Abstract

A guided-wave chip laser operating in a single longitudinal mode at 2860 nm is presented. The cavity was set in the Littman-Metcalf configuration to achieve single-frequency operation with a side-mode suppression ratio above 33 dB. The chip laser’s 2 MHz linewidth on a 10 ms scale was found to be limited by mechanical fluctuations, but its Lorentzian contribution was estimated to be lower than 1 Hz using a heterodyne technique. This demonstration incorporates a high coherence source with the simplicity provided by the compactness of chip lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Free-running frequency stability of mid-infrared quantum cascade lasers

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho
Opt. Lett. 27(3) 170-172 (2002)

Frequency comb linewidth of an actively mode-locked fiber laser

F. K. Fatemi, J. W. Lou, and T. F. Carruthers
Opt. Lett. 29(9) 944-946 (2004)

Purity of the single frequency mode of a hybrid semiconductor-fiber laser

Mamoun Wahbeh and Raman Kashyap
Opt. Express 23(12) 16084-16095 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Bamford, M. J. Dyer, and W. K. Bischel, “Single-frequency laser measurements of two-photon cross sections and doppler-free spectra for atomic oxygen,” Phys. Rev. A 36(7), 3497–3500 (1987).
    [Crossref]
  2. P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
    [Crossref]
  3. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005).
    [Crossref]
  4. D. Richter, D. G. Lancaster, and F. K. Tittel, “Development of an automated diode-laser-based multicomponent gas sensor,” Appl. Opt. 39(24), 4444–4450 (2000).
    [Crossref]
  5. S. W. Henderson and C. P. Hale, “Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406 (International Society for Optics and Photonics, 2017), p. 104060C.
  6. C. Drag, A. Desormeaux, M. Lefebvre, and E. Rosencher, “Entangled-cavity optical parametric oscillator for mid-infrared pulsed single-longitudinal-mode operation,” Opt. Lett. 27(14), 1238–1240 (2002).
    [Crossref]
  7. S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High tunable bandwidth 2$\mu$μm single-frequency fiber laser for next-generation gravitational wave detection,” in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2018), pp. F1A–4.
  8. J.-Y. Lai, H.-T. Guo, Y.-C. Chen, C.-W. Hsu, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “Single-frequency mod-hop free tunable 3$\mu$μm laser pumped by a 2w diode for isotopic gas sensing,” in CLEO: Applications and Technology (Optical Society of America, 2018), pp. AM2M–3.
  9. M. K. Shukla and R. Das, “High-power single-frequency source in the mid-infrared using a singly resonant optical parametric oscillator pumped by yb-fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
    [Crossref]
  10. Q. Wang, X. Wang, and Z. Li, “Stable and tunable single frequency mid-infrared optical parametric oscillator,” in High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration, vol. 10152 (International Society for Optics and Photonics, 2016), p. 1015209.
  11. J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
    [Crossref]
  12. D. Lancaster, D. Richter, R. Curl, F. Tittel, L. Goldberg, and J. Koplow, “High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy,” Opt. Lett. 24(23), 1744–1746 (1999).
    [Crossref]
  13. G. Insero, C. Clivati, D. D’Ambrosio, P. De Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
    [Crossref]
  14. S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. Boyland, J. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned gaas,” Opt. Lett. 33(13), 1413–1415 (2008).
    [Crossref]
  15. M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
    [Crossref]
  16. G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, “Mid-infrared external-cavity quantum-cascade laser,” Opt. Lett. 27(20), 1788–1790 (2002).
    [Crossref]
  17. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  18. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  19. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2007).
    [Crossref]
  20. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
    [Crossref]
  21. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature dfb quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
    [Crossref]
  22. M. L. Calvo and V. Lakshminarayanan, Optical waveguides: from theory to applied technologies (CRC Press, 2007).
  23. Z. Yang, C. Li, S. Xu, and C. Yang, Single-Frequency Fiber Lasers, vol. 8 (Springer, 2019).
  24. C. Shi, S. Fu, G. Shi, W. Shi, Q. Sheng, and J. Yao, “Thulium doped silica fiber laser operating in single-longitudinal-mode at a wavelength above 2 $\mu$μm,” in Fiber Lasers XVI: Technology and Systems, vol. 10897 (International Society for Optics and Photonics, 2019), p. 1089709.
  25. J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single-frequency fiber laser at 2.05 um based on ho-doped germanate glass fiber,” in Fiber Lasers VI: Technology, Systems, and Applications, vol. 7195 (International Society for Optics and Photonics, 2009), p.71951K.
  26. S. Do Lim, J.-K. Yoo, and S. K. Kim, “Widely tunable watt-level single-frequency tm-doped fiber ring laser as pump for mid-ir frequency generation,” IEEE Photonics J. 8(3), 1–7 (2016).
    [Crossref]
  27. S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High-power, narrow linewidth single-frequency fiber laser at 2 $\mu$μm,” in 2017 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications, vol. 10619 (, 2018), p. 1061907.
    [Crossref]
  28. M. Bernier, V. Michaud-Belleau, S. Levasseur, V. Fortin, J. Genest, and R. Vallée, “All-fiber dfb laser operating at 2.8 $\mu$μm,” Opt. Lett. 40(1), 81–84 (2015).
    [Crossref]
  29. D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single-frequency fiber laser operating at 2.9 $\mu$μm,” Opt. Lett. 38(14), 2388–2390 (2013).
    [Crossref]
  30. N. Coluccelli, M. Cassinerio, P. Laporta, and G. Galzerano, “100 khz linewidth cr 2+: Znse ring laser tunable from 2.12 to 2.58 $\mu$μm,” Opt. Lett. 37(24), 5088–5090 (2012).
    [Crossref]
  31. D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).
  32. N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43(8), 1814–1817 (2018).
    [Crossref]
  33. Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode er: Ggg microchip laser operating at 2.7 $\mu$μm,” Opt. Lett. 40(16), 3846–3849 (2015).
    [Crossref]
  34. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 $\mu$μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
    [Crossref]
  35. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
    [Crossref]
  36. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
    [Crossref]

