Abstract

It is highly desirable to develop asymmetric transmission (AT) devices for both linearly and circularly polarized light. However, currently existing metamaterial-based AT devices require multi-step micro-nano fabrication processes and usually realize AT responses only for linearly or circularly polarized waves, not simultaneously for both. We here propose a dual-band AT device for both linearly and circularly polarized waves in the near-infrared region by using a bilayer coupled complementary chiral metasurface, which includes a half-gammadion-shape gold (Au) structural layer and its Babinet’s complimentary copy. Unlike other multilayer AT devices working at optical frequencies, it takes less micro-nano fabrication steps. Besides, with the help of chirality and the inherent near-field coupling effect between the two complementary Au layers, the maximal AT parameters for linearly and circularly polarized waves can reach up to 0.45 and 0.56, respectively. The underlying mechanisms of dual-band AT responses are also investigated in depth from the perspectives of chirality and coupling effect. Our work offers a new and simple approach to high-performance AT devices, helps to better understand near-filed coupling effect in coupled complementary metasurfaces, and also expands their application fields.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial

Yiqun Xu, Quanchao Shi, Zheng Zhu, and Jinhui Shi
Opt. Express 22(21) 25679-25688 (2014)

Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band

Deng Fei Tang, Chuan Wang, Wei Kang Pan, Min Hua Li, and Jian Feng Dong
Opt. Express 25(10) 11329-11339 (2017)

Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces

Zhancheng Li, Wenwei Liu, Hua Cheng, Shuqi Chen, and Jianguo Tian
Opt. Lett. 41(13) 3142-3145 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
    [Crossref]
  2. Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
    [Crossref]
  3. X. Kong, J. Xu, J. jun Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
    [Crossref]
  4. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
    [Crossref]
  5. S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
    [Crossref]
  6. S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
    [Crossref]
  7. A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
    [Crossref]
  8. L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
    [Crossref]
  9. M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
    [Crossref]
  10. L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
    [Crossref]
  11. C. Huang, J. Zhao, T. Jiang, and Y. Feng, “Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure,” J. Electromagn. Waves Appl. 26(8-9), 1192–1202 (2012).
    [Crossref]
  12. D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
    [Crossref]
  13. Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
    [Crossref]
  14. L. J. Aplet and J. W. Carson, “A Faraday Effect Optical Isolator,” Appl. Opt. 3(4), 544 (1964).
    [Crossref]
  15. S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
    [Crossref]
  16. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
    [Crossref]
  17. Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
    [Crossref]
  18. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref]
  19. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref]
  20. C. Ba, L. Huang, Y. Ling, W. Liu, S. Li, and H. Li, “Narrow-band and high-contrast asymmetric transmission based on metal-metal-metal asymmetric gratings,” Opt. Express 27(18), 25107–25118 (2019).
    [Crossref]
  21. N. Parappurath, F. Alpeggiani, L. Kuipers, and E. Verhagen, “The Origin and Limit of Asymmetric Transmission in Chiral Resonators,” ACS Photonics 4(4), 884–890 (2017).
    [Crossref]
  22. K. Wang, X. Gu, J. Liu, Z. Yang, and S. Wang, “Proposal for CEP measurement based on terahertz air photonics,” Front. Optoelectron 11(4), 407–412 (2018).
    [Crossref]
  23. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
    [Crossref]
  24. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(19), 195131 (2012).
    [Crossref]
  25. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: Asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
    [Crossref]
  26. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
    [Crossref]
  27. Y. Ling, L. Huang, W. Hong, T. Liu, L. Jing, W. Liu, and Z. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
    [Crossref]
  28. M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A Broadband Optical Diode for Linearly Polarized Light Using Symmetry-Breaking Metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
    [Crossref]
  29. J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
    [Crossref]
  30. C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
    [Crossref]
  31. F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
    [Crossref]
  32. S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
    [Crossref]
  33. S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, “Empowered Layer Effects and Prominent Properties in Few-Layer Metasurfaces,” Adv. Opt. Mater. 7(14), 1801477 (2019).
    [Crossref]
  34. M. Kang, J. Chen, H.-X. Cui, Y. Li, and H.-T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
    [Crossref]
  35. Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26(5), 6067–6078 (2018).
    [Crossref]
  36. Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
    [Crossref]
  37. Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
    [Crossref]
  38. J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
    [Crossref]
  39. X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
    [Crossref]
  40. I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
    [Crossref]
  41. S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
    [Crossref]
  42. W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
    [Crossref]
  43. S. Wu, S. Xu, Y. Zhang, Y. Wu, J. Jiang, Q. Wang, X. Zhang, and Y. Zhu, “Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure,” Opt. Lett. 39(22), 6426–6429 (2014).
    [Crossref]
  44. X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).
    [Crossref]
  45. J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
    [Crossref]
  46. Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
    [Crossref]
  47. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
    [Crossref]
  48. T. Liu, L. Huang, W. Hong, Y. Ling, J. Luan, Y. Sun, and W. Sun, “Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation,” Opt. Express 25(14), 16332–16346 (2017).
    [Crossref]
  49. Y. Deng, J. Ou, J. Yu, M. Zhang, and L. Zhang, “Coupled two aluminum nanorod antennas for near-field enhancement,” Front. Optoelectron. 10(2), 138–143 (2017).
    [Crossref]

