Abstract

A new method to control heat flux, called thermal surface transformation (TST), is introduced from transformation thermodynamics. Compared with transformation thermodynamics, TST has many advantage. First, there is no mathematical calculation during the whole process in TST (novel thermal devices can be designed graphically in a surface-to-surface way). Second, all thermal devices of various functions, shapes and sizes designed by TST only require one homogenous anisotropic thermal medium, i.e., thermal-null medium (TNM). With the help of the effective medium theory, TNM can be realized by layered copper and expanded polystyrene, whose performance on controlling heat flux by TST is verified by numerical simulations. Many examples are given, including thermal imaging devices, thermal unidirectional cloak, concentrator, rotator and thermal focusing devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Control and design heat flux bending in thermal devices with transformation optics

Guoqiang Xu, Haochun Zhang, Yan Jin, Sen Li, and Yao Li
Opt. Express 25(8) A419-A431 (2017)

An efficient plate heater with uniform surface temperature engineered with effective thermal materials

Yichao Liu, Wei Jiang, Sailing He, and Yungui Ma
Opt. Express 22(14) 17006-17015 (2014)

Novel thermal lens for remote heating/cooling designed with transformation optics

Yichao Liu, Fei Sun, and Sailing He
Opt. Express 24(6) 5683-5692 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref]
  2. F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
    [Crossref]
  3. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
    [Crossref]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  5. G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
    [Crossref]
  6. J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
    [Crossref]
  7. F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
    [Crossref]
  8. M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
    [Crossref]
  9. Q. He, S. Xiao, X. Li, and L. Zhou, “Optic-null medium: realization and applications,” Opt. Express 21(23), 28948–28959 (2013).
    [Crossref]
  10. F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
    [Crossref]
  11. F. Sun and S. He, “Waveguide bends by optical surface transformations and optic-null media,” J. Opt. Soc. Am. B 35(4), 944–949 (2018).
    [Crossref]
  12. S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
    [Crossref]
  13. T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
    [Crossref]
  14. M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
    [Crossref]
  15. C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
    [Crossref]
  16. R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
    [Crossref]
  17. Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
    [Crossref]
  18. X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Transfer 78, 1–6 (2014).
    [Crossref]
  19. T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
    [Crossref]
  20. F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
    [Crossref]
  21. S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
    [Crossref]
  22. T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
    [Crossref]
  23. R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
    [Crossref]
  24. Q. Hou, X. Zhao, T. Meng, and C. Liu, “Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage,” Appl. Phys. Lett. 109(10), 103506 (2016).
    [Crossref]
  25. Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
    [Crossref]
  26. Y. Liu, F. Sun, and S. He, “Fast Adaptive Thermal Buffering by a Passive Open Shell Based on Transformation Thermodynamics,” Adv. Theory Simul. 1(7), 1800026 (2018).
    [Crossref]
  27. T. Han and Y. Gao, “Transformation-Based Flexible Thermal Hose with Homogeneous Conductors in Bilayer Configurations,” Prog. Electromagn. Res. Lett. 59, 137–143 (2016).
    [Crossref]
  28. R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo, “Binary thermal encoding by energy shielding and harvesting units,” Phys. Rev. Appl. 10(5), 054032 (2018).
    [Crossref]
  29. R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C. W. Qiu, “Encrypted Thermal Printing with Regionalization Transformation,” Adv. Mater. 31(25), 1807849 (2019).
    [Crossref]
  30. L. Xu, C. Jiang, and J. P. Huang, “Heat-source transformation thermotics: from boundary-independent conduction to all-directional replication,” Eur. Phys. J. B 91(7), 166 (2018).
    [Crossref]
  31. L. Zhang and Y. Shi, “Bifunctional arbitrarily-shaped cloak for thermal and electric manipulations,” Opt. Mater. Express 8(9), 2600–2613 (2018).
    [Crossref]
  32. Y. Shi and L. Zhang, “Cloaking design for arbitrarily shape objects based on characteristic mode method,” Opt. Express 25(26), 32263–32279 (2017).
    [Crossref]
  33. L. Zhang, Y. Shi, and C. H. Liang, “Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres,” Opt. Express 24(20), 23333–23352 (2016).
    [Crossref]
  34. J. E. Sten, “DC fields and analytical image solutions for a radially anisotropic spherical conductor,” IEEE Trans. Dielect. Electr. Insul. 2(3), 360–367 (1995).
    [Crossref]
  35. C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81(10), 6692–6699 (1997).
    [Crossref]