2018 (3)

M. K. Shukla and R. Das, “High-power single-frequency source in the mid-infrared using a singly resonant optical parametric oscillator pumped by yb-fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43(8), 1814–1817 (2018).
[Crossref]

2017 (1)

M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
[Crossref]

2016 (2)

S. Do Lim, J.-K. Yoo, and S. K. Kim, “Widely tunable watt-level single-frequency tm-doped fiber ring laser as pump for mid-ir frequency generation,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

G. Insero, C. Clivati, D. D’Ambrosio, P. De Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
[Crossref]

2015 (2)

2013 (2)

2012 (3)

N. Coluccelli, M. Cassinerio, P. Laporta, and G. Galzerano, “100 khz linewidth cr 2+: Znse ring laser tunable from 2.12 to 2.58 $\mu$μm,” Opt. Lett. 37(24), 5088–5090 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

2011 (1)

2010 (2)

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[Crossref]

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
[Crossref]

2009 (1)

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

2008 (1)

2007 (1)

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2007).
[Crossref]

2005 (1)

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005).
[Crossref]

2002 (2)

2000 (1)

1999 (1)

1987 (1)

D. J. Bamford, M. J. Dyer, and W. K. Bischel, “Single-frequency laser measurements of two-photon cross sections and doppler-free spectra for atomic oxygen,” Phys. Rev. A 36(7), 3497–3500 (1987).
[Crossref]

1982 (1)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Akikusa, N.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature dfb quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2007).
[Crossref]

Ams, M.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Anzel, P.

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

Bamford, D. J.

D. J. Bamford, M. J. Dyer, and W. K. Bischel, “Single-frequency laser measurements of two-photon cross sections and doppler-free spectra for atomic oxygen,” Phys. Rev. A 36(7), 3497–3500 (1987).
[Crossref]

Bartalini, S.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature dfb quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[Crossref]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[Crossref]

Belenky, G.

M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
[Crossref]

Bernier, M.

Bischel, W. K.

D. J. Bamford, M. J. Dyer, and W. K. Bischel, “Single-frequency laser measurements of two-photon cross sections and doppler-free spectra for atomic oxygen,” Phys. Rev. A 36(7), 3497–3500 (1987).
[Crossref]

Borri, S.

Bourbeau Hébert, N.

D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).

Boyland, A.

Bulliard, J.-M.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005).
[Crossref]

Calvo, M. L.

M. L. Calvo and V. Lakshminarayanan, Optical waveguides: from theory to applied technologies (CRC Press, 2007).

Cancio, P.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[Crossref]

Cassinerio, M.

Castrillo, A.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[Crossref]

Cenescu, A.

D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).

