Abstract

A cavity-enhanced Raman spectroscopy (CERS) gas-sensing method is introduced. Using optical feedback frequency-locking, laser radiation provided by a diode laser is coupled into a three-mirror V-shaped optical cavity. An intracavity laser power of 92 W is realized, yielding a power gain factor of 2200. Raman spectrums of air, carbon dioxide, and acetylene are recorded as a demonstration. Multicomponent gas mixtures including isotopic gases can be simultaneously sensed by CERS. With 200 s exposure time, detection limits of 5.35 Pa for N2, 5.07 Pa for O2, 1.74 Pa for CO2, and 0.58 Pa for C2H2 are achieved. CERS is a powerful gas-sensing method with high selectivity and sensitivity, which also has the potential for quantitative analysis of gases with high accuracy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gas-phase Raman spectroscopy of non-reacting flows: comparison between free-space and cavity-based spontaneous Raman emission

Lee Weller, Maxim Kuvshinov, and Simone Hochgreb
Appl. Opt. 58(10) C92-C103 (2019)

Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas

P. Dubé, L.-S. Ma, J. Ye, P. Jungner, and J. L. Hall
J. Opt. Soc. Am. B 13(9) 2041-2054 (1996)

Two-component gas quartz-enhanced photoacoustic spectroscopy sensor based on time-division multiplexing of distributed-feedback laser driver current

Zongliang Wang, Jun Chang, Cunwei Tian, Yiwen Feng, Cheng Wang, Hao Zhang, Qinduan Zhang, Hefu Li, Zhenbao Feng, Xiukun Zhang, and Longfei Tang
Appl. Opt. 58(31) 8479-8485 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42(7), 2934–2943 (1971).
    [Crossref]
  2. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. Mcnaghten, “Mid-infrared absorption spectroscopy of methane across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A: Pure Appl. Opt. 7(6), S408–S414 (2005).
    [Crossref]
  3. S. W. Sharpe, R. Sheeks, C. Wittig, and R. A. Beaudet, “Infrared absorption spectroscopy of CO2-Ar complexes,” Chem. Phys. Lett. 151(3), 267–272 (1988).
    [Crossref]
  4. H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
    [Crossref]
  5. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
    [Crossref]
  6. H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
    [Crossref]
  7. S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
    [Crossref]
  8. J. Peltola, M. Vainio, T. Hieta, J. Uotila, S. Sinisalo, M. Metsala, M. Siltanen, and L. Halonen, “High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator,” Opt. Express 21(8), 10240–10250 (2013).
    [Crossref]
  9. V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
    [Crossref]
  10. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
    [Crossref]
  11. M. A. Buldakov, V. A. Korolkov, I. I. Matrosov, D. V. Petrov, A. A. Tikhomirov, and B. V. Korolev, “Analyzing natural gas by spontaneous Raman scattering spectroscopy,” J. Opt. Technol. 80(7), 426–430 (2013).
    [Crossref]
  12. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, “Raman cross section of some simple gases,” J. Opt. Soc. Am. 63(1), 73–77 (1973).
    [Crossref]
  13. W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” AIP Conf. Proc. 100(1), 181–187 (1983).
    [Crossref]
  14. R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17(11), 490–505 (1946).
    [Crossref]
  15. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  16. D. J. Taylor, M. Glugla, and R. D. Penzhorn, “Enhanced Raman sensitivity using an actively stabilized external resonator,” Rev. Sci. Instrum. 72(4), 1970–1976 (2001).
    [Crossref]
  17. V. Sandfort, J. Goldschmidt, J. Wollenstein, and S. Palzer, “Cavity-enhanced Raman spectroscopy for food chain management,” Sensors 18(3), 709 (2018).
    [Crossref]
  18. Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
    [Crossref]
  19. A. J. Friss, C. M. Limbach, and A. P. Yalin, “Cavity-enhanced rotational Raman scattering in gases using a 20 mW near-infrared fiber laser,” Opt. Lett. 41(14), 3193–3196 (2016).
    [Crossref]
  20. R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137(20), 4669–4676 (2012).
    [Crossref]
  21. R. Keiner, T. Frosch, T. Massad, S. Trumbore, and J. Popp, “Enhanced Raman multigas sensing - a novel tool for control and analysis of (13)CO(2) labeling experiments in environmental research,” Analyst 139(16), 3879–3884 (2014).
    [Crossref]
  22. T. Frosch, R. Keiner, B. Michalzik, B. Fischer, and J. Popp, “Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy,” Anal. Chem. 85(3), 1295–1299 (2013).
    [Crossref]
  23. A. Sieburg, T. Jochum, S. E. Trumbore, J. Popp, and T. Frosch, “Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth’s critical zone,” Analyst 142(18), 3360–3369 (2017).
    [Crossref]
  24. A. Sieburg, S. Schneider, D. Yan, J. Popp, and T. Frosch, “Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy,” Analyst 143(6), 1358–1366 (2018).
    [Crossref]
  25. T. Jochum, B. Michalzik, A. Bachmann, J. Popp, and T. Frosch, “Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy,” Analyst 140(9), 3143–3149 (2015).
    [Crossref]
  26. R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
    [Crossref]
  27. S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
    [Crossref]
  28. R. Keiner, M. C. Gruselle, B. Michalzik, J. Popp, and T. Frosch, “Raman spectroscopic investigation of (CO2)-C-13 labeling and leaf dark respiration of Fagus sylvatica L. (European beech),” Anal. Bioanal. Chem. 407(7), 1813–1817 (2015).
    [Crossref]
  29. D. A. King and R. J. Pittaro, “Simple diode pumping of a power-buildup cavity,” Opt. Lett. 23(10), 774–776 (1998).
    [Crossref]
  30. J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B: Lasers Opt. 78(3-4), 465–476 (2004).
    [Crossref]
  31. S. Ohshima and H. Schnatz, “Optimization of injection current and feedback phase of an optically self-locked laser diode,” J. Appl. Phys. 71(7), 3114–3117 (1992).
    [Crossref]
  32. S. G. Baran, G. Hancock, R. Peverall, G. A. D. Ritchie, and N. J. Van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst 134(2), 243–249 (2009).
    [Crossref]
  33. P. Spano, S. Piazzolla, and M. Tamburrini, “Theory of noise in semiconductor lasers in the presence of optical feedback,” IEEE J. Quantum Electron. 20(4), 350–357 (1984).
    [Crossref]
  34. G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
    [Crossref]
  35. H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
    [Crossref]
  36. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B: Lasers Opt. 80(8), 1027–1038 (2005).
    [Crossref]
  37. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  38. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
    [Crossref]
  39. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(11-1), 681 (1946).
  40. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref]
  41. Y. Wu, X. X. Yang, and P. T. Leung, “Theory of microcavity-enhanced Raman gain,” Opt. Lett. 24(5), 345–347 (1999).
    [Crossref]
  42. T. Hummer, J. Noe, M. S. Hofmann, T. W. Hansch, A. Hogele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7(1), 12155 (2016).
    [Crossref]
  43. B. Petrak, N. Djeu, and A. Muller, “Purcell enhancement of Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89(2), 023811 (2014).
    [Crossref]
  44. N. Ismail, C. C. Kores, D. Geskus, and M. pollnau, “Fabry-Perot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24(15), 16366–16389 (2016).
    [Crossref]
  45. J. Bendtsen, “High-resolution Fourier transform Raman spectra of the fundamental bands of 14N15N and 15N2,” J. Raman Spectrosc. 32(12), 989–995 (2001).
    [Crossref]
  46. Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS)
  47. B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
    [Crossref]

