M. Zhu, “Dual-band superposition induced broadband terahertz linear-to-circular polarization converter,” J. Opt. Soc. Am. A 35(4), 950–957 (2018).
    [Crossref]
  15. X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
    [Crossref]
  16. X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
    [Crossref]
  17. K.S. Kovoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref]
  18. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref]
  19. J. Ding, B. Arigong, and H. Ren, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based l-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
    [Crossref]
  20. M. Chen, W. Sun, and J. Cai, “Frequency-Tunable Mid-Infrared Cross Polarization Converters Based on Graphene Metasurface,” Plasmonics 12(3), 699–705 (2017).
    [Crossref]
  21. H. Cheng, S. Chen, and P. Yu, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  22. A. Y. Nikitin, F. Guinea, and F. J. Garcia-Vidal, “Edge and waveguide THz surface plasmon modes in graphene micro-ribbons,” Phys. Rev. B 84(16), 161407 (2011).
    [Crossref]
  23. L. Ye, K. Sui, Y. Liu, M. Zhang, and Q. H. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation,” Opt. Express 26(12), 15935–15947 (2018).
    [Crossref]
  24. L. Ye, K. Sui, Y. Zhang, and Q. H. Liu, “Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications,” Nanoscale 11(7), 3229–3239 (2019).
    [Crossref]
  25. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed opticalcommunications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  26. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [Crossref]
  27. X. Wang, Z. Z. Cheng, and K. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
    [Crossref]
  28. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref]
  29. L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q. H. Liu, “Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces,” Nanomaterials 8(8), 562 (2018).
    [Crossref]
  30. L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
    [Crossref]
  31. L. Ye, F. Zeng, Y. Zhang, X. Xu, X. Yang, and Q. H. Liu, “Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays,” Nanomaterials 8(10), 834 (2018).
    [Crossref]
  32. L. Ye, F. Zeng, Y. Zhang, and Q. H. Liu, “Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range,” Carbon 148, 317–325 (2019).
    [Crossref]
  33. L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q. H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 1–7 (2019).
    [Crossref]
  34. C. Yang, Y. Luo, and J. Guo, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
    [Crossref]
  35. J. F. Zhu, S. F. Li, and L. Deng, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164–1173 (2018).
    [Crossref]
  36. M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
    [Crossref]
  37. S. Y. Vinit, K. G. Sambit, B. Somak, and D. Santanu, “Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence,” Appl. Opt. 57(29), 8720–8726 (2018).
    [Crossref]
  38. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
    [Crossref]
  39. Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
    [Crossref]
  40. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref]
  41. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  42. D. Du, J. Liu, X. Zhang, X. Cui, and Y. Lin, “One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents,” J. Mater. Chem. 21(22), 8032–8037 (2011).
    [Crossref]
  43. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, and R. W. Alexander, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far-infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [Crossref]
  44. C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
    [Crossref]
  45. J. Ding, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
    [Crossref]
  46. J. M. Dawlaty, S. Shivaraman, and M. Chandrashekhar, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
    [Crossref]
  47. F. H. Koppens, D. E. Chang, and F. J. G. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref]
  48. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
    [Crossref]

2019 (3)

L. Ye, K. Sui, Y. Zhang, and Q. H. Liu, “Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications,” Nanoscale 11(7), 3229–3239 (2019).
[Crossref]

L. Ye, F. Zeng, Y. Zhang, and Q. H. Liu, “Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range,” Carbon 148, 317–325 (2019).
[Crossref]

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q. H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 1–7 (2019).
[Crossref]

2018 (9)

J. F. Zhu, S. F. Li, and L. Deng, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164–1173 (2018).
[Crossref]

L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q. H. Liu, “Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces,” Nanomaterials 8(8), 562 (2018).
[Crossref]

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

L. Ye, F. Zeng, Y. Zhang, X. Xu, X. Yang, and Q. H. Liu, “Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays,” Nanomaterials 8(10), 834 (2018).
[Crossref]

L. Ye, K. Sui, Y. Liu, M. Zhang, and Q. H. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation,” Opt. Express 26(12), 15935–15947 (2018).
[Crossref]

S. Ding, R. Li, and Y. Luo, “Polarization coherent optical communications with adaptive polarization control over atmospheric turbulence,” J. Opt. Soc. Am. A 35(7), 1204–1211 (2018).
[Crossref]

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref]