Chavez-Pirson, A.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single-frequency fiber laser at 2.05 um based on ho-doped germanate glass fiber,” in Fiber Lasers VI: Technology, Systems, and Applications, vol. 7195 (International Society for Optics and Photonics, 2009), p.71951K.

Chen, G. Y.

N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43(8), 1814–1817 (2018).
[Crossref]

D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).

Chen, Y.-C.

J.-Y. Lai, H.-T. Guo, Y.-C. Chen, C.-W. Hsu, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “Single-frequency mod-hop free tunable 3$\mu$μm laser pumped by a 2w diode for isotopic gas sensing,” in CLEO: Applications and Technology (Optical Society of America, 2018), pp. AM2M–3.

Cheng, P.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Chou, M.-H.

J.-Y. Lai, H.-T. Guo, Y.-C. Chen, C.-W. Hsu, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “Single-frequency mod-hop free tunable 3$\mu$μm laser pumped by a 2w diode for isotopic gas sensing,” in CLEO: Applications and Technology (Optical Society of America, 2018), pp. AM2M–3.

Clarkson, W. A.

Clivati, C.

Coluccelli, N.

Curl, R.

Curl, R. F.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005).
[Crossref]

D’Ambrosio, D.

Das, R.

M. K. Shukla and R. Das, “High-power single-frequency source in the mid-infrared using a singly resonant optical parametric oscillator pumped by yb-fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

de Escobar, Y. M.

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

De Natale, P.

DeSalvo, B.

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

Desormeaux, A.

Di Domenico, G.

Do Lim, S.

S. Do Lim, J.-K. Yoo, and S. K. Kim, “Widely tunable watt-level single-frequency tm-doped fiber ring laser as pump for mid-ir frequency generation,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Drag, C.

Dyer, M. J.

D. J. Bamford, M. J. Dyer, and W. K. Bischel, “Single-frequency laser measurements of two-photon cross sections and doppler-free spectra for atomic oxygen,” Phys. Rev. A 36(7), 3497–3500 (1987).
[Crossref]

Ebendorff-Heidepriem, H.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 $\mu$μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Edamura, T.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature dfb quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2007).
[Crossref]

Faist, J.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005).
[Crossref]

G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, “Mid-infrared external-cavity quantum-cascade laser,” Opt. Lett. 27(20), 1788–1790 (2002).
[Crossref]

Faye, D.

Fortin, V.

Fu, S.

C. Shi, S. Fu, G. Shi, W. Shi, Q. Sheng, and J. Yao, “Thulium doped silica fiber laser operating in single-longitudinal-mode at a wavelength above 2 $\mu$μm,” in Fiber Lasers XVI: Technology and Systems, vol. 10897 (International Society for Optics and Photonics, 2019), p. 1089709.

Fuerbach, A.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Fujita, K.

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2007).
[Crossref]

Galli, I.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature dfb quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[Crossref]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[Crossref]

Galzerano, G.

Genest, J.

N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43(8), 1814–1817 (2018).
[Crossref]

M. Bernier, V. Michaud-Belleau, S. Levasseur, V. Fortin, J. Genest, and R. Vallée, “All-fiber dfb laser operating at 2.8 $\mu$μm,” Opt. Lett. 40(1), 81–84 (2015).
[Crossref]

D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).

Gianfrani, L.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[Crossref]

Giusfredi, G.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature dfb quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[Crossref]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Goldberg, L.

Grisard, A.

Gross, S.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 $\mu$μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Guo, H.-T.

J.-Y. Lai, H.-T. Guo, Y.-C. Chen, C.-W. Hsu, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “Single-frequency mod-hop free tunable 3$\mu$μm laser pumped by a 2w diode for isotopic gas sensing,” in CLEO: Applications and Technology (Optical Society of America, 2018), pp. AM2M–3.

Hale, C. P.

S. W. Henderson and C. P. Hale, “Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406 (International Society for Optics and Photonics, 2017), p. 104060C.

Hébert, N. B.

Henderson, S. W.

S. W. Henderson and C. P. Hale, “Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406 (International Society for Optics and Photonics, 2017), p. 104060C.

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hosoda, T.

M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
[Crossref]

Hou, Y.

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High-power, narrow linewidth single-frequency fiber laser at 2 $\mu$μm,” in 2017 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications, vol. 10619 (, 2018), p. 1061907.
[Crossref]

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High tunable bandwidth 2$\mu$μm single-frequency fiber laser for next-generation gravitational wave detection,” in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2018), pp. F1A–4.