2019 (8)

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

C. Ba, L. Huang, Y. Ling, W. Liu, S. Li, and H. Li, “Narrow-band and high-contrast asymmetric transmission based on metal-metal-metal asymmetric gratings,” Opt. Express 27(18), 25107–25118 (2019).
[Crossref]

S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, “Empowered Layer Effects and Prominent Properties in Few-Layer Metasurfaces,” Adv. Opt. Mater. 7(14), 1801477 (2019).
[Crossref]

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

2018 (7)

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26(5), 6067–6078 (2018).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

K. Wang, X. Gu, J. Liu, Z. Yang, and S. Wang, “Proposal for CEP measurement based on terahertz air photonics,” Front. Optoelectron 11(4), 407–412 (2018).
[Crossref]

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

2017 (11)

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
[Crossref]

X. Kong, J. Xu, J. jun Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

N. Parappurath, F. Alpeggiani, L. Kuipers, and E. Verhagen, “The Origin and Limit of Asymmetric Transmission in Chiral Resonators,” ACS Photonics 4(4), 884–890 (2017).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, L. Jing, W. Liu, and Z. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
[Crossref]

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A Broadband Optical Diode for Linearly Polarized Light Using Symmetry-Breaking Metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
[Crossref]

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

T. Liu, L. Huang, W. Hong, Y. Ling, J. Luan, Y. Sun, and W. Sun, “Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation,” Opt. Express 25(14), 16332–16346 (2017).
[Crossref]

Y. Deng, J. Ou, J. Yu, M. Zhang, and L. Zhang, “Coupled two aluminum nanorod antennas for near-field enhancement,” Front. Optoelectron. 10(2), 138–143 (2017).
[Crossref]

2016 (3)

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).
[Crossref]

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref]

2015 (2)

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

2014 (5)

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: Asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref]

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref]

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref]

S. Wu, S. Xu, Y. Zhang, Y. Wu, J. Jiang, Q. Wang, X. Zhang, and Y. Zhu, “Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure,” Opt. Lett. 39(22), 6426–6429 (2014).
[Crossref]

2013 (2)

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

2012 (3)

C. Huang, J. Zhao, T. Jiang, and Y. Feng, “Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure,” J. Electromagn. Waves Appl. 26(8-9), 1192–1202 (2012).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

2011 (2)

M. Kang, J. Chen, H.-X. Cui, Y. Li, and H.-T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

2010 (3)

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref]

2006 (2)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

1964 (1)

Ahmed, T.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref]

Al-Naib, I.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref]

Alpeggiani, F.

N. Parappurath, F. Alpeggiani, L. Kuipers, and E. Verhagen, “The Origin and Limit of Asymmetric Transmission in Chiral Resonators,” ACS Photonics 4(4), 884–890 (2017).
[Crossref]

Alù, A.