2019 (3)

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

2018 (2)

V. Sandfort, J. Goldschmidt, J. Wollenstein, and S. Palzer, “Cavity-enhanced Raman spectroscopy for food chain management,” Sensors 18(3), 709 (2018).
[Crossref]

A. Sieburg, S. Schneider, D. Yan, J. Popp, and T. Frosch, “Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy,” Analyst 143(6), 1358–1366 (2018).
[Crossref]

2017 (2)

A. Sieburg, T. Jochum, S. E. Trumbore, J. Popp, and T. Frosch, “Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth’s critical zone,” Analyst 142(18), 3360–3369 (2017).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

2016 (4)

T. Hummer, J. Noe, M. S. Hofmann, T. W. Hansch, A. Hogele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7(1), 12155 (2016).
[Crossref]

B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
[Crossref]

A. J. Friss, C. M. Limbach, and A. P. Yalin, “Cavity-enhanced rotational Raman scattering in gases using a 20 mW near-infrared fiber laser,” Opt. Lett. 41(14), 3193–3196 (2016).
[Crossref]

N. Ismail, C. C. Kores, D. Geskus, and M. pollnau, “Fabry-Perot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24(15), 16366–16389 (2016).
[Crossref]

2015 (3)

T. Jochum, B. Michalzik, A. Bachmann, J. Popp, and T. Frosch, “Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy,” Analyst 140(9), 3143–3149 (2015).
[Crossref]

S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
[Crossref]

R. Keiner, M. C. Gruselle, B. Michalzik, J. Popp, and T. Frosch, “Raman spectroscopic investigation of (CO2)-C-13 labeling and leaf dark respiration of Fagus sylvatica L. (European beech),” Anal. Bioanal. Chem. 407(7), 1813–1817 (2015).
[Crossref]

2014 (2)

R. Keiner, T. Frosch, T. Massad, S. Trumbore, and J. Popp, “Enhanced Raman multigas sensing - a novel tool for control and analysis of (13)CO(2) labeling experiments in environmental research,” Analyst 139(16), 3879–3884 (2014).
[Crossref]

B. Petrak, N. Djeu, and A. Muller, “Purcell enhancement of Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89(2), 023811 (2014).
[Crossref]

2013 (4)

J. Peltola, M. Vainio, T. Hieta, J. Uotila, S. Sinisalo, M. Metsala, M. Siltanen, and L. Halonen, “High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator,” Opt. Express 21(8), 10240–10250 (2013).
[Crossref]

M. A. Buldakov, V. A. Korolkov, I. I. Matrosov, D. V. Petrov, A. A. Tikhomirov, and B. V. Korolev, “Analyzing natural gas by spontaneous Raman scattering spectroscopy,” J. Opt. Technol. 80(7), 426–430 (2013).
[Crossref]