Hsu, C.-W.

J.-Y. Lai, H.-T. Guo, Y.-C. Chen, C.-W. Hsu, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “Single-frequency mod-hop free tunable 3$\mu$μm laser pumped by a 2w diode for isotopic gas sensing,” in CLEO: Applications and Technology (Optical Society of America, 2018), pp. AM2M–3.

Hudson, D. D.

Ibsen, M.

Insero, G.

Jackson, S. D.

Johnson, M. C.

D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).

Kan, H.

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2007).
[Crossref]

Killian, T.

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

Kim, S. K.

S. Do Lim, J.-K. Yoo, and S. K. Kim, “Widely tunable watt-level single-frequency tm-doped fiber ring laser as pump for mid-ir frequency generation,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Kipshidze, G.

M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
[Crossref]

Koplow, J.

Lai, J.-Y.

J.-Y. Lai, H.-T. Guo, Y.-C. Chen, C.-W. Hsu, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “Single-frequency mod-hop free tunable 3$\mu$μm laser pumped by a 2w diode for isotopic gas sensing,” in CLEO: Applications and Technology (Optical Society of America, 2018), pp. AM2M–3.

Lakshminarayanan, V.

M. L. Calvo and V. Lakshminarayanan, Optical waveguides: from theory to applied technologies (CRC Press, 2007).

Lallier, E.

Lancaster, D.

Lancaster, D. G.

N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43(8), 1814–1817 (2018).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 $\mu$μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. Richter, D. G. Lancaster, and F. K. Tittel, “Development of an automated diode-laser-based multicomponent gas sensor,” Appl. Opt. 39(24), 4444–4450 (2000).
[Crossref]

D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).

Laporta, P.

Lefebvre, M.

Levasseur, S.

Li, C.

Z. Yang, C. Li, S. Xu, and C. Yang, Single-Frequency Fiber Lasers, vol. 8 (Springer, 2019).

Li, J.

Li, Z.

Q. Wang, X. Wang, and Z. Li, “Stable and tunable single frequency mid-infrared optical parametric oscillator,” in High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration, vol. 10152 (International Society for Optics and Photonics, 2016), p. 1015209.

Liu, Y.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Lu, M.

M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
[Crossref]

Marshall, G. D.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Maulini, R.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005).
[Crossref]

Mazzotti, D.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature dfb quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[Crossref]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[Crossref]

Michaud-Belleau, V.

Mickelson, P.

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

Miese, C. T.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Monro, T. M.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 $\mu$μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref]

D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).

Müller, A.

Nagel, S.

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

Nevsky, A.

Otten, D.

D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).

Palmer, G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Peyghambarian, N.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single-frequency fiber laser at 2.05 um based on ho-doped germanate glass fiber,” in Fiber Lasers VI: Technology, Systems, and Applications, vol. 7195 (International Society for Optics and Photonics, 2009), p.71951K.

Pustogov, V.

Qi, S.

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High-power, narrow linewidth single-frequency fiber laser at 2 $\mu$μm,” in 2017 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications, vol. 10619 (, 2018), p. 1061907.
[Crossref]

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High tunable bandwidth 2$\mu$μm single-frequency fiber laser for next-generation gravitational wave detection,” in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2018), pp. F1A–4.

Richter, D.

Rosencher, E.

Sahu, J.

Santambrogio, G.

Schiller, S.

Schilt, S.

Schunemann, P. G.

Sheng, Q.

C. Shi, S. Fu, G. Shi, W. Shi, Q. Sheng, and J. Yao, “Thulium doped silica fiber laser operating in single-longitudinal-mode at a wavelength above 2 $\mu$μm,” in Fiber Lasers XVI: Technology and Systems, vol. 10897 (International Society for Optics and Photonics, 2019), p. 1089709.

Shi, C.

C. Shi, S. Fu, G. Shi, W. Shi, Q. Sheng, and J. Yao, “Thulium doped silica fiber laser operating in single-longitudinal-mode at a wavelength above 2 $\mu$μm,” in Fiber Lasers XVI: Technology and Systems, vol. 10897 (International Society for Optics and Photonics, 2019), p. 1089709.

Shi, G.

C. Shi, S. Fu, G. Shi, W. Shi, Q. Sheng, and J. Yao, “Thulium doped silica fiber laser operating in single-longitudinal-mode at a wavelength above 2 $\mu$μm,” in Fiber Lasers XVI: Technology and Systems, vol. 10897 (International Society for Optics and Photonics, 2019), p. 1089709.