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
[Crossref]

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Amrollahi, P.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

Aplet, L. J.

Ba, C.

Bai, J.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

Basiri, A.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

Bhaskaran, M.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Brasselet, E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

Caglayan, H.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

Cakmakyapan, S.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

Cao, B.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Carpenter, J.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

Carson, J. W.

Chen, H.

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

Chen, J.

Chen, M.

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

Chen, S.

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, “Empowered Layer Effects and Prominent Properties in Few-Layer Metasurfaces,” Adv. Opt. Mater. 7(14), 1801477 (2019).
[Crossref]

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

Chen, X.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

Chen, Y.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Cheng, F.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref]

Cheng, H.

S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, “Empowered Layer Effects and Prominent Properties in Few-Layer Metasurfaces,” Adv. Opt. Mater. 7(14), 1801477 (2019).
[Crossref]

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Cheng, Y.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Christiansen, A. B.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Christodoulides, D.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref]

Chum, C. C.

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Clausen, J. S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Cui, H.-X.

Dal Negro, L.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Decker, M.

Deng, J.

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Deng, Y.

Y. Deng, J. Ou, J. Yu, M. Zhang, and L. Zhang, “Coupled two aluminum nanorod antennas for near-field enhancement,” Front. Optoelectron. 10(2), 138–143 (2017).
[Crossref]

Ding, L.

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Dong, C. H.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

Dong, G.

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

Duan, H. G.

X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
[Crossref]

Duan, J.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Economou, E. N.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Etrich, C.

Fang, Z.

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Farsari, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Feng, Y.

C. Huang, J. Zhao, T. Jiang, and Y. Feng, “Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure,” J. Electromagn. Waves Appl. 26(8-9), 1192–1202 (2012).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Feng Ma, H.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Fumeaux, C.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Gao, F.

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

Giessen, H.

Gong, R.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Gong, Y.

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26(5), 6067–6078 (2018).
[Crossref]

Grajower, M.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Grbic, A.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: Asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref]

Gu, C.

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

Gu, M.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Gu, X.

K. Wang, X. Gu, J. Liu, Z. Yang, and S. Wang, “Proposal for CEP measurement based on terahertz air photonics,” Front. Optoelectron 11(4), 407–412 (2018).
[Crossref]

Guan, C.

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

Guo, G. C.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

Guo, L. J.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: Asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref]

Guo, P.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

He, M. D.

X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
[Crossref]

Hebestreit, E.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Hess, O.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
[Crossref]

Højlund-Nielsen, E.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Holman, Z.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

Hong, M.

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26(5), 6067–6078 (2018).
[Crossref]

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Hong, W.

Hossain, M. M.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Hu, F.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Hu, J.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Hu, S.

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

Huang, C.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

C. Huang, J. Zhao, T. Jiang, and Y. Feng, “Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure,” J. Electromagn. Waves Appl. 26(8-9), 1192–1202 (2012).
[Crossref]

Huang, L.

Huang, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Jiang, J.

Jiang, T.

C. Huang, J. Zhao, T. Jiang, and Y. Feng, “Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure,” J. Electromagn. Waves Appl. 26(8-9), 1192–1202 (2012).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Jin, A. Z.

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

Jin, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Jing, L.

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, L. Jing, W. Liu, and Z. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
[Crossref]

Jun Cui, T.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

jun Mo, J.

X. Kong, J. Xu, J. jun Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Kafesaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Kang, M.

Kenanakis, G.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Kim, I.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A Broadband Optical Diode for Linearly Polarized Light Using Symmetry-Breaking Metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Kim, M.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A Broadband Optical Diode for Linearly Polarized Light Using Symmetry-Breaking Metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Kong, X.

X. Kong, J. Xu, J. jun Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Kristensen, A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Kuhl, J.

Kuipers, L.