X. F. Zang, S. J. Liu, H. H. Gong, Y. Wang, and Y. M. Zhu, “Dual-band superposition induced broadband terahertz linear-to-circular polarization converter,” J. Opt. Soc. Am. A 35(4), 950–957 (2018).
[Crossref]

S. Y. Vinit, K. G. Sambit, B. Somak, and D. Santanu, “Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence,” Appl. Opt. 57(29), 8720–8726 (2018).
[Crossref]

2017 (3)

M. Chen, W. Sun, and J. Cai, “Frequency-Tunable Mid-Infrared Cross Polarization Converters Based on Graphene Metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref]

M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

2016 (2)

C. Yang, Y. Luo, and J. Guo, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
[Crossref]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

2015 (4)

J. Ding, B. Arigong, and H. Ren, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based l-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

E. Petroff, M. Bailes, and E. D. Barr, “A real-time fast radio burst: polarization detection and multiwave length follow-up,” Mon. Not. R. Astron. Soc. 447(1), 246–255 (2015).
[Crossref]

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

2014 (4)

J. Ding, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref]

X. Huang, D. Yang, and S. Yu, “Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial,” Appl. Phys. B: Lasers Opt. 117(2), 633–638 (2014).
[Crossref]

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

2013 (3)

H. Cheng, S. Chen, and P. Yu, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

X. Wang, Z. Z. Cheng, and K. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

H. Cheng, S. Chen, and P. Yu, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref]

2012 (1)

K.S. Kovoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

2011 (5)

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

A. Y. Nikitin, F. Guinea, and F. J. Garcia-Vidal, “Edge and waveguide THz surface plasmon modes in graphene micro-ribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

D. Du, J. Liu, X. Zhang, X. Cui, and Y. Lin, “One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents,” J. Mater. Chem. 21(22), 8032–8037 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. G. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

2010 (4)

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed opticalcommunications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Characterization of birefringent material using polarization-controlled terahertz spectroscopy,” Opt. Express 18(19), 20491–20497 (2010).
[Crossref]

2009 (2)

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

2008 (3)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. M. Dawlaty, S. Shivaraman, and M. Chandrashekhar, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

2003 (1)

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

2002 (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

2001 (1)

1983 (1)

Ahn, J. H.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Alexander, R. W.

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Arigong, B.

J. Ding, B. Arigong, and H. Ren, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based l-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed opticalcommunications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Bae, S.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

Bailes, M.

E. Petroff, M. Bailes, and E. D. Barr, “A real-time fast radio burst: polarization detection and multiwave length follow-up,” Mon. Not. R. Astron. Soc. 447(1), 246–255 (2015).
[Crossref]

Barr, E. D.

E. Petroff, M. Bailes, and E. D. Barr, “A real-time fast radio burst: polarization detection and multiwave length follow-up,” Mon. Not. R. Astron. Soc. 447(1), 246–255 (2015).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Cai, G.

L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q. H. Liu, “Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces,” Nanomaterials 8(8), 562 (2018).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref]

Cai, J.

M. Chen, W. Sun, and J. Cai, “Frequency-Tunable Mid-Infrared Cross Polarization Converters Based on Graphene Metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Cao, W. P.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Cao, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, and M. Chandrashekhar, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. G. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Chang, L. Z.

M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Chen, C.

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Chen, H.

M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Chen, M.

M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

M. Chen, W. Sun, and J. Cai, “Frequency-Tunable Mid-Infrared Cross Polarization Converters Based on Graphene Metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Chen, S.

H. Cheng, S. Chen, and P. Yu, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

H. Cheng, S. Chen, and P. Yu, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref]

Chen, X.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q. H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 1–7 (2019).
[Crossref]

L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q. H. Liu, “Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces,” Nanomaterials 8(8), 562 (2018).
[Crossref]

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Chen, Y.

Cheng, H.

H. Cheng, S. Chen, and P. Yu, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref]

H. Cheng, S. Chen, and P. Yu, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Cheng, Z. Z.

X. Wang, Z. Z. Cheng, and K. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Chin, J. Y.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Choi, J. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Colombo, L.

K.S. Kovoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Cui, T. J.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Cui, X.

D. Du, J. Liu, X. Zhang, X. Cui, and Y. Lin, “One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents,” J. Mater. Chem. 21(22), 8032–8037 (2011).
[Crossref]

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, and M. Chandrashekhar, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Deng, C.