2019 (2)

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C. W. Qiu, “Encrypted Thermal Printing with Regionalization Transformation,” Adv. Mater. 31(25), 1807849 (2019).
[Crossref]

2018 (7)

L. Xu, C. Jiang, and J. P. Huang, “Heat-source transformation thermotics: from boundary-independent conduction to all-directional replication,” Eur. Phys. J. B 91(7), 166 (2018).
[Crossref]

L. Zhang and Y. Shi, “Bifunctional arbitrarily-shaped cloak for thermal and electric manipulations,” Opt. Mater. Express 8(9), 2600–2613 (2018).
[Crossref]

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

Y. Liu, F. Sun, and S. He, “Fast Adaptive Thermal Buffering by a Passive Open Shell Based on Transformation Thermodynamics,” Adv. Theory Simul. 1(7), 1800026 (2018).
[Crossref]

R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo, “Binary thermal encoding by energy shielding and harvesting units,” Phys. Rev. Appl. 10(5), 054032 (2018).
[Crossref]

F. Sun and S. He, “Waveguide bends by optical surface transformations and optic-null media,” J. Opt. Soc. Am. B 35(4), 944–949 (2018).
[Crossref]

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

2017 (2)

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Y. Shi and L. Zhang, “Cloaking design for arbitrarily shape objects based on characteristic mode method,” Opt. Express 25(26), 32263–32279 (2017).
[Crossref]

2016 (5)

L. Zhang, Y. Shi, and C. H. Liang, “Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres,” Opt. Express 24(20), 23333–23352 (2016).
[Crossref]

T. Han and Y. Gao, “Transformation-Based Flexible Thermal Hose with Homogeneous Conductors in Bilayer Configurations,” Prog. Electromagn. Res. Lett. 59, 137–143 (2016).
[Crossref]

Q. Hou, X. Zhao, T. Meng, and C. Liu, “Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage,” Appl. Phys. Lett. 109(10), 103506 (2016).
[Crossref]

T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
[Crossref]

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

2015 (5)

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
[Crossref]

F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
[Crossref]

2014 (2)

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Transfer 78, 1–6 (2014).
[Crossref]

2013 (4)

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref]

Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[Crossref]

Q. He, S. Xiao, X. Li, and L. Zhou, “Optic-null medium: realization and applications,” Opt. Express 21(23), 28948–28959 (2013).
[Crossref]

2012 (2)

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[Crossref]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref]

2010 (1)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

2008 (1)

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

1997 (1)

C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81(10), 6692–6699 (1997).
[Crossref]

1995 (1)

J. E. Sten, “DC fields and analytical image solutions for a radially anisotropic spherical conductor,” IEEE Trans. Dielect. Electr. Insul. 2(3), 360–367 (1995).
[Crossref]

Amra, C.

Bai, G. D.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Bai, X.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

Birringer, R.

C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81(10), 6692–6699 (1997).
[Crossref]

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

Chen, F.

F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
[Crossref]

Chen, H.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

Chen, X.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Chen, Y.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
[Crossref]

Clarke, D. R.

C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81(10), 6692–6699 (1997).
[Crossref]

Cui, T. J.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Evans, J.

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

Fan, C. Z.

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Fu, G.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Gao, Y.

T. Han and Y. Gao, “Transformation-Based Flexible Thermal Hose with Homogeneous Conductors in Bilayer Configurations,” Prog. Electromagn. Res. Lett. 59, 137–143 (2016).
[Crossref]

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Gleiter, H.