N. Parappurath, F. Alpeggiani, L. Kuipers, and E. Verhagen, “The Origin and Limit of Asymmetric Transmission in Chiral Resonators,” ACS Photonics 4(4), 884–890 (2017).
[Crossref]

Lai, J.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Lederer, F.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

Levy, U.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Li, H.

C. Ba, L. Huang, Y. Ling, W. Liu, S. Li, and H. Li, “Narrow-band and high-contrast asymmetric transmission based on metal-metal-metal asymmetric gratings,” Opt. Express 27(18), 25107–25118 (2019).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Li, J.

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

Li, M.

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

Li, P.

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

Li, Q.

X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
[Crossref]

Li, S.

Li, Y.

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26(5), 6067–6078 (2018).
[Crossref]

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26(5), 6067–6078 (2018).
[Crossref]

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

M. Kang, J. Chen, H.-X. Cui, Y. Li, and H.-T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
[Crossref]

Li, Z.

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, “Empowered Layer Effects and Prominent Properties in Few-Layer Metasurfaces,” Adv. Opt. Mater. 7(14), 1801477 (2019).
[Crossref]

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Lin, F.

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Lin, X.

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

Lin, Y.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Linden, S.

Ling, Y.

Liu, C.

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Liu, D.

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).
[Crossref]

Liu, J.

K. Wang, X. Gu, J. Liu, Z. Yang, and S. Wang, “Proposal for CEP measurement based on terahertz air photonics,” Front. Optoelectron 11(4), 407–412 (2018).
[Crossref]

Liu, S.

X. Kong, J. Xu, J. jun Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Liu, T.

Liu, W.

C. Ba, L. Huang, Y. Ling, W. Liu, S. Li, and H. Li, “Narrow-band and high-contrast asymmetric transmission based on metal-metal-metal asymmetric gratings,” Opt. Express 27(18), 25107–25118 (2019).
[Crossref]

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, L. Jing, W. Liu, and Z. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
[Crossref]

Liu, X.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Liu, Y.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A Broadband Optical Diode for Linearly Polarized Light Using Symmetry-Breaking Metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref]

Liu, Z.

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

Lu, M.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Luan, J.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

T. Liu, L. Huang, W. Hong, Y. Ling, J. Luan, Y. Sun, and W. Sun, “Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation,” Opt. Express 25(14), 16332–16346 (2017).
[Crossref]

Luo, X.

X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
[Crossref]

Luo, Y.

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Lv, T.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Ma, X.

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).
[Crossref]

Ma, Z.

Maier, S. A.

Mei, S.

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

Mizumoto, T.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Monticone, F.

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Morandotti, R.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref]

Mortensen, N. A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Mutlu, M.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref]

Nirantar, S.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Oh, S. S.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
[Crossref]

Ou, J.

Y. Deng, J. Ou, J. Yu, M. Zhang, and L. Zhang, “Coupled two aluminum nanorod antennas for near-field enhancement,” Front. Optoelectron. 10(2), 138–143 (2017).
[Crossref]

Overvig, A. C.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Ozaki, T.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref]

Ozbay, E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

Parappurath, N.

N. Parappurath, F. Alpeggiani, L. Kuipers, and E. Verhagen, “The Origin and Limit of Asymmetric Transmission in Chiral Resonators,” ACS Photonics 4(4), 884–890 (2017).
[Crossref]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Pfeiffer, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: Asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Qin, F.

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Qiu, C.

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Ray, V.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: Asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref]

Ren, G.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Rho, J.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A Broadband Optical Diode for Linearly Polarized Light Using Symmetry-Breaking Metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Rockstuhl, C.

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Rong, X.

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Selimis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Serebryannikov, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

Shang, X. J.

X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
[Crossref]

Shen, B.

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Shen, L.

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

Shen, Z.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

Shi, J.

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Shoji, Y.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref]

Shrestha, S.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Soukoulis, C. M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref]

Sounas, D. L.

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
[Crossref]

Sriram, S.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Stein, A.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Sun, F. W.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

Sun, L.

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

Sun, W.

Sun, Y.

Taha, H.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Tang, C.