Shi, W.

C. Shi, S. Fu, G. Shi, W. Shi, Q. Sheng, and J. Yao, “Thulium doped silica fiber laser operating in single-longitudinal-mode at a wavelength above 2 $\mu$μm,” in Fiber Lasers XVI: Technology and Systems, vol. 10897 (International Society for Optics and Photonics, 2019), p. 1089709.

Shterengas, L.

M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
[Crossref]

Shukla, M. K.

M. K. Shukla and R. Das, “High-power single-frequency source in the mid-infrared using a singly resonant optical parametric oscillator pumped by yb-fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Stein, A.

M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
[Crossref]

Tang, J.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Thomann, P.

Tittel, F.

Tittel, F. K.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005).
[Crossref]

D. Richter, D. G. Lancaster, and F. K. Tittel, “Development of an automated diode-laser-based multicomponent gas sensor,” Appl. Opt. 39(24), 4444–4450 (2000).
[Crossref]

Totschnig, G.

Traverso, A.

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

Tu, C.

Vallée, R.

Vasilyev, S.

Wang, G.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Wang, H.

Wang, M.

M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
[Crossref]

Wang, P.

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High-power, narrow linewidth single-frequency fiber laser at 2 $\mu$μm,” in 2017 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications, vol. 10619 (, 2018), p. 1061907.
[Crossref]

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High tunable bandwidth 2$\mu$μm single-frequency fiber laser for next-generation gravitational wave detection,” in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2018), pp. F1A–4.

Wang, Q.

Q. Wang, X. Wang, and Z. Li, “Stable and tunable single frequency mid-infrared optical parametric oscillator,” in High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration, vol. 10152 (International Society for Optics and Photonics, 2016), p. 1015209.

Wang, X.

Q. Wang, X. Wang, and Z. Li, “Stable and tunable single frequency mid-infrared optical parametric oscillator,” in High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration, vol. 10152 (International Society for Optics and Photonics, 2016), p. 1015209.

Wang, Y.

Williams, R. J.

D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single-frequency fiber laser operating at 2.9 $\mu$μm,” Opt. Lett. 38(14), 2388–2390 (2013).
[Crossref]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Winter, F.

Withford, M. J.

D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single-frequency fiber laser operating at 2.9 $\mu$μm,” Opt. Lett. 38(14), 2388–2390 (2013).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 $\mu$μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Wu, D.-Y.

J.-Y. Lai, H.-T. Guo, Y.-C. Chen, C.-W. Hsu, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “Single-frequency mod-hop free tunable 3$\mu$μm laser pumped by a 2w diode for isotopic gas sensing,” in CLEO: Applications and Technology (Optical Society of America, 2018), pp. AM2M–3.

Wu, J.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single-frequency fiber laser at 2.05 um based on ho-doped germanate glass fiber,” in Fiber Lasers VI: Technology, Systems, and Applications, vol. 7195 (International Society for Optics and Photonics, 2009), p.71951K.

Wysocki, G.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005).
[Crossref]

Xu, F.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Xu, J.

Xu, S.

Z. Yang, C. Li, S. Xu, and C. Yang, Single-Frequency Fiber Lasers, vol. 8 (Springer, 2019).

Yamanishi, M.

S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature dfb quantum cascade laser,” Opt. Express 19(19), 17996–18003 (2011).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2007).
[Crossref]

Yan, M.

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

Yang, C.

Z. Yang, C. Li, S. Xu, and C. Yang, Single-Frequency Fiber Lasers, vol. 8 (Springer, 2019).

Yang, S.-D.

J.-Y. Lai, H.-T. Guo, Y.-C. Chen, C.-W. Hsu, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “Single-frequency mod-hop free tunable 3$\mu$μm laser pumped by a 2w diode for isotopic gas sensing,” in CLEO: Applications and Technology (Optical Society of America, 2018), pp. AM2M–3.

Yang, Z.

Z. Yang, C. Li, S. Xu, and C. Yang, Single-Frequency Fiber Lasers, vol. 8 (Springer, 2019).

Yao, J.