Deng, L.

Ding, J.

J. Ding, B. Arigong, and H. Ren, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based l-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

J. Ding, “Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas,” Opt. Express 22(23), 29143–29151 (2014).
[Crossref]

Ding, L.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Ding, S.

Du, D.

D. Du, J. Liu, X. Zhang, X. Cui, and Y. Lin, “One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents,” J. Mater. Chem. 21(22), 8032–8037 (2011).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Fal’ko, V. I.

K.S. Kovoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Fan, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Feng, M. D.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Gao, C. H.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Gao, X.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

García de Abajo, F. J. G.

F. H. Koppens, D. E. Chang, and F. J. G. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, and F. J. Garcia-Vidal, “Edge and waveguide THz surface plasmon modes in graphene micro-ribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Gellert, P. R.

K.S. Kovoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Geyi, W.

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref]

Gong, H. H.

X. F. Zang, S. J. Liu, H. H. Gong, Y. Wang, and Y. M. Zhu, “Dual-band superposition induced broadband terahertz linear-to-circular polarization converter,” J. Opt. Soc. Am. A 35(4), 950–957 (2018).
[Crossref]

Guinea, F.

A. Y. Nikitin, F. Guinea, and F. J. Garcia-Vidal, “Edge and waveguide THz surface plasmon modes in graphene micro-ribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Guo, J.

Han, F.

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Han, X.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Hong, B. H.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Huang, X.

X. Huang, D. Yang, and S. Yu, “Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial,” Appl. Phys. B: Lasers Opt. 117(2), 633–638 (2014).
[Crossref]

Huang, X. J.

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Jang, H.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Jang, S.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Kim, K.

K.S. Kovoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Koppens, F. H.

F. H. Koppens, D. E. Chang, and F. J. G. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Kovoselov, K.S.

K.S. Kovoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Lederer, F.

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Lee, S. T.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Lee, Y.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

Li, H.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Li, H. O.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Li, Q. L.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Li, R.

Li, S. F.

Lin, Y.

D. Du, J. Liu, X. Zhang, X. Cui, and Y. Lin, “One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents,” J. Mater. Chem. 21(22), 8032–8037 (2011).
[Crossref]

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Liu, J.

D. Du, J. Liu, X. Zhang, X. Cui, and Y. Lin, “One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents,” J. Mater. Chem. 21(22), 8032–8037 (2011).
[Crossref]

Liu, N.

L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q. H. Liu, “Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces,” Nanomaterials 8(8), 562 (2018).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref]

Liu, Q. H.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q. H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 1–7 (2019).
[Crossref]

L. Ye, F. Zeng, Y. Zhang, and Q. H. Liu, “Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range,” Carbon 148, 317–325 (2019).
[Crossref]

L. Ye, K. Sui, Y. Zhang, and Q. H. Liu, “Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications,” Nanoscale 11(7), 3229–3239 (2019).
[Crossref]

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

L. Ye, F. Zeng, Y. Zhang, X. Xu, X. Yang, and Q. H. Liu, “Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays,” Nanomaterials 8(10), 834 (2018).
[Crossref]

L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q. H. Liu, “Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces,” Nanomaterials 8(8), 562 (2018).
[Crossref]

L. Ye, K. Sui, Y. Liu, M. Zhang, and Q. H. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation,” Opt. Express 26(12), 15935–15947 (2018).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref]

Liu, S. J.

X. F. Zang, S. J. Liu, H. H. Gong, Y. Wang, and Y. M. Zhu, “Dual-band superposition induced broadband terahertz linear-to-circular polarization converter,” J. Opt. Soc. Am. A 35(4), 950–957 (2018).
[Crossref]

Liu, W.

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref]

Liu, Y.

Long, L. L.

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Luo, Y.

Ma, H.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Ma, H. F.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Mueller, T.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed opticalcommunications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, and F. J. Garcia-Vidal, “Edge and waveguide THz surface plasmon modes in graphene micro-ribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Ordal, M. A.

Pan, C.

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Pan, R.

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Pang, Y. Q.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Petroff, E.

E. Petroff, M. Bailes, and E. D. Barr, “A real-time fast radio burst: polarization detection and multiwave length follow-up,” Mon. Not. R. Astron. Soc. 447(1), 246–255 (2015).
[Crossref]

Qu, S. B.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Ren, H.