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

Teng, J.

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Tian, J.

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, “Empowered Layer Effects and Prominent Properties in Few-Layer Metasurfaces,” Adv. Opt. Mater. 7(14), 1801477 (2019).
[Crossref]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Vamvakaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Verhagen, E.

N. Parappurath, F. Alpeggiani, L. Kuipers, and E. Verhagen, “The Origin and Limit of Asymmetric Transmission in Chiral Resonators,” ACS Photonics 4(4), 884–890 (2017).
[Crossref]

Wang, C.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Wang, H.-T.

Wang, K.

K. Wang, X. Gu, J. Liu, Z. Yang, and S. Wang, “Proposal for CEP measurement based on terahertz air photonics,” Front. Optoelectron 11(4), 407–412 (2018).
[Crossref]

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

Wang, L. L.

X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
[Crossref]

Wang, Q.

Wang, S.

K. Wang, X. Gu, J. Liu, Z. Yang, and S. Wang, “Proposal for CEP measurement based on terahertz air photonics,” Front. Optoelectron 11(4), 407–412 (2018).
[Crossref]

Wang, Y.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Wang, Z.

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, L. Jing, W. Liu, and Z. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
[Crossref]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Wegener, M.

Winsor, T.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref]

Withayachumnankul, W.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Wu, L.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Wu, S.

Wu, Y.

Xiao, Z.

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).
[Crossref]

Xomalis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Xu, J.

X. Kong, J. Xu, J. jun Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Xu, S.

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

S. Wu, S. Xu, Y. Zhang, Y. Wu, J. Jiang, Q. Wang, X. Zhang, and Y. Zhu, “Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure,” Opt. Lett. 39(22), 6426–6429 (2014).
[Crossref]

Xu, X.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yang, H.

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

Yang, S.

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

Yang, Y.

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

Yang, Z.

K. Wang, X. Gu, J. Liu, Z. Yang, and S. Wang, “Proposal for CEP measurement based on terahertz air photonics,” Front. Optoelectron 11(4), 407–412 (2018).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Yao, K.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A Broadband Optical Diode for Linearly Polarized Light Using Symmetry-Breaking Metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Yao, Y.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

Yao, Z.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yazdi, S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Yoon, G.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A Broadband Optical Diode for Linearly Polarized Light Using Symmetry-Breaking Metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Yu, J.

Y. Deng, J. Ou, J. Yu, M. Zhang, and L. Zhang, “Coupled two aluminum nanorod antennas for near-field enhancement,” Front. Optoelectron. 10(2), 138–143 (2017).
[Crossref]

Yu, L.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yu, N.

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Yu, S.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Yuan, X.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zentgraf, T.

Zhai, X.

X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
[Crossref]

Zhang, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: Asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref]

Zhang, L.

Y. Deng, J. Ou, J. Yu, M. Zhang, and L. Zhang, “Coupled two aluminum nanorod antennas for near-field enhancement,” Front. Optoelectron. 10(2), 138–143 (2017).
[Crossref]

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Zhang, M.

Y. Deng, J. Ou, J. Yu, M. Zhang, and L. Zhang, “Coupled two aluminum nanorod antennas for near-field enhancement,” Front. Optoelectron. 10(2), 138–143 (2017).
[Crossref]

Zhang, S.

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Zhang, X.

Zhang, Y.

S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, “Empowered Layer Effects and Prominent Properties in Few-Layer Metasurfaces,” Adv. Opt. Mater. 7(14), 1801477 (2019).
[Crossref]

S. Wu, S. Xu, Y. Zhang, Y. Wu, J. Jiang, Q. Wang, X. Zhang, and Y. Zhu, “Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure,” Opt. Lett. 39(22), 6426–6429 (2014).
[Crossref]

Zhang, Y. L.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

Zhao, J.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

C. Huang, J. Zhao, T. Jiang, and Y. Feng, “Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure,” J. Electromagn. Waves Appl. 26(8-9), 1192–1202 (2012).
[Crossref]

Zhao, M.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhao, R.