C. Shi, S. Fu, G. Shi, W. Shi, Q. Sheng, and J. Yao, “Thulium doped silica fiber laser operating in single-longitudinal-mode at a wavelength above 2 $\mu$μm,” in Fiber Lasers XVI: Technology and Systems, vol. 10897 (International Society for Optics and Photonics, 2019), p. 1089709.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Yao, Z.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single-frequency fiber laser at 2.05 um based on ho-doped germanate glass fiber,” in Fiber Lasers VI: Technology, Systems, and Applications, vol. 7195 (International Society for Optics and Photonics, 2009), p.71951K.

Yoo, J.-K.

S. Do Lim, J.-K. Yoo, and S. K. Kim, “Widely tunable watt-level single-frequency tm-doped fiber ring laser as pump for mid-ir frequency generation,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

You, Z.

Yu, J.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single-frequency fiber laser at 2.05 um based on ho-doped germanate glass fiber,” in Fiber Lasers VI: Technology, Systems, and Applications, vol. 7195 (International Society for Optics and Photonics, 2009), p.71951K.

Zhang, Q.

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High-power, narrow linewidth single-frequency fiber laser at 2 $\mu$μm,” in 2017 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications, vol. 10619 (, 2018), p. 1061907.
[Crossref]

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High tunable bandwidth 2$\mu$μm single-frequency fiber laser for next-generation gravitational wave detection,” in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2018), pp. F1A–4.

Zhang, Z.

Zhao, J.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Zhou, X.

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

Zhu, Z.

Zondy, J.-J.

Zong, J.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single-frequency fiber laser at 2.05 um based on ho-doped germanate glass fiber,” in Fiber Lasers VI: Technology, Systems, and Applications, vol. 7195 (International Society for Optics and Photonics, 2009), p.71951K.

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (1)

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J.-M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005).
[Crossref]

Appl. Sci. (1)

J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, and G. Wang, “Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 $\mu$μm,” Appl. Sci. 8(8), 1345 (2018).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Shukla and R. Das, “High-power single-frequency source in the mid-infrared using a singly resonant optical parametric oscillator pumped by yb-fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

IEEE Photonics J. (1)

S. Do Lim, J.-K. Yoo, and S. K. Kim, “Widely tunable watt-level single-frequency tm-doped fiber ring laser as pump for mid-ir frequency generation,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Int. J. Appl. Glass Sci. (1)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

J. Phys. B (1)

P. Mickelson, Y. M. de Escobar, P. Anzel, B. DeSalvo, S. Nagel, A. Traverso, M. Yan, and T. Killian, “Repumping and spectroscopy of laser-cooled sr atoms using the (5s5p) 3p2–(5s4d) 3d2 transition,” J. Phys. B 42(23), 235001 (2009).
[Crossref]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Eng. (1)

M. Wang, T. Hosoda, L. Shterengas, G. Kipshidze, M. Lu, A. Stein, and G. Belenky, “External cavity cascade diode lasers tunable from 3.05 to 3.25 $\mu$μm,” Opt. Eng. 57(01), 1 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (11)

N. Coluccelli, M. Cassinerio, P. Laporta, and G. Galzerano, “100 khz linewidth cr 2+: Znse ring laser tunable from 2.12 to 2.58 $\mu$μm,” Opt. Lett. 37(24), 5088–5090 (2012).
[Crossref]

D. D. Hudson, R. J. Williams, M. J. Withford, and S. D. Jackson, “Single-frequency fiber laser operating at 2.9 $\mu$μm,” Opt. Lett. 38(14), 2388–2390 (2013).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 $\mu$μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref]

M. Bernier, V. Michaud-Belleau, S. Levasseur, V. Fortin, J. Genest, and R. Vallée, “All-fiber dfb laser operating at 2.8 $\mu$μm,” Opt. Lett. 40(1), 81–84 (2015).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode er: Ggg microchip laser operating at 2.7 $\mu$μm,” Opt. Lett. 40(16), 3846–3849 (2015).
[Crossref]

G. Insero, C. Clivati, D. D’Ambrosio, P. De Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
[Crossref]

N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43(8), 1814–1817 (2018).
[Crossref]

D. Lancaster, D. Richter, R. Curl, F. Tittel, L. Goldberg, and J. Koplow, “High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy,” Opt. Lett. 24(23), 1744–1746 (1999).
[Crossref]

C. Drag, A. Desormeaux, M. Lefebvre, and E. Rosencher, “Entangled-cavity optical parametric oscillator for mid-infrared pulsed single-longitudinal-mode operation,” Opt. Lett. 27(14), 1238–1240 (2002).
[Crossref]