C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81(10), 6692–6699 (1997).
[Crossref]

Guenneau, S.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[Crossref]

Guo, S.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Han, T.

T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
[Crossref]

T. Han and Y. Gao, “Transformation-Based Flexible Thermal Hose with Homogeneous Conductors in Bilayer Configurations,” Prog. Electromagn. Res. Lett. 59, 137–143 (2016).
[Crossref]

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Hao, Y.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

He, Q.

He, S.

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

F. Sun and S. He, “Waveguide bends by optical surface transformations and optic-null media,” J. Opt. Soc. Am. B 35(4), 944–949 (2018).
[Crossref]

Y. Liu, F. Sun, and S. He, “Fast Adaptive Thermal Buffering by a Passive Open Shell Based on Transformation Thermodynamics,” Adv. Theory Simul. 1(7), 1800026 (2018).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref]

Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[Crossref]

Hou, B.

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Hou, Q.

Q. Hou, X. Zhao, T. Meng, and C. Liu, “Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage,” Appl. Phys. Lett. 109(10), 103506 (2016).
[Crossref]

Hu, R.

R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C. W. Qiu, “Encrypted Thermal Printing with Regionalization Transformation,” Adv. Mater. 31(25), 1807849 (2019).
[Crossref]

R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo, “Binary thermal encoding by energy shielding and harvesting units,” Phys. Rev. Appl. 10(5), 054032 (2018).
[Crossref]

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

Huang, J.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
[Crossref]

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
[Crossref]

Huang, J. P.

L. Xu, C. Jiang, and J. P. Huang, “Heat-source transformation thermotics: from boundary-independent conduction to all-directional replication,” Eur. Phys. J. B 91(7), 166 (2018).
[Crossref]

X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Transfer 78, 1–6 (2014).
[Crossref]

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Huang, S.

R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C. W. Qiu, “Encrypted Thermal Printing with Regionalization Transformation,” Adv. Mater. 31(25), 1807849 (2019).
[Crossref]

R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo, “Binary thermal encoding by energy shielding and harvesting units,” Phys. Rev. Appl. 10(5), 054032 (2018).
[Crossref]

Jiang, C.

L. Xu, C. Jiang, and J. P. Huang, “Heat-source transformation thermotics: from boundary-independent conduction to all-directional replication,” Eur. Phys. J. B 91(7), 166 (2018).
[Crossref]

Jiang, W.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[Crossref]

Jiang, W. X.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Kadic, M.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref]

Lan, L.

Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[Crossref]

Lee, E. H.

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

Lei, D. Y.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
[Crossref]

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Lei, J.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Li, B.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Li, S.

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Li, X.

Li, Y.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
[Crossref]

Liang, C. H.

Liu, C.

Q. Hou, X. Zhao, T. Meng, and C. Liu, “Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage,” Appl. Phys. Lett. 109(10), 103506 (2016).
[Crossref]

Liu, Y.

Y. Liu, F. Sun, and S. He, “Fast Adaptive Thermal Buffering by a Passive Open Shell Based on Transformation Thermodynamics,” Adv. Theory Simul. 1(7), 1800026 (2018).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

Luo, X.

R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C. W. Qiu, “Encrypted Thermal Printing with Regionalization Transformation,” Adv. Mater. 31(25), 1807849 (2019).
[Crossref]

R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo, “Binary thermal encoding by energy shielding and harvesting units,” Phys. Rev. Appl. 10(5), 054032 (2018).
[Crossref]

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

Ma, Y.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[Crossref]

Mei, Z. L.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Meng, T.

Q. Hou, X. Zhao, T. Meng, and C. Liu, “Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage,” Appl. Phys. Lett. 109(10), 103506 (2016).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Nan, C. W.

C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81(10), 6692–6699 (1997).
[Crossref]

Narayana, S.

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref]

Ni, Y.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Peng, X.

R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo, “Binary thermal encoding by energy shielding and harvesting units,” Phys. Rev. Appl. 10(5), 054032 (2018).
[Crossref]

Qiu, C. W.