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref]

Zhao, X.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Zheng, B.

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

Zheng, L.

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Zheng, Y.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhou, S.

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

Zhu, A.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Zhu, X.

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Zhu, Y.

Zhu, Z.

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Zou, C.

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Zou, C. L.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

Zou, X. B.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

ACS Photonics (3)

N. Parappurath, F. Alpeggiani, L. Kuipers, and E. Verhagen, “The Origin and Limit of Asymmetric Transmission in Chiral Resonators,” ACS Photonics 4(4), 884–890 (2017).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. Dal Negro, and N. Yu, “Indium Tin Oxide Broadband Metasurface Absorber,” ACS Photonics 5(9), 3526–3533 (2018).
[Crossref]

Adv. Mater. (3)

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, “Energy-Tailorable Spin-Selective Multifunctional Metasurfaces with Full Fourier Components,” Adv. Mater. 31(32), 1901729 (2019).
[Crossref]

Z. Li, C. Liu, X. Rong, Y. Luo, H. Cheng, L. Zheng, F. Lin, B. Shen, Y. Gong, S. Zhang, and Z. Fang, “Tailoring MoS 2 valley-polarized photoluminescence with super chiral near-field,” Adv. Mater. 30(34), 1801908 (2018).
[Crossref]

Adv. Opt. Mater. (4)

M. Li, L. Jing, X. Lin, S. Xu, L. Shen, B. Zheng, Z. Wang, and H. Chen, “Angular-Adaptive Spin-Locked Retroreflector Based on Reconfigurable Magnetic Metagrating,” Adv. Opt. Mater. 7(13), 1900151 (2019).
[Crossref]

S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, “Empowered Layer Effects and Prominent Properties in Few-Layer Metasurfaces,” Adv. Opt. Mater. 7(14), 1801477 (2019).
[Crossref]

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A Broadband Optical Diode for Linearly Polarized Light Using Symmetry-Breaking Metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

C. Zou, G. Ren, M. M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

X. J. Shang, X. Zhai, L. L. Wang, M. D. He, Q. Li, X. Luo, and H. G. Duan, “Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces,” Appl. Phys. Express 10(5), 052602 (2017).
[Crossref]

Appl. Phys. Lett. (4)

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Carbon (1)

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Front. Optoelectron (1)

K. Wang, X. Gu, J. Liu, Z. Yang, and S. Wang, “Proposal for CEP measurement based on terahertz air photonics,” Front. Optoelectron 11(4), 407–412 (2018).
[Crossref]

Front. Optoelectron. (2)

X. Kong, J. Xu, J. jun Mo, and S. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Y. Deng, J. Ou, J. Yu, M. Zhang, and L. Zhang, “Coupled two aluminum nanorod antennas for near-field enhancement,” Front. Optoelectron. 10(2), 138–143 (2017).
[Crossref]

J. Electromagn. Waves Appl. (1)

C. Huang, J. Zhao, T. Jiang, and Y. Feng, “Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure,” J. Electromagn. Waves Appl. 26(8-9), 1192–1202 (2012).
[Crossref]

J. Mod. Opt. (1)

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).
[Crossref]

J. Phys. D: Appl. Phys. (1)

Y. Li, G. Dong, R. Zhao, K. Wang, S. Zhou, L. Sun, P. Li, Z. Zhu, C. Guan, and J. Shi, “Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials,” J. Phys. D: Appl. Phys. 51(28), 285105 (2018).
[Crossref]

Light: Sci. Appl. (1)

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light: Sci. Appl. 8(1), 78 (2019).
[Crossref]

Nano Convergence (1)

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
[Crossref]

Nano Lett. (2)

S. Yang, Z. Liu, S. Hu, A. Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-Selective Transmission in Chiral Folded Metasurfaces,” Nano Lett. 19(6), 3432–3439 (2019).
[Crossref]

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref]

Nanoscale (1)

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Nanotechnology (1)

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref]

Nat. Commun. (1)

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1797 (2018).
[Crossref]

Nat. Photonics (1)