G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, “Mid-infrared external-cavity quantum-cascade laser,” Opt. Lett. 27(20), 1788–1790 (2002).
[Crossref]

S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. Boyland, J. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned gaas,” Opt. Lett. 33(13), 1413–1415 (2008).
[Crossref]

Phys. Rev. A (1)

D. J. Bamford, M. J. Dyer, and W. K. Bischel, “Single-frequency laser measurements of two-photon cross sections and doppler-free spectra for atomic oxygen,” Phys. Rev. A 36(7), 3497–3500 (1987).
[Crossref]

Phys. Rev. Lett. (1)

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the schawlow-townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[Crossref]

Other (10)

M. L. Calvo and V. Lakshminarayanan, Optical waveguides: from theory to applied technologies (CRC Press, 2007).

Z. Yang, C. Li, S. Xu, and C. Yang, Single-Frequency Fiber Lasers, vol. 8 (Springer, 2019).

C. Shi, S. Fu, G. Shi, W. Shi, Q. Sheng, and J. Yao, “Thulium doped silica fiber laser operating in single-longitudinal-mode at a wavelength above 2 $\mu$μm,” in Fiber Lasers XVI: Technology and Systems, vol. 10897 (International Society for Optics and Photonics, 2019), p. 1089709.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single-frequency fiber laser at 2.05 um based on ho-doped germanate glass fiber,” in Fiber Lasers VI: Technology, Systems, and Applications, vol. 7195 (International Society for Optics and Photonics, 2009), p.71951K.

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High-power, narrow linewidth single-frequency fiber laser at 2 $\mu$μm,” in 2017 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications, vol. 10619 (, 2018), p. 1061907.
[Crossref]

D. G. Lancaster, D. Otten, A. Cenescu, N. Bourbeau Hébert, G. Y. Chen, M. C. Johnson, T. M. Monro, and J. Genest, “(in review) an ultra-stable 2.9 $\mu$μm guided-wave infrared chip laser and application to nano-spectroscopy,” APL Photonicsa, a (2019).

S. Qi, Y. Hou, Q. Zhang, and P. Wang, “High tunable bandwidth 2$\mu$μm single-frequency fiber laser for next-generation gravitational wave detection,” in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2018), pp. F1A–4.

J.-Y. Lai, H.-T. Guo, Y.-C. Chen, C.-W. Hsu, D.-Y. Wu, M.-H. Chou, and S.-D. Yang, “Single-frequency mod-hop free tunable 3$\mu$μm laser pumped by a 2w diode for isotopic gas sensing,” in CLEO: Applications and Technology (Optical Society of America, 2018), pp. AM2M–3.

Q. Wang, X. Wang, and Z. Li, “Stable and tunable single frequency mid-infrared optical parametric oscillator,” in High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration, vol. 10152 (International Society for Optics and Photonics, 2016), p. 1015209.

S. W. Henderson and C. P. Hale, “Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406 (International Society for Optics and Photonics, 2017), p. 104060C.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup of the Littman-Metcalf cavity. DG: Diffraction grating. OC: 95% output coupler. L1: Lens ($f~=~50$ mm). IC: Input coupler. L2: Lens ($f$ = 50 mm). FCL: Fiber-coupled lens ($f$ = 6.51 mm). FC: Fiber combiner. LD: 1150 nm laser diode.
Fig. 2.
Fig. 2. (top) Scanned spectrum obtained using the FPI with a scaling adapted to measure the peak amplitude of the fundamental mode for single-mode (black) and detuned (red) configurations. (bottom) Scanned spectrum on a scaling adapted to measure a low intensity signal and zoomed-in (inset) portion where the side-mode was previously observed.
Fig. 3.
Fig. 3. Voltage power spectral density of the chip laser at the detector’s output in the absence (black curve) and presence (red curve) of laser light where a beat note is visible at the expected 371 MHz FSR of the 40-cm-long cavity. (inset) Zoom-in on the beat note to highlight the red area representing the power in the mixing term.
Fig. 4.
Fig. 4. (top, left) RF spectrum of the beat note from the Littman-Metcalf and Littrow lasers (black) as well as the averaged white additive noise (red). (top, right) Frequency of the beat note as a function of time showing an average frequency of 8 MHz. (bottom) Frequency noise PSD of the beat note. The grey area is used to determine the linewidth over the total measurement duration while the noise level around 40 kHz provides an upper bound to the Lorentzian linewidth.

Metrics