T. Frosch, R. Keiner, B. Michalzik, B. Fischer, and J. Popp, “Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy,” Anal. Chem. 85(3), 1295–1299 (2013).
[Crossref]

R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
[Crossref]

2012 (2)

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137(20), 4669–4676 (2012).
[Crossref]

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref]

2010 (1)

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

2009 (1)

S. G. Baran, G. Hancock, R. Peverall, G. A. D. Ritchie, and N. J. Van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst 134(2), 243–249 (2009).
[Crossref]

2005 (2)

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B: Lasers Opt. 80(8), 1027–1038 (2005).
[Crossref]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. Mcnaghten, “Mid-infrared absorption spectroscopy of methane across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A: Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

2004 (1)

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B: Lasers Opt. 78(3-4), 465–476 (2004).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

2001 (3)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

D. J. Taylor, M. Glugla, and R. D. Penzhorn, “Enhanced Raman sensitivity using an actively stabilized external resonator,” Rev. Sci. Instrum. 72(4), 1970–1976 (2001).
[Crossref]

J. Bendtsen, “High-resolution Fourier transform Raman spectra of the fundamental bands of 14N15N and 15N2,” J. Raman Spectrosc. 32(12), 989–995 (2001).
[Crossref]

1999 (1)

1998 (1)

1992 (1)

S. Ohshima and H. Schnatz, “Optimization of injection current and feedback phase of an optically self-locked laser diode,” J. Appl. Phys. 71(7), 3114–3117 (1992).
[Crossref]

1989 (1)

H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
[Crossref]

1988 (2)

G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
[Crossref]

S. W. Sharpe, R. Sheeks, C. Wittig, and R. A. Beaudet, “Infrared absorption spectroscopy of CO2-Ar complexes,” Chem. Phys. Lett. 151(3), 267–272 (1988).
[Crossref]

1984 (1)

P. Spano, S. Piazzolla, and M. Tamburrini, “Theory of noise in semiconductor lasers in the presence of optical feedback,” IEEE J. Quantum Electron. 20(4), 350–357 (1984).
[Crossref]

1983 (1)

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” AIP Conf. Proc. 100(1), 181–187 (1983).
[Crossref]

1982 (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

1973 (1)

1971 (1)

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42(7), 2934–2943 (1971).
[Crossref]

1946 (2)

R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17(11), 490–505 (1946).
[Crossref]

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(11-1), 681 (1946).

1928 (1)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Abraham, N. B.

H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
[Crossref]

Bachmann, A.

T. Jochum, B. Michalzik, A. Bachmann, J. Popp, and T. Frosch, “Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy,” Analyst 140(9), 3143–3149 (2015).
[Crossref]

Baran, S. G.

S. G. Baran, G. Hancock, R. Peverall, G. A. D. Ritchie, and N. J. Van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst 134(2), 243–249 (2009).
[Crossref]

Beaudet, R. A.

S. W. Sharpe, R. Sheeks, C. Wittig, and R. A. Beaudet, “Infrared absorption spectroscopy of CO2-Ar complexes,” Chem. Phys. Lett. 151(3), 267–272 (1988).
[Crossref]

Bendtsen, J.

J. Bendtsen, “High-resolution Fourier transform Raman spectra of the fundamental bands of 14N15N and 15N2,” J. Raman Spectrosc. 32(12), 989–995 (2001).
[Crossref]

Bischel, W. K.

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” AIP Conf. Proc. 100(1), 181–187 (1983).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Black, G.

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” AIP Conf. Proc. 100(1), 181–187 (1983).
[Crossref]

Buldakov, M. A.

Chenevier, M.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B: Lasers Opt. 80(8), 1027–1038 (2005).
[Crossref]

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B: Lasers Opt. 78(3-4), 465–476 (2004).
[Crossref]

Chu, J.

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137(20), 4669–4676 (2012).
[Crossref]

Copper, J.

B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
[Crossref]

Djeu, N.

B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
[Crossref]

B. Petrak, N. Djeu, and A. Muller, “Purcell enhancement of Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89(2), 023811 (2014).
[Crossref]

Dong, L.

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

Fenner, W. R.

Fischer, B.

T. Frosch, R. Keiner, B. Michalzik, B. Fischer, and J. Popp, “Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy,” Anal. Chem. 85(3), 1295–1299 (2013).
[Crossref]

Fischer, S.

S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
[Crossref]

Friss, A. J.

Frosch, T.

A. Sieburg, S. Schneider, D. Yan, J. Popp, and T. Frosch, “Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy,” Analyst 143(6), 1358–1366 (2018).
[Crossref]

A. Sieburg, T. Jochum, S. E. Trumbore, J. Popp, and T. Frosch, “Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth’s critical zone,” Analyst 142(18), 3360–3369 (2017).
[Crossref]

S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
[Crossref]

T. Jochum, B. Michalzik, A. Bachmann, J. Popp, and T. Frosch, “Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy,” Analyst 140(9), 3143–3149 (2015).
[Crossref]

R. Keiner, M. C. Gruselle, B. Michalzik, J. Popp, and T. Frosch, “Raman spectroscopic investigation of (CO2)-C-13 labeling and leaf dark respiration of Fagus sylvatica L. (European beech),” Anal. Bioanal. Chem. 407(7), 1813–1817 (2015).
[Crossref]

R. Keiner, T. Frosch, T. Massad, S. Trumbore, and J. Popp, “Enhanced Raman multigas sensing - a novel tool for control and analysis of (13)CO(2) labeling experiments in environmental research,” Analyst 139(16), 3879–3884 (2014).
[Crossref]

R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
[Crossref]

T. Frosch, R. Keiner, B. Michalzik, B. Fischer, and J. Popp, “Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy,” Anal. Chem. 85(3), 1295–1299 (2013).
[Crossref]

Geskus, D.