J. Ding, B. Arigong, and H. Ren, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based l-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Sambit, K. G.

Santanu, D.

Schwab, M. G.

K.S. Kovoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Seshadri, S. R.

Shen, F.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q. H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 1–7 (2019).
[Crossref]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, and M. Chandrashekhar, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Sim, S. H.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

Somak, B.

Song, Y. I.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

Song, Z.

Sui, K.

L. Ye, K. Sui, Y. Zhang, and Q. H. Liu, “Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications,” Nanoscale 11(7), 3229–3239 (2019).
[Crossref]

L. Ye, K. Sui, Y. Liu, M. Zhang, and Q. H. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation,” Opt. Express 26(12), 15935–15947 (2018).
[Crossref]

Sui, S.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Sun, Q. J.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Sun, W.

M. Chen, W. Sun, and J. Cai, “Frequency-Tunable Mid-Infrared Cross Polarization Converters Based on Graphene Metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Sun, X. H.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Sun, Y. Q.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Tsai, T.

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Vinit, S. Y.

Wang, C.

M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Wang, J. F.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Wang, Q.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Wang, S. D.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Wang, S. Y.

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref]

Wang, X.

X. Wang, Z. Z. Cheng, and K. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Wang, Y.

X. F. Zang, S. J. Liu, H. H. Gong, Y. Wang, and Y. M. Zhu, “Dual-band superposition induced broadband terahertz linear-to-circular polarization converter,” J. Opt. Soc. Am. A 35(4), 950–957 (2018).
[Crossref]

Wei, Z.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Xi, G.

M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Xia, F.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed opticalcommunications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Xia, S.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Xiao, X.

M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Xu, K.

X. Wang, Z. Z. Cheng, and K. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, X.

L. Ye, F. Zeng, Y. Zhang, X. Xu, X. Yang, and Q. H. Liu, “Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays,” Nanomaterials 8(10), 834 (2018).
[Crossref]

Xu, Z.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Yang, C.

Yang, D.

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

X. Huang, D. Yang, and S. Yu, “Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial,” Appl. Phys. B: Lasers Opt. 117(2), 633–638 (2014).
[Crossref]

Yang, H. L.

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Yang, X.

L. Ye, F. Zeng, Y. Zhang, X. Xu, X. Yang, and Q. H. Liu, “Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays,” Nanomaterials 8(10), 834 (2018).
[Crossref]

Ye, L.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q. H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 1–7 (2019).
[Crossref]

L. Ye, F. Zeng, Y. Zhang, and Q. H. Liu, “Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range,” Carbon 148, 317–325 (2019).
[Crossref]

L. Ye, K. Sui, Y. Zhang, and Q. H. Liu, “Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications,” Nanoscale 11(7), 3229–3239 (2019).
[Crossref]

L. Ye, F. Zeng, Y. Zhang, X. Xu, X. Yang, and Q. H. Liu, “Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays,” Nanomaterials 8(10), 834 (2018).
[Crossref]

L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q. H. Liu, “Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces,” Nanomaterials 8(8), 562 (2018).
[Crossref]

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

L. Ye, K. Sui, Y. Liu, M. Zhang, and Q. H. Liu, “Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation,” Opt. Express 26(12), 15935–15947 (2018).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref]

Yu, P.

H. Cheng, S. Chen, and P. Yu, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[Crossref]

H. Cheng, S. Chen, and P. Yu, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yu, S.

X. Huang, D. Yang, and S. Yu, “Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial,” Appl. Phys. B: Lasers Opt. 117(2), 633–638 (2014).
[Crossref]

Yu, X.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Zang, X. F.

X. F. Zang, S. J. Liu, H. H. Gong, Y. Wang, and Y. M. Zhu, “Dual-band superposition induced broadband terahertz linear-to-circular polarization converter,” J. Opt. Soc. Am. A 35(4), 950–957 (2018).
[Crossref]

Zeng, F.

L. Ye, F. Zeng, Y. Zhang, and Q. H. Liu, “Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range,” Carbon 148, 317–325 (2019).
[Crossref]

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q. H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 1–7 (2019).
[Crossref]

L. Ye, F. Zeng, Y. Zhang, X. Xu, X. Yang, and Q. H. Liu, “Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays,” Nanomaterials 8(10), 834 (2018).
[Crossref]

Zhang, C.

Zhang, D.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Zhang, L.

Zhang, M.

Zhang, X.

