Abstract

By means of nanophotonics principle, the thermal radiation can be tailored, thus, traditional tungsten lamp light source can glow the vitality and the vigor due to the low-efficiency approaching to commercial fluorescent or light-emitting diode bulbs. However, too far by demanding exacting terms, such as high-temperature thermal radiation ($\sim$ 3000 K), high-vacuum encapsulation technology, restricted spectrally controllable source and so on, tungsten-based incandescent lamp filament has greatly limited the application in lighting, diagnosis and treatment, communication, imaging, etc. Herein, individual Ga-doped ZnO microwires (ZnO:Ga MWs) were successfully synthesized, which can be utilized to construct typical incandescent sources. By adjusting the Ga-incorporation, lighting colors are tuned in the visible spectral band. Especially, by incorporating Au quasiparticle nanofilms, the incandescent lighting features can further be modulated, such as the emission peaks, the modulation of lighting regions. Therefore, individual ZnO:Ga MWs based incandescent emitters can undertake a new function of the oldest, affordable and easily prepared light sources. While preliminary, individual ZnO:Ga MWs being treated as efficient incandescent light sources, can also open up intriguing scientific questions, and possible applications of linear, transparent, flexible displays and optical interconnects with electronic circuits.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
The ultraviolet laser from individual ZnO microwire with quadrate cross section

Meng Ding, Dongxu Zhao, Bin Yao, Shulin E, Zhen Guo, Ligong Zhang, and Dezhen Shen
Opt. Express 20(13) 13657-13662 (2012)

Electroluminescence from light-emitting devices based on erbium-doped ZnO/n-Si heterostructures: Enhancement effect of fluorine co-doping

Jinxin Chen, Weijun Zhu, Yuhan Gao, Deren Yang, and Xiangyang Ma
Opt. Express 27(21) 30919-30930 (2019)

Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode

C. Baratto, R. Kumar, E. Comini, G. Faglia, and G. Sberveglieri
Opt. Express 23(15) 18937-18942 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Matsumoto and M. Tomita, “Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design,” Opt. Express 18(S2), A192–A200 (2010).
    [Crossref]
  2. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref]
  3. W. Strek, R. Tomala, and M. Lukaszewicz, “Laser induced white lighting of tungsten filament,” Opt. Mater. 78, 335–338 (2018).
    [Crossref]
  4. R. G. Fechner, F. Pyatkov, S. Khasminskaya, B. S. Flavel, R. Krupke, and W. H. P. Pernice, “Directional couplers with integrated carbon nanotube incandescent light emitters,” Opt. Express 24(2), 966–974 (2016).
    [Crossref]
  5. O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
    [Crossref]
  6. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref]
  7. X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
    [Crossref]
  8. Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
    [Crossref]
  9. H. M. Dong, W. Xu, and F. M. Peeters, “Electrical generation of terahertz blackbody radiation from graphene,” Opt. Express 26(19), 24621–24626 (2018).
    [Crossref]
  10. S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
    [Crossref]
  11. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
    [Crossref]
  12. C. H. Liu, C. C. Wu, and Z. Zhong, “A fully tunable single-walled carbon nanotube diode,” Nano Lett. 11(4), 1782–1785 (2011).
    [Crossref]
  13. J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
    [Crossref]
  14. D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
    [Crossref]
  15. Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
    [Crossref]
  16. T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14(6), 3277–3283 (2014).
    [Crossref]
  17. Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
    [Crossref]
  18. P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
    [Crossref]
  19. Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
    [Crossref]
  20. D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
    [Crossref]
  21. F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
    [Crossref]
  22. S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
    [Crossref]
  23. G. Dai, B. Zou, and Z. Wang, “Preparation and periodic emission of superlattice cds/cds:sns2 microwires,” J. Am. Chem. Soc. 132(35), 12174–12175 (2010).
    [Crossref]
  24. G. Z. Dai, R. B. Liu, Q. Wan, Q. L. Zhang, A. L. Pan, and B. S. Zou, “Color-tunable periodic spatial emission of alloyed cds1-xsex/ sn: Cds1-xsex superlattice microwires,” Opt. Mater. Express 1(7), 1185–1191 (2011).
    [Crossref]
  25. Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
    [Crossref]
  26. M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
    [Crossref]
  27. P.-M. Coulon, M. Hugues, B. Alloing, E. Beraudo, M. Leroux, and J. Zuniga-Perez, “Gan microwires as optical microcavities: whispering gallery modes vs fabry-perot modes,” Opt. Express 20(17), 18707–18716 (2012).
    [Crossref]
  28. M. Ding, D. Zhao, B. Yao, S. E Z. Guo, L. Zhang, and D. Shen, “The ultraviolet laser from individual zno microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012).
    [Crossref]
  29. M. Jiang, W. Mao, X. Zhou, C. Kan, and D. Shi, “Wavelength-tunable waveguide emissions from electrically driven single zno/zno:ga superlattice microwires,” ACS Appl. Mater. Interfaces 11(12), 11800–11811 (2019).
    [Crossref]
  30. L. N. Quan, J. Kang, C.-Z. Ning, and P. Yang, “Nanowires for photonics,” Chem. Rev. 119(15), 9153–9169 (2019).
    [Crossref]
  31. C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “Cdte microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
    [Crossref]
  32. G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
    [Crossref]
  33. Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
    [Crossref]
  34. G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
    [Crossref]
  35. Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
    [Crossref]
  36. C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
    [Crossref]
  37. A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
    [Crossref]
  38. Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
    [Crossref]
  39. W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
    [Crossref]
  40. X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
    [Crossref]
  41. O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
    [Crossref]
  42. J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical breakdown of nanowires,” Nano Lett. 11(11), 4647–4651 (2011).
    [Crossref]
  43. J. Dai, C. X. Xu, and X. W. Sun, “Zno-microrod/p-gan heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
    [Crossref]
  44. T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, and P. R. Berger, “Near-uv electroluminescence in unipolar-doped, bipolar-tunneling gan/aln heterostructures,” Light: Sci. Appl. 7(2), 17150 (2018).
    [Crossref]
  45. S. B. Bashar, C. Wu, M. Suja, H. Tian, W. Shi, and J. Liu, “Electrically pumped whispering gallery mode lasing from au/zno microwire schottky junction,” Adv. Opt. Mater. 4(12), 2063–2067 (2016).
    [Crossref]
  46. Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
    [Crossref]
  47. A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
    [Crossref]
  48. S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
    [Crossref]
  49. G. Lozano, S. R. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient led lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
    [Crossref]
  50. W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
    [Crossref]
  51. N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
    [Crossref]