Glugla, M.

D. J. Taylor, M. Glugla, and R. D. Penzhorn, “Enhanced Raman sensitivity using an actively stabilized external resonator,” Rev. Sci. Instrum. 72(4), 1970–1976 (2001).
[Crossref]

Goldschmidt, J.

V. Sandfort, J. Goldschmidt, J. Wollenstein, and S. Palzer, “Cavity-enhanced Raman spectroscopy for food chain management,” Sensors 18(3), 709 (2018).
[Crossref]

Gruselle, M. C.

R. Keiner, M. C. Gruselle, B. Michalzik, J. Popp, and T. Frosch, “Raman spectroscopic investigation of (CO2)-C-13 labeling and leaf dark respiration of Fagus sylvatica L. (European beech),” Anal. Bioanal. Chem. 407(7), 1813–1817 (2015).
[Crossref]

Halonen, L.

Hancock, G.

S. G. Baran, G. Hancock, R. Peverall, G. A. D. Ritchie, and N. J. Van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst 134(2), 243–249 (2009).
[Crossref]

Hanf, S.

S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
[Crossref]

R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
[Crossref]

Hansch, T. W.

T. Hummer, J. Noe, M. S. Hofmann, T. W. Hansch, A. Hogele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7(1), 12155 (2016).
[Crossref]

Hartmann, H.

S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
[Crossref]

Henry, C. H.

G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
[Crossref]

Hieta, T.

Hippler, M.

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137(20), 4669–4676 (2012).
[Crossref]

Hkob, D. M.

R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
[Crossref]

Hofmann, M. S.

T. Hummer, J. Noe, M. S. Hofmann, T. W. Hansch, A. Hogele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7(1), 12155 (2016).
[Crossref]

Hogele, A.

T. Hummer, J. Noe, M. S. Hofmann, T. W. Hansch, A. Hogele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7(1), 12155 (2016).
[Crossref]

Hopkins, A. J.

B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
[Crossref]

Hummer, T.

T. Hummer, J. Noe, M. S. Hofmann, T. W. Hansch, A. Hogele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7(1), 12155 (2016).
[Crossref]

Hunger, D.

T. Hummer, J. Noe, M. S. Hofmann, T. W. Hansch, A. Hogele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7(1), 12155 (2016).
[Crossref]

Hyatt, H. A.

Ismail, N.

Jia, A. S. T.

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

Jia, S. T.

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Jochum, T.

A. Sieburg, T. Jochum, S. E. Trumbore, J. Popp, and T. Frosch, “Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth’s critical zone,” Analyst 142(18), 3360–3369 (2017).
[Crossref]

T. Jochum, B. Michalzik, A. Bachmann, J. Popp, and T. Frosch, “Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy,” Analyst 140(9), 3143–3149 (2015).
[Crossref]

Kachanov, A. A.

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B: Lasers Opt. 78(3-4), 465–476 (2004).
[Crossref]

Kassi, S.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B: Lasers Opt. 80(8), 1027–1038 (2005).
[Crossref]

Keiner, R.

S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
[Crossref]

R. Keiner, M. C. Gruselle, B. Michalzik, J. Popp, and T. Frosch, “Raman spectroscopic investigation of (CO2)-C-13 labeling and leaf dark respiration of Fagus sylvatica L. (European beech),” Anal. Bioanal. Chem. 407(7), 1813–1817 (2015).
[Crossref]

R. Keiner, T. Frosch, T. Massad, S. Trumbore, and J. Popp, “Enhanced Raman multigas sensing - a novel tool for control and analysis of (13)CO(2) labeling experiments in environmental research,” Analyst 139(16), 3879–3884 (2014).
[Crossref]

R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
[Crossref]

T. Frosch, R. Keiner, B. Michalzik, B. Fischer, and J. Popp, “Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy,” Anal. Chem. 85(3), 1295–1299 (2013).
[Crossref]

Kellam, J. M.

King, D. A.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Konthasinghe, K.

B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
[Crossref]

Kores, C. C.

Korolev, B. V.

Korolkov, V. A.

Kosterev, A. A.

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

Kreuzer, L. B.

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42(7), 2934–2943 (1971).
[Crossref]

Krishnan, K. S.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Kusel, K.

R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
[Crossref]

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Leung, P. T.

Li, H.

H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
[Crossref]

Li, S. Z.

S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

Limbach, C. M.

Ma, W. G.

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Maier, R. R. J.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. Mcnaghten, “Mid-infrared absorption spectroscopy of methane across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A: Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

Massad, T.

R. Keiner, T. Frosch, T. Massad, S. Trumbore, and J. Popp, “Enhanced Raman multigas sensing - a novel tool for control and analysis of (13)CO(2) labeling experiments in environmental research,” Analyst 139(16), 3879–3884 (2014).
[Crossref]

Matrosov, I. I.