D. Du, J. Liu, X. Zhang, X. Cui, and Y. Lin, “One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents,” J. Mater. Chem. 21(22), 8032–8037 (2011).
[Crossref]

Zhang, Y.

L. Ye, F. Zeng, Y. Zhang, and Q. H. Liu, “Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range,” Carbon 148, 317–325 (2019).
[Crossref]

L. Ye, K. Sui, Y. Zhang, and Q. H. Liu, “Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications,” Nanoscale 11(7), 3229–3239 (2019).
[Crossref]

L. Ye, F. Zeng, Y. Zhang, X. Xu, X. Yang, and Q. H. Liu, “Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays,” Nanomaterials 8(10), 834 (2018).
[Crossref]

Zhang, Y. P.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Zhao, D.

M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Zhao, Y.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Characterization of birefringent material using polarization-controlled terahertz spectroscopy,” Opt. Express 18(19), 20491–20497 (2010).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Zhong, H.

Zhong, J.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Zhu, J.

L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q. H. Liu, “Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces,” Nanomaterials 8(8), 562 (2018).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref]

Zhu, J. F.

Zhu, S. E.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

Zhu, Y. M.

X. F. Zang, S. J. Liu, H. H. Gong, Y. Wang, and Y. M. Zhu, “Dual-band superposition induced broadband terahertz linear-to-circular polarization converter,” J. Opt. Soc. Am. A 35(4), 950–957 (2018).
[Crossref]

Zhuo, J.

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q. H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 1–7 (2019).
[Crossref]

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Zhuo, Q. Q.

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

ACS Nano (2)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

Q. Q. Zhuo, Q. Wang, Y. P. Zhang, D. Zhang, Q. L. Li, C. H. Gao, Y. Q. Sun, L. Ding, Q. J. Sun, S. D. Wang, J. Zhong, X. H. Sun, and S. T. Lee, “Transfer-free synthesis of doped and patterned graphene films,” ACS Nano 9(1), 594–601 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (1)

X. Huang, D. Yang, and S. Yu, “Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial,” Appl. Phys. B: Lasers Opt. 117(2), 633–638 (2014).
[Crossref]

Appl. Phys. Express (1)

L. Ye, X. Chen, J. Zhuo, F. Han, and Q. H. Liu, “Actively tunable broadband terahertz absorption using periodically square-patterned graphene,” Appl. Phys. Express 11(10), 102201 (2018).
[Crossref]

Appl. Phys. Lett. (6)

H. Cheng, S. Chen, and P. Yu, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

J. M. Dawlaty, S. Shivaraman, and M. Chandrashekhar, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Carbon (1)

L. Ye, F. Zeng, Y. Zhang, and Q. H. Liu, “Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range,” Carbon 148, 317–325 (2019).
[Crossref]

IEEE Photonics J. (2)

L. Ye, X. Chen, F. Zeng, J. Zhuo, F. Shen, and Q. H. Liu, “Ultra-wideband terahertz absorption using dielectric circular truncated cones,” IEEE Photonics J. 11(5), 1–7 (2019).
[Crossref]

M. Chen, L. Z. Chang, G. Xi, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carve “H” array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

IEEE Sens. J. (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

IEEE Trans. Antennas Propag. (1)

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

J. Appl. Phys. (2)

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Mater. Chem. (1)

D. Du, J. Liu, X. Zhang, X. Cui, and Y. Lin, “One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents,” J. Mater. Chem. 21(22), 8032–8037 (2011).
[Crossref]

J. Opt. Soc. Am. A (3)

Mon. Not. R. Astron. Soc. (1)

E. Petroff, M. Bailes, and E. D. Barr, “A real-time fast radio burst: polarization detection and multiwave length follow-up,” Mon. Not. R. Astron. Soc. 447(1), 246–255 (2015).
[Crossref]

Nano Lett. (2)

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. G. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Nanomaterials (2)

L. Ye, F. Zeng, Y. Zhang, X. Xu, X. Yang, and Q. H. Liu, “Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays,” Nanomaterials 8(10), 834 (2018).
[Crossref]

L. Ye, X. Chen, G. Cai, J. Zhu, N. Liu, and Q. H. Liu, “Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces,” Nanomaterials 8(8), 562 (2018).
[Crossref]

Nanoscale (1)

L. Ye, K. Sui, Y. Zhang, and Q. H. Liu, “Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications,” Nanoscale 11(7), 3229–3239 (2019).
[Crossref]