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Phys. Rev. Lett. (5)

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: Asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref]

I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, “Conductive coupling of split ring resonators: A path to THz Metamaterials with ultrasharp resonances,” Phys. Rev. Lett. 112(18), 183903 (2014).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref]

Research (1)

L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, and H. Chen, “Spiral Field Generation in Smith-Purcell Radiation by Helical Metagratings,” Research 2019, 1–8 (2019).
[Crossref]

Sci. Adv. (1)

F. Qin, L. Zhang, S. Mei, M. Hong, C. Qiu, L. Ding, C. C. Chum, J. Deng, J. Teng, F. Monticone, A. Alù, Y. Li, and S. Zhang, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[Crossref]

Sci. Rep. (1)

J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7(1), 41893 (2017).
[Crossref]

Sci. Technol. Adv. Mater. (1)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the proposed device. (a) Perspective view of the structural unit array of the proposed device. (b) Top view of the structural unit in the x-y cut-plane (right-upper panel) and the side view of the structural unit in the y-z cut-plane (right-lower panel) with optimized geometrical parameters: p = 500 nm, l1=150 nm, l2=250 nm, w = 100 nm, h1=30 nm, g = 30 nm.
Fig. 2.
Fig. 2. Simulated transmission coefficients (absolute value) for linearly polarized wave in (a) forward propagating and (b) backward directions. AT parameter of linearly (c) and circularly (d) polarized light. “F” and “B” in the legend represent “Forward” and “Backward”, respectively. The letters “A”, “B” and “C” in (c) mark the three typical wavelengths discussed later.
Fig. 3.
Fig. 3. AT parameter Δlin(x) varies as a function of incidence wavelength for different values of l1 (a) and l2 (b).
Fig. 4.
Fig. 4. Total transmittance (a1) and the forward transmission coefficients (a2) of chiral stucture I. (b1) and (b2) are the transmittance and the forward transmission coefficients of chiral stucture II. The insets in (a1) and (b1) schematicaly show the two chiral structures, respectively. “F” and “B” in the legend represent “Forward” and “Backward”, respectively.
Fig. 5.
Fig. 5. Ez distribution in the y-z plane at λA=1214 nm (a), λB=900 nm (b) and λC=823 nm (c). The black dashed lines display the outlines of the two metallic layers.
Fig. 6.
Fig. 6. Current density distribution on the surfaces of the lower (a1-c1) and upper (a2-c2) metallic layers under forward incidence of x-polarized light at λA=1214 nm, λB=900 nm and λC=823 nm. (a3) is the zoom map of (a2). The solid black arrows show the current direction, the dotted black lines mark current distribution nodes, and the dashed green lines in (a1)-(c1) mark the outlines of the lower metallic layer.
Fig. 7.
Fig. 7. AT parameter Δlin(x) as a function of incidence wavelength for different spacing distances.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E i ( r , t ) = ( I x I y ) e i ( k z w t )
E t ( r , t ) = ( T x T y ) e i ( k z w t )
( T x T y ) = ( T x x f T x y f T y x f T y y f ) ( I x I y ) = T l i n f ( I x I y )
T l i n b = ( T x x b T x y b T y x b T y y b ) = ( T x x f T y x f T x y f T y y f )
Δ l i n ( x ) = | T x x f | 2 + | T y x f | 2 | T x x b | 2 | T y x b | 2 = | T y x f | 2 | T x y f | 2
Δ l i n ( y ) = | T y y f | 2 + | T x y f | 2 | T y y b | 2 | T x y b | 2 = | T x y f | 2 | T y x f | 2 = Δ l i n ( x )
( T + + T + T + T ) = 1 2 ( T x x + T y y + i ( T x y T y x ) T x x T y y i ( T x y + T y x ) T x x T y y + i ( T x y + T y x ) T x x + T y y i ( T x y T y x ) )
Δ c i r ( + ) = | T + | 2 | T + | 2 = Δ c i r ( )
( T x x T y x T x y T y y ) ( p x x p y x p x y p y y )

Metrics