Mcnaghten, E. D.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. Mcnaghten, “Mid-infrared absorption spectroscopy of methane across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A: Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

Metsala, M.

Michalzik, B.

R. Keiner, M. C. Gruselle, B. Michalzik, J. Popp, and T. Frosch, “Raman spectroscopic investigation of (CO2)-C-13 labeling and leaf dark respiration of Fagus sylvatica L. (European beech),” Anal. Bioanal. Chem. 407(7), 1813–1817 (2015).
[Crossref]

T. Jochum, B. Michalzik, A. Bachmann, J. Popp, and T. Frosch, “Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy,” Analyst 140(9), 3143–3149 (2015).
[Crossref]

T. Frosch, R. Keiner, B. Michalzik, B. Fischer, and J. Popp, “Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy,” Anal. Chem. 85(3), 1295–1299 (2013).
[Crossref]

Morville, J.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B: Lasers Opt. 80(8), 1027–1038 (2005).
[Crossref]

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B: Lasers Opt. 78(3-4), 465–476 (2004).
[Crossref]

Muller, A.

B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
[Crossref]

B. Petrak, N. Djeu, and A. Muller, “Purcell enhancement of Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89(2), 023811 (2014).
[Crossref]

Noe, J.

T. Hummer, J. Noe, M. S. Hofmann, T. W. Hansch, A. Hogele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7(1), 12155 (2016).
[Crossref]

Ohshima, S.

S. Ohshima and H. Schnatz, “Optimization of injection current and feedback phase of an optically self-locked laser diode,” J. Appl. Phys. 71(7), 3114–3117 (1992).
[Crossref]

Palzer, S.

V. Sandfort, J. Goldschmidt, J. Wollenstein, and S. Palzer, “Cavity-enhanced Raman spectroscopy for food chain management,” Sensors 18(3), 709 (2018).
[Crossref]

Pan, Y. F.

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

Patimisco, P.

S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

Peiris, M.

B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
[Crossref]

Peltola, J.

Penzhorn, R. D.

D. J. Taylor, M. Glugla, and R. D. Penzhorn, “Enhanced Raman sensitivity using an actively stabilized external resonator,” Rev. Sci. Instrum. 72(4), 1970–1976 (2001).
[Crossref]

Petrak, B.

B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
[Crossref]

B. Petrak, N. Djeu, and A. Muller, “Purcell enhancement of Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89(2), 023811 (2014).
[Crossref]

Petrov, D. V.

Peverall, R.

S. G. Baran, G. Hancock, R. Peverall, G. A. D. Ritchie, and N. J. Van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst 134(2), 243–249 (2009).
[Crossref]

Piazzolla, S.

P. Spano, S. Piazzolla, and M. Tamburrini, “Theory of noise in semiconductor lasers in the presence of optical feedback,” IEEE J. Quantum Electron. 20(4), 350–357 (1984).
[Crossref]

Pittaro, R. J.

pollnau, M.

Popp, J.

A. Sieburg, S. Schneider, D. Yan, J. Popp, and T. Frosch, “Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy,” Analyst 143(6), 1358–1366 (2018).
[Crossref]

A. Sieburg, T. Jochum, S. E. Trumbore, J. Popp, and T. Frosch, “Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth’s critical zone,” Analyst 142(18), 3360–3369 (2017).
[Crossref]

T. Jochum, B. Michalzik, A. Bachmann, J. Popp, and T. Frosch, “Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy,” Analyst 140(9), 3143–3149 (2015).
[Crossref]

R. Keiner, M. C. Gruselle, B. Michalzik, J. Popp, and T. Frosch, “Raman spectroscopic investigation of (CO2)-C-13 labeling and leaf dark respiration of Fagus sylvatica L. (European beech),” Anal. Bioanal. Chem. 407(7), 1813–1817 (2015).
[Crossref]

S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
[Crossref]

R. Keiner, T. Frosch, T. Massad, S. Trumbore, and J. Popp, “Enhanced Raman multigas sensing - a novel tool for control and analysis of (13)CO(2) labeling experiments in environmental research,” Analyst 139(16), 3879–3884 (2014).
[Crossref]

T. Frosch, R. Keiner, B. Michalzik, B. Fischer, and J. Popp, “Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy,” Anal. Chem. 85(3), 1295–1299 (2013).
[Crossref]

R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
[Crossref]

Porto, S. P. S.

Pound, R. V.

R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17(11), 490–505 (1946).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(11-1), 681 (1946).

Raman, C. V.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

Reid, D. T.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. Mcnaghten, “Mid-infrared absorption spectroscopy of methane across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A: Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

Ritchie, G. A. D.

S. G. Baran, G. Hancock, R. Peverall, G. A. D. Ritchie, and N. J. Van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst 134(2), 243–249 (2009).
[Crossref]

Romanini, D.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B: Lasers Opt. 80(8), 1027–1038 (2005).
[Crossref]

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B: Lasers Opt. 78(3-4), 465–476 (2004).
[Crossref]

Rusznyak, A.

R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
[Crossref]

Salter, R.

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137(20), 4669–4676 (2012).
[Crossref]

Sampaolo, A.

S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

Sandfort, V.