Nat. Nanotechnol. (1)

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref]

Nat. Photonics (2)

X. Wang, Z. Z. Cheng, and K. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed opticalcommunications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Nature (2)

K.S. Kovoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “An advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Phys. Rev. B (1)

A. Y. Nikitin, F. Guinea, and F. J. Garcia-Vidal, “Edge and waveguide THz surface plasmon modes in graphene micro-ribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Phys. Rev. Lett. (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Plasmonics (2)

J. Ding, B. Arigong, and H. Ren, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based l-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

M. Chen, W. Sun, and J. Cai, “Frequency-Tunable Mid-Infrared Cross Polarization Converters Based on Graphene Metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Sci. Rep. (1)

S. Y. Wang, W. Liu, and W. Geyi, “Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface,” Sci. Rep. 8(1), 3791 (2018).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic diagram of the proposed dual-band reflective cross-polarization converter with periodically arranged single layer U-shaped graphene nanostructures. (b) Schematic diagram of the proposed broadband reflective cross-polarization converter with a hollow-carved U-shaped graphene sheet.
Fig. 2.
Fig. 2. (a) Simulation results of the reflectance components Rxx, Ryx, and PCR under normal incidence, respectively. (b)The phase difference (Δφ) between reflectance components Rxx and Ryx.
Fig. 3.
Fig. 3. The magnetic field profiles (Hz) for the normal x-polarized incidence at (a) 34.67 THz and (b) 44.13 THz.
Fig. 4.
Fig. 4. (a) The schematic diagram of the decomposed u- and v- components of different polarizations. (b) Simulated PCR, reflection coefficients (Ruu and Rvv) and the phase difference between Ruu and Rvv for the + 45°and -45° polarized waves under normal incidence. (c)–(f) Simulated magnetic field distributions (Hz) at 34.67 and 44.13 THz under -45°and + 45° polarized incidence, respectively.
Fig. 5.
Fig. 5. (a) Simulated PCRs of the proposed converter under normal incidence as a function of the (c) length l and (b) width w of U-shaped graphene sheet.
Fig. 6.
Fig. 6. (a) Simulated PCRs of the proposed converter under normal incidence with different chemical potential ranging from 0.8 to 1.1 eV. (b) Simulated PCRs of the proposed converter under different relaxation time ranging from 0.1 to 0.8 ps.
Fig. 7.
Fig. 7. (a) The PCR of the proposed converter as a function of incidence angle ranging from 0 °to 70°. (b) The PCR as a function of polarization angle ranging from 0 °to 90°. (c) The phase difference Δφ and (d) reflectance Rxx, Rxy under the 0, 45, and 90° polarization incident angles.
Fig. 8.
Fig. 8. (a) Simulation results of the PCR and the phase difference between two components with incident polarizations of -45° and + 45°. (b) Reflectance Ruu and Rvv. (c)–(f) The magnetic field distributions at 45.96, 49.61, 49.96, 50.25 THz, respectively. (g)-(h) are the PCR of the proposed converter with different chemical potential and relaxation time, respectively. (i) The PCR of the proposed converter as a function of incidence angle ranging from 0 °to 85°.
Fig. 9.
Fig. 9. (a) The PCR of the proposed wideband converter with different chemical potential and (b) relaxation time of graphene. (c) PCR as a function of different thicknesses h2 of dielectric layer and frequencies. (d) The PCR of the proposed converter as a function of incidence angle ranging from 0 °to 70°.

Tables (1)

Tables Icon

Table 1. Comparison of the proposed converters with some recent reported graphene-based converters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ i n t r a ( ω , μ c , Γ , T ) = j e 2 π 2 ( ω j 2 Γ ) 0 ( f d ( ξ , μ c , T ) ξ f d ( ξ , μ c , T ) ξ ) ξ d ξ ,
σ i n t e r ( ω , μ c , Γ , T ) = j e 2 ( ω j 2 Γ ) π 2 0 f d ( ξ , μ c , T ) f d ( ξ , μ c , T ) ( ω j 2 Γ ) 2 4 ξ / 2 d ξ ,
( E x r E y r ) = R ( E x i E y i ) ,
R = ( R xx   R xy R yx   R yy ) ,
P C R = | R y x | 2 | R x x | 2 + | R y x | 2 .
f = ω 2 π α 0 c μ c 2 π 2 L g