R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C. W. Qiu, “Encrypted Thermal Printing with Regionalization Transformation,” Adv. Mater. 31(25), 1807849 (2019).
[Crossref]

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
[Crossref]

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Raza, M.

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

Sadeghi, M. M.

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Sato, Y.

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref]

Schittny, R.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Shen, X.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
[Crossref]

Shen, X. Y.

X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Transfer 78, 1–6 (2014).
[Crossref]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

Shi, Y.

Shiomi, J.

R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C. W. Qiu, “Encrypted Thermal Printing with Regionalization Transformation,” Adv. Mater. 31(25), 1807849 (2019).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Sten, J. E.

J. E. Sten, “DC fields and analytical image solutions for a radially anisotropic spherical conductor,” IEEE Trans. Dielect. Electr. Insul. 2(3), 360–367 (1995).
[Crossref]

Sun, F.

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

F. Sun and S. He, “Waveguide bends by optical surface transformations and optic-null media,” J. Opt. Soc. Am. B 35(4), 944–949 (2018).
[Crossref]

Y. Liu, F. Sun, and S. He, “Fast Adaptive Thermal Buffering by a Passive Open Shell Based on Transformation Thermodynamics,” Adv. Theory Simul. 1(7), 1800026 (2018).
[Crossref]

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref]

Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[Crossref]

Thong, J. T.

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

Veynante, D.

Wang, M.

R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C. W. Qiu, “Encrypted Thermal Printing with Regionalization Transformation,” Adv. Mater. 31(25), 1807849 (2019).
[Crossref]

R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo, “Binary thermal encoding by energy shielding and harvesting units,” Phys. Rev. Appl. 10(5), 054032 (2018).
[Crossref]

Wegener, M.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref]

Wu, Z.

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
[Crossref]

Xiao, S.

Xu, L.

L. Xu, C. Jiang, and J. P. Huang, “Heat-source transformation thermotics: from boundary-independent conduction to all-directional replication,” Eur. Phys. J. B 91(7), 166 (2018).
[Crossref]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Yang, F.

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

Yang, J.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Yuan, T.

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Zhang, L.

Zhang, Y.

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

Zhang, Z.

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

Zhao, J.

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Zhao, X.

Q. Hou, X. Zhao, T. Meng, and C. Liu, “Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage,” Appl. Phys. Lett. 109(10), 103506 (2016).
[Crossref]

Zheng, B.

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Zhou, L.

R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo, “Binary thermal encoding by energy shielding and harvesting units,” Phys. Rev. Appl. 10(5), 054032 (2018).
[Crossref]

Q. He, S. Xiao, X. Li, and L. Zhou, “Optic-null medium: realization and applications,” Opt. Express 21(23), 28948–28959 (2013).
[Crossref]

Zhou, S.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

Adv. Mater. (3)

T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, “Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref]

R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C. W. Qiu, “Encrypted Thermal Printing with Regionalization Transformation,” Adv. Mater. 31(25), 1807849 (2019).
[Crossref]

Adv. Theory Simul. (1)

Y. Liu, F. Sun, and S. He, “Fast Adaptive Thermal Buffering by a Passive Open Shell Based on Transformation Thermodynamics,” Adv. Theory Simul. 1(7), 1800026 (2018).
[Crossref]

Appl. Phys. Lett. (3)

Q. Hou, X. Zhao, T. Meng, and C. Liu, “Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage,” Appl. Phys. Lett. 109(10), 103506 (2016).
[Crossref]

G. D. Bai, F. Yang, W. X. Jiang, Z. L. Mei, and T. J. Cui, “Realization of a broadband electromagnetic gateway at microwave frequencies,” Appl. Phys. Lett. 107(15), 153503 (2015).
[Crossref]

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Energy Environ. Sci. (1)

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Eur. Phys. J. B (1)

L. Xu, C. Jiang, and J. P. Huang, “Heat-source transformation thermotics: from boundary-independent conduction to all-directional replication,” Eur. Phys. J. B 91(7), 166 (2018).
[Crossref]