2019 (3)

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

M. Jiang, W. Mao, X. Zhou, C. Kan, and D. Shi, “Wavelength-tunable waveguide emissions from electrically driven single zno/zno:ga superlattice microwires,” ACS Appl. Mater. Interfaces 11(12), 11800–11811 (2019).
[Crossref]

L. N. Quan, J. Kang, C.-Z. Ning, and P. Yang, “Nanowires for photonics,” Chem. Rev. 119(15), 9153–9169 (2019).
[Crossref]

2018 (12)

C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “Cdte microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
[Crossref]

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
[Crossref]

W. Strek, R. Tomala, and M. Lukaszewicz, “Laser induced white lighting of tungsten filament,” Opt. Mater. 78, 335–338 (2018).
[Crossref]

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

H. M. Dong, W. Xu, and F. M. Peeters, “Electrical generation of terahertz blackbody radiation from graphene,” Opt. Express 26(19), 24621–24626 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref]

T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, and P. R. Berger, “Near-uv electroluminescence in unipolar-doped, bipolar-tunneling gan/aln heterostructures,” Light: Sci. Appl. 7(2), 17150 (2018).
[Crossref]

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

2017 (6)

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
[Crossref]

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

2016 (6)

R. G. Fechner, F. Pyatkov, S. Khasminskaya, B. S. Flavel, R. Krupke, and W. H. P. Pernice, “Directional couplers with integrated carbon nanotube incandescent light emitters,” Opt. Express 24(2), 966–974 (2016).
[Crossref]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref]

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

S. B. Bashar, C. Wu, M. Suja, H. Tian, W. Shi, and J. Liu, “Electrically pumped whispering gallery mode lasing from au/zno microwire schottky junction,” Adv. Opt. Mater. 4(12), 2063–2067 (2016).
[Crossref]

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

G. Lozano, S. R. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient led lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

2015 (2)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

2014 (4)

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14(6), 3277–3283 (2014).
[Crossref]

C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

2013 (2)

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref]

2012 (2)

2011 (5)

G. Z. Dai, R. B. Liu, Q. Wan, Q. L. Zhang, A. L. Pan, and B. S. Zou, “Color-tunable periodic spatial emission of alloyed cds1-xsex/ sn: Cds1-xsex superlattice microwires,” Opt. Mater. Express 1(7), 1185–1191 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