V. Sandfort, J. Goldschmidt, J. Wollenstein, and S. Palzer, “Cavity-enhanced Raman spectroscopy for food chain management,” Sensors 18(3), 709 (2018).
[Crossref]

Schnatz, H.

S. Ohshima and H. Schnatz, “Optimization of injection current and feedback phase of an optically self-locked laser diode,” J. Appl. Phys. 71(7), 3114–3117 (1992).
[Crossref]

Schneider, S.

A. Sieburg, S. Schneider, D. Yan, J. Popp, and T. Frosch, “Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy,” Analyst 143(6), 1358–1366 (2018).
[Crossref]

Sharpe, S. W.

S. W. Sharpe, R. Sheeks, C. Wittig, and R. A. Beaudet, “Infrared absorption spectroscopy of CO2-Ar complexes,” Chem. Phys. Lett. 151(3), 267–272 (1988).
[Crossref]

Sheeks, R.

S. W. Sharpe, R. Sheeks, C. Wittig, and R. A. Beaudet, “Infrared absorption spectroscopy of CO2-Ar complexes,” Chem. Phys. Lett. 151(3), 267–272 (1988).
[Crossref]

Sieburg, A.

A. Sieburg, S. Schneider, D. Yan, J. Popp, and T. Frosch, “Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy,” Analyst 143(6), 1358–1366 (2018).
[Crossref]

A. Sieburg, T. Jochum, S. E. Trumbore, J. Popp, and T. Frosch, “Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth’s critical zone,” Analyst 142(18), 3360–3369 (2017).
[Crossref]

Siltanen, M.

Sinisalo, S.

Spagnolo, V.

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref]

Spano, P.

P. Spano, S. Piazzolla, and M. Tamburrini, “Theory of noise in semiconductor lasers in the presence of optical feedback,” IEEE J. Quantum Electron. 20(4), 350–357 (1984).
[Crossref]

Tamburrini, M.

P. Spano, S. Piazzolla, and M. Tamburrini, “Theory of noise in semiconductor lasers in the presence of optical feedback,” IEEE J. Quantum Electron. 20(4), 350–357 (1984).
[Crossref]

Taylor, D. J.

D. J. Taylor, M. Glugla, and R. D. Penzhorn, “Enhanced Raman sensitivity using an actively stabilized external resonator,” Rev. Sci. Instrum. 72(4), 1970–1976 (2001).
[Crossref]

Thomazy, D.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

Tikhomirov, A. A.

Tillman, K. A.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. Mcnaghten, “Mid-infrared absorption spectroscopy of methane across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A: Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

Tittel, And F. K.

S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

Tittel, F. K.

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

V. Spagnolo, L. Dong, A. A. Kosterev, and F. K. Tittel, “Modulation cancellation method for isotope 18O/16O ratio measurements in water,” Opt. Express 20(4), 3401–3407 (2012).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

Trumbore, S.

S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
[Crossref]

R. Keiner, T. Frosch, T. Massad, S. Trumbore, and J. Popp, “Enhanced Raman multigas sensing - a novel tool for control and analysis of (13)CO(2) labeling experiments in environmental research,” Analyst 139(16), 3879–3884 (2014).
[Crossref]

Trumbore, S. E.

A. Sieburg, T. Jochum, S. E. Trumbore, J. Popp, and T. Frosch, “Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth’s critical zone,” Analyst 142(18), 3360–3369 (2017).
[Crossref]

Uotila, J.

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Vainio, M.

Van Leeuwen, N. J.

S. G. Baran, G. Hancock, R. Peverall, G. A. D. Ritchie, and N. J. Van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst 134(2), 243–249 (2009).
[Crossref]

Wittig, C.

S. W. Sharpe, R. Sheeks, C. Wittig, and R. A. Beaudet, “Infrared absorption spectroscopy of CO2-Ar complexes,” Chem. Phys. Lett. 151(3), 267–272 (1988).
[Crossref]

Wollenstein, J.

V. Sandfort, J. Goldschmidt, J. Wollenstein, and S. Palzer, “Cavity-enhanced Raman spectroscopy for food chain management,” Sensors 18(3), 709 (2018).
[Crossref]

Wu, H. P.

S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Wu, Y.

Xiao, L. T.

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Yalin, A. P.

Yan, D.

A. Sieburg, S. Schneider, D. Yan, J. Popp, and T. Frosch, “Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy,” Analyst 143(6), 1358–1366 (2018).
[Crossref]

Yang, X. X.

Yin, W. B.

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Yin, X. K.

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

Yu, Y. J.

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Zhang, L.

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Zheng, H. D.