IEEE Trans. Dielect. Electr. Insul. (1)

J. E. Sten, “DC fields and analytical image solutions for a radially anisotropic spherical conductor,” IEEE Trans. Dielect. Electr. Insul. 2(3), 360–367 (1995).
[Crossref]

Int. J. Heat Mass Transfer (1)

X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Transfer 78, 1–6 (2014).
[Crossref]

J. Appl. Phys. (1)

C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81(10), 6692–6699 (1997).
[Crossref]

J. Opt. (2)

T. Han and C. W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields,” J. Opt. 18(4), 044003 (2016).
[Crossref]

M. Raza, Y. Liu, E. H. Lee, and Y. Ma, “Transformation thermodynamics and heat cloaking: a review,” J. Opt. 18(4), 044002 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, “Transformation Optics: From Classic Theory and Applications to its New Branches,” Laser Photonics Rev. 11(6), 1700034 (2017).
[Crossref]

Nat. Mater. (1)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref]

NPG Asia Mater. (1)

Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, “A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity,” NPG Asia Mater. 5(11), e73 (2013).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Rev. Appl. (1)

R. Hu, S. Huang, M. Wang, L. Zhou, X. Peng, and X. Luo, “Binary thermal encoding by energy shielding and harvesting units,” Phys. Rev. Appl. 10(5), 054032 (2018).
[Crossref]

Phys. Rev. Lett. (3)

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108(21), 214303 (2012).
[Crossref]

Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, “Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes,” Phys. Rev. Lett. 115(19), 195503 (2015).
[Crossref]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref]

Prog. Electromagn. Res. (1)

F. Sun, Y. Zhang, J. Evans, and S. He, “A Camouflage Device Without Metamaterials,” Prog. Electromagn. Res. 165, 107–117 (2019).
[Crossref]

Prog. Electromagn. Res. Lett. (1)

T. Han and Y. Gao, “Transformation-Based Flexible Thermal Hose with Homogeneous Conductors in Bilayer Configurations,” Prog. Electromagn. Res. Lett. 59, 137–143 (2016).
[Crossref]

Sci. Rep. (4)

F. Chen and D. Y. Lei, “Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,” Sci. Rep. 5(1), 11552 (2015).
[Crossref]

J. Lei, J. Yang, X. Chen, Z. Zhang, G. Fu, and Y. Hao, “Experimental demonstration of conformal phased array antenna via transformation optics,” Sci. Rep. 8(1), 3807 (2018).
[Crossref]

F. Sun and S. He, “Optical Surface Transformation: Changing the optical surface by homogeneous optic-null medium at will,” Sci. Rep. 5(1), 16032 (2015).
[Crossref]