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

AIP Conf. Proc. (1)

W. K. Bischel and G. Black, “Wavelength dependence of Raman scattering cross sections from 200-600 nm,” AIP Conf. Proc. 100(1), 181–187 (1983).
[Crossref]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Anal. Bioanal. Chem. (1)

R. Keiner, M. C. Gruselle, B. Michalzik, J. Popp, and T. Frosch, “Raman spectroscopic investigation of (CO2)-C-13 labeling and leaf dark respiration of Fagus sylvatica L. (European beech),” Anal. Bioanal. Chem. 407(7), 1813–1817 (2015).
[Crossref]

Anal. Chem. (3)

T. Frosch, R. Keiner, B. Michalzik, B. Fischer, and J. Popp, “Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy,” Anal. Chem. 85(3), 1295–1299 (2013).
[Crossref]

R. Keiner, T. Frosch, S. Hanf, A. Rusznyak, D. M. Hkob, K. Kusel, and J. Popp, “Raman spectroscopy—an innovative and versatile tool to follow the respirational activity and carbonate biomineralization of important cave bacteria,” Anal. Chem. 85(18), 8708–8714 (2013).
[Crossref]

S. Z. Li, L. Dong, H. P. Wu, A. Sampaolo, P. Patimisco, V. Spagnolo, and And F. K. Tittel, “Ppb-level quartz-enhanced photoacoustic detection of carbon monoxide exploiting a surface grooved tuning fork,” Anal. Chem. 91(9), 5834–5840 (2019).
[Crossref]

Analyst (7)

S. Hanf, S. Fischer, H. Hartmann, R. Keiner, S. Trumbore, J. Popp, and T. Frosch, “Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry,” Analyst 140(13), 4473–4481 (2015).
[Crossref]

R. Salter, J. Chu, and M. Hippler, “Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137(20), 4669–4676 (2012).
[Crossref]

R. Keiner, T. Frosch, T. Massad, S. Trumbore, and J. Popp, “Enhanced Raman multigas sensing - a novel tool for control and analysis of (13)CO(2) labeling experiments in environmental research,” Analyst 139(16), 3879–3884 (2014).
[Crossref]

A. Sieburg, T. Jochum, S. E. Trumbore, J. Popp, and T. Frosch, “Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth’s critical zone,” Analyst 142(18), 3360–3369 (2017).
[Crossref]

A. Sieburg, S. Schneider, D. Yan, J. Popp, and T. Frosch, “Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy,” Analyst 143(6), 1358–1366 (2018).
[Crossref]

T. Jochum, B. Michalzik, A. Bachmann, J. Popp, and T. Frosch, “Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy,” Analyst 140(9), 3143–3149 (2015).
[Crossref]

S. G. Baran, G. Hancock, R. Peverall, G. A. D. Ritchie, and N. J. Van Leeuwen, “Optical feedback cavity enhanced absorption spectroscopy with diode lasers,” Analyst 134(2), 243–249 (2009).
[Crossref]

Appl. Phys. B: Lasers Opt. (3)

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, “Two schemes for trace detection using cavity ringdown spectroscopy,” Appl. Phys. B: Lasers Opt. 78(3-4), 465–476 (2004).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100(3), 627–635 (2010).
[Crossref]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B: Lasers Opt. 80(8), 1027–1038 (2005).
[Crossref]

Appl. Phys. Lett. (1)

B. Petrak, J. Copper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering,” Appl. Phys. Lett. 108(9), 091107 (2016).
[Crossref]

Atmos. Meas. Tech. (1)

Y. F. Pan, L. Dong, H. P. Wu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and And F. K. Tittel, “Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser,” Atmos. Meas. Tech. 12(3), 1905–1911 (2019).
[Crossref]

Chem. Phys. Lett. (1)

S. W. Sharpe, R. Sheeks, C. Wittig, and R. A. Beaudet, “Infrared absorption spectroscopy of CO2-Ar complexes,” Chem. Phys. Lett. 151(3), 267–272 (1988).
[Crossref]

IEEE J. Quantum Electron. (5)

P. Spano, S. Piazzolla, and M. Tamburrini, “Theory of noise in semiconductor lasers in the presence of optical feedback,” IEEE J. Quantum Electron. 20(4), 350–357 (1984).
[Crossref]

G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
[Crossref]

H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

J. Appl. Phys. (2)

S. Ohshima and H. Schnatz, “Optimization of injection current and feedback phase of an optically self-locked laser diode,” J. Appl. Phys. 71(7), 3114–3117 (1992).
[Crossref]

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42(7), 2934–2943 (1971).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. Mcnaghten, “Mid-infrared absorption spectroscopy of methane across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate,” J. Opt. A: Pure Appl. Opt. 7(6), S408–S414 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Technol. (1)

J. Raman Spectrosc. (1)

J. Bendtsen, “High-resolution Fourier transform Raman spectra of the fundamental bands of 14N15N and 15N2,” J. Raman Spectrosc. 32(12), 989–995 (2001).
[Crossref]

Nat. Commun. (2)

T. Hummer, J. Noe, M. S. Hofmann, T. W. Hansch, A. Hogele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7(1), 12155 (2016).
[Crossref]

H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, S. T. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref]

Nature (2)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121(3048), 501–502 (1928).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(11-1), 681 (1946).