M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, “Transformation optics with Fabry-Pérot resonances,” Sci. Rep. 5(1), 8680 (2015).
[Crossref]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The coordinate transformation from the real space (a) to the reference space (b) in Eq. (5).
Fig. 2.
Fig. 2. (a) and (b) Temperature distributions: (a) Two planes of the same size are linked by the TNM with the main axis along the x’ direction. (b) TNMs are filled in three regions whose main axes are along x’, radical and x’ directions in each region. The circular boundary of the calculation region is set by a fixed low temperature 293K. Two hot sources with temperature 375K are set on the left input surface of the TNMs. The TNM blocks are bounded by the black lines and the main axis’ directions are indicated by the black arrows. (c) The structure of the thermal focusing device. The red and blue regions are TNMs with main axes along x’ and r’ directions, respectively. (d) The temperature distribution of the thermal focusing device when left and right boundaries are set by fixed temperatures 393K and 293K, respectively. The upper and lower boundaries are thermal insulation.
Fig. 3.
Fig. 3. (a) The temperature distribution is quite non-uniform around two sources even if the cooling source is very close to the hot source. (b) When TNM is put around two sources, the temperature distribution outside can be nearly uniform. (c) and (d) are simulated temperature distributions without and with the TNM, respectively. The hot source (393K) and cool source (193K) are indicated by the red and blue dots, respectively. The outer circular boundary is set as room temperature (293K). The white regions are TNM in (d) and background medium in (c). (e) The temperature distribution on a circle (the center is the middle point of the two sources and the radius is 0.7m) with (blue line) and without (red line) the TNM, respectively. (f) The temperature distribution on a line parallel to the x axis (5cm above the white region) with (blue line) and without (red line) the TNM, respectively.
Fig. 4.
Fig. 4. (a) Thermal unidirectional cloak by TST. The yellow region is the concealed region. The red and green regions are TNMs with main axes along + 45 degree and −45 degree (indicated by the black arrows), respectively. The heat flux is guided around the concealed region and smoothly redirected back to the original direction by TNMs (we have designed a similar structure for cloaking in microwave frequency by optic-null medium [10]). (b) and (c) are temperature distributions and isothermals for the thermal unidirectional cloak, respectively. (d) Thermal concentrator by TST. The purple region is TNM with main axis along the radical direction (indicated by the black arrows). (e) and (f) are temperature distributions and isothermals for the thermal concentrator, respectively. (g) 45 degree rotator designed by TST. The gray regions are TNMs whose main axes are indicated by the black arrows (consistent with the heat flux directions inside the rotator). (h) and (i) temperature distributions and isothermals for the thermal rotator, respectively. In the above simulations, we set left and right boundaries of the simulation area by fixed temperatures of 393K and 293K, respectively. The upper and lower boundaries in the simulations are set as thermal insulation. Thermal conductivity of the TNM is set as 1000 W·m−1·K−1 along the main axis and 0.001 W·m−1·K−1 in other orthogonal directions.
Fig. 5.
Fig. 5. (a) The temperature distribution in the concealed central region (yellow region in Fig. 3(a)) along the x direction with the unidirectional thermal cloak (blue line series) and without the cloak (red line series) for various incident angles of the uniform background thermal flux. Here the concealed object is a material of high thermal conductivity (к=1000 W·m−1·K−1). (b) The temperature distribution in the central circular region in Fig. 4(e) along the x direction with the concentrators of two different sizes (the ratio of the outer radius to the inner radius b/a varies) and without the concentrator. If the ratio of the outer radius to the inner radius b/a becomes larger, the slope of the line increases (see the blue line), which indicates high gradient of the temperature field along the x direction in this region. Other parameters are the same as those in Fig. 4.
Fig. 6.
Fig. 6. (a)–(c) Simulated temperature distributions for the unidirectional cloak, concentrator and rotator when the TNMs are realized by layered copper and expanded polystyrene on the thermal epoxy background.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

¯ ( κ ¯ T ) = ρ c T t .
κ i j = J κ i j J T det ( J ) ,
ρ c = ρ c det ( J ) .
¯ ( κ ¯ T ) = 0.
x = { x d 2 / ( Δ / 2 ) , 0 x d 2 x d 1 / ( Δ / 2 ) , d 1 x < 0 x , e l s e , y = y , z = z .
κ = { κ 0 [ d 2 ( y ) Δ / 2 + ( d 2 ( y ) d 2 ( y ) ) 2 Δ 2 x 2 d 2 ( y ) d 2 ( y ) Δ / 2 d 2 ( y ) x 0 d 2 ( y ) d 2 ( y ) Δ / 2 d 2 ( y ) x Δ / 2 d 2 ( y ) 0 0 0 Δ / 2 d 2 ( y ) ] , 0 x d 2 κ 0 [ d 1 ( y ) Δ / 2 + ( d 1 ( y ) d 1 ( y ) ) 2 Δ 2 x 2 d 1 ( y ) d 1 ( y ) Δ / 2 d 1 ( y ) x 0 d 1 ( y ) d 1 ( y ) Δ / 2 d 1 ( y ) x Δ / 2 d 1 ( y ) 0 0 0 Δ / 2 d 1 ( y ) ] , d 1 x < 0 κ 0 , e l s e ×   Δ 0 { d i a g ( , 0 , 0 ) , d 1 x d 2 κ 0 , e l s e .

Metrics