Phys. Rev. A (1)

B. Petrak, N. Djeu, and A. Muller, “Purcell enhancement of Raman scattering from atmospheric gases in a high-finesse microcavity,” Phys. Rev. A 89(2), 023811 (2014).
[Crossref]

Rev. Sci. Instrum. (2)

D. J. Taylor, M. Glugla, and R. D. Penzhorn, “Enhanced Raman sensitivity using an actively stabilized external resonator,” Rev. Sci. Instrum. 72(4), 1970–1976 (2001).
[Crossref]

R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17(11), 490–505 (1946).
[Crossref]

Sens. Actuators, B (1)

H. P. Wu, L. Dong, X. K. Yin, A. Sampaolo, P. Patimisco, W. G. Ma, L. Zhang, W. B. Yin, L. T. Xiao, V. Spagnolo, and A. S. T. Jia, “Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration,” Sens. Actuators, B 297, 126753 (2019).
[Crossref]

Sensors (1)

V. Sandfort, J. Goldschmidt, J. Wollenstein, and S. Palzer, “Cavity-enhanced Raman spectroscopy for food chain management,” Sensors 18(3), 709 (2018).
[Crossref]

Other (1)

Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic diagram of the V-shaped cavity-enhanced Raman spectroscopy setup. More details are presented in the main text.
Fig. 2.
Fig. 2. Cavity output signals and DL output signals in one laser frequency modulation period. (a) Cavity output signals. The shape of the signal is asymmetric when the feedback phase is incorrect. A PZT is controlled by an error signal to adjust the laser-cavity distance to achieve an optimal feedback phase, which is presented as a symmetrical cavity output signal. (b) DL output signals. When the cavity is absent, the waveform of the DL output signal is the same as the modulation signal. When the cavity is present, the gain of DL is affected by the optical feedback, and a large laser power increase is observed when the feedback phase is optimum. Signals with incorrect feedback phase are acquired by keeping PZT moving in one direction.
Fig. 3.
Fig. 3. The changes of cavity output laser power with standing time or air pumping. The cavity output power raises to 3.55 mW from 3.19 mW after the enhanced-cavity has been stood for 48 hours in the closed gas cell, and returns to 3.19 mW when the gas cell cover is removed. After air pumping, the cavity output power increases to 3.86 mW, and falls to 3.70 mW when the gas cell is filled with sample gases. Finally, it backs to 3.19 mW when pumping out the sample gases and opening the valve of gas cell.
Fig. 4.
Fig. 4. Photographs of intracavity laser beams, which are photographed through the large-size observation window mounted on the gas cell cover. (a) Without standing or air pumping. Many atmospheric particulate matters such as dust can be seen in the laser beams. The beams look brightest as a result of the strong Mie scattering or Tindall effect but have the weakest intensity. Iout is measured as 3.19 mW and Ic is calculated as 80 W. (b) After standing 48 hours. The beams look cleaner and have a higher intensity. Iout is measured as 3.55 mW and Ic is calculated as 88 W. (c) After air pumping. The laser beams are hardly visible due to almost all particulate matters in the air are pumped out but has the strongest intensity. Iout is measured as 3.86 mW and Ic is calculated as 97 W. (d) After air pumping and sample gases filling. The laser beams can be seen again because a small amount of particulate matters is contained in the sample gases. Iout is measured as 3.70 mW and Ic is calculated as 92 W.
Fig. 5.
Fig. 5. The cavity output laser power changed with (a) intracavity laser polarization and (b) arms’ angle. α is the angle between laser polarization direction and the normal of the incident plane of CM3. To avoid the intracavity laser power changing with standing time, the optical cavity is not placed in the gas cell in these experiments. Besides, the gas cell has not enough room for a big arms’ angle.
Fig. 6.
Fig. 6. The comparison of single-arm collection and double-arm collection. (a) Single-arm collection. CCD records both of s-polarized and p-polarized Raman-scattered light. (b) Double-arm collection. The p-polarized Raman-scattered light output from both arms is wasted by PBS, and only s-polarized Raman-scattered light can be recorded. Therefore, the double-arm collection is a useful improvement method for low-depolarized Raman-scattered light, but it is not very effective for highly-depolarized Raman-scattered light.
Fig. 7.
Fig. 7. The Raman spectrums of ambient laboratory air. For (a), (b), and (c), the slit width is set as 100 µm. In (d), the slit width is set as 50 µm. (a) An overview spectrum of laboratory air, including O2, N2, CO2, and water vapor from air humidity. (b) The vibration-rotation Raman transitions of N2. The O (5) transition and O (6) transition are overlapped, marked by an asterisk. (c) The vibration-rotation Raman transitions of O2. The O (3) transition of O2 and O (2) transition of N2 are overlapped by their respective Q-branch. (d) The vibration-rotation Raman transitions of N2 with 50 µm slit width.
Fig. 8.
Fig. 8. The Raman spectrum of CO2. The spectrum is mainly composed of CO2 (including 12CO2 and 13CO2) and remained O2.
Fig. 9.
Fig. 9. The peak height of CO2 (1388 cm−1) at a series of partial pressure.
Fig. 10.
Fig. 10. The Raman spectrums of C2H2. (a) An overview Raman spectrum of C2H2, including 12C2H2, 12C13CH2, and remained N2. (b) O- and S-branches of ν1 transition of 12C2H2, ν1 transition of 12C13CH2 also observed at 1941 cm−1. (c) O- and S-branches of ν2 transition of 12C2H2, Q-branch of ν2 transition of 12C13CH2 also observed at 3361 cm−1.
Fig. 11.
Fig. 11. The peak height of C2H2 (1972 cm−1) at a series of partial pressure.

Tables (1)

Tables Icon

Table 1. Comparison of double-arm collection and single-arm collection.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I c = 1 + R 1 R I o u t
I 1 = ( I s η s + I p η p ) E Q
I 2 = ( I s η s + I s η p ) E Q

Metrics