C. H. Liu, C. C. Wu, and Z. Zhong, “A fully tunable single-walled carbon nanotube diode,” Nano Lett. 11(4), 1782–1785 (2011).
[Crossref]

J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical breakdown of nanowires,” Nano Lett. 11(11), 4647–4651 (2011).
[Crossref]

J. Dai, C. X. Xu, and X. W. Sun, “Zno-microrod/p-gan heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref]

2010 (4)

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

T. Matsumoto and M. Tomita, “Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design,” Opt. Express 18(S2), A192–A200 (2010).
[Crossref]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

G. Dai, B. Zou, and Z. Wang, “Preparation and periodic emission of superlattice cds/cds:sns2 microwires,” J. Am. Chem. Soc. 132(35), 12174–12175 (2010).
[Crossref]

2009 (1)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

2008 (2)

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

2007 (1)

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

2005 (1)

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
[Crossref]

Ago, H.

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

Alhazmi, M.

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Alloing, B.

Amasaka, Y.

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

Arocas, J.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref]

Aslan, O. B.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Avouris, P.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
[Crossref]

Bae, M.-H.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Bashar, S. B.

S. B. Bashar, C. Wu, M. Suja, H. Tian, W. Shi, and J. Liu, “Electrically pumped whispering gallery mode lasing from au/zno microwire schottky junction,” Adv. Opt. Mater. 4(12), 2063–2067 (2016).
[Crossref]

Beraudo, E.

Berger, P. R.

T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, and P. R. Berger, “Near-uv electroluminescence in unipolar-doped, bipolar-tunneling gan/aln heterostructures,” Light: Sci. Appl. 7(2), 17150 (2018).
[Crossref]

Bermel, P.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref]

Berthelot, J.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref]

Bonaccorso, F.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Bouhelier, A.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref]

Brillson, L. J.

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

Brown, E. R.

T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, and P. R. Berger, “Near-uv electroluminescence in unipolar-doped, bipolar-tunneling gan/aln heterostructures,” Light: Sci. Appl. 7(2), 17150 (2018).
[Crossref]

Cammi, D.

A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Cao, C.

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Cao, J.

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Cartamil-Bueno, S. J.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref]

Celanovic, I.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref]

Chassagneux, Y.

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

Chen, A.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Chen, G.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref]

Chen, H.

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

Chen, J.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
[Crossref]

Chen, Z.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Cheong, H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Cho, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Choi, H.-J.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Chow, W. W.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

Chun, S.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Colas des Francs, G.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref]

Coulon, P.-M.

Dai, G.

G. Dai, B. Zou, and Z. Wang, “Preparation and periodic emission of superlattice cds/cds:sns2 microwires,” J. Am. Chem. Soc. 132(35), 12174–12175 (2010).
[Crossref]

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Dai, G. Z.

Dai, H.

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Dai, J.

C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

J. Dai, C. X. Xu, and X. W. Sun, “Zno-microrod/p-gan heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref]

Dai, S.

J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical breakdown of nanowires,” Nano Lett. 11(11), 4647–4651 (2011).
[Crossref]

Davidovikj, D.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref]

Dehm, S.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Deparis, C.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

Ding, M.

Disseix, P.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

Dong, G.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Dong, H. M.

Doorn, S.

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

Dorgan, V. E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Efetov, D. K.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Englund, D.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Essig, S.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Fan, X.

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

Fan, Y.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Fang, M.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Fang, X.

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

Farlow, G. C.

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

Fechner, R. G.

Feng, M.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Flavel, B. S.

Freitag, M.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
[Crossref]

Fu, L.

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Fu, Q.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
[Crossref]

Fukazawa, Y.

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

Ganzhorn, M.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Gao, Y.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

Gies, C.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

Green, A. A.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Growden, T. A.

T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, and P. R. Berger, “Near-uv electroluminescence in unipolar-doped, bipolar-tunneling gan/aln heterostructures,” Light: Sci. Appl. 7(2), 17150 (2018).
[Crossref]

Grundmann, M.

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

Gui, X.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Guo, C.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

Guo, J.

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Guo, X.

Han, N.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Han, Z.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Hartmann, N.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref]

Hartschuh, A.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref]

He, G.

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
[Crossref]

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

He, X.

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

Heinz, T. F.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Hennrich, F.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Hofling, S.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

Holwill, M.

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Honda, S.

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14(6), 3277–3283 (2014).
[Crossref]

Hone, J.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Hong, W. K.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Hou, J. J.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Htoon, H.

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

Hu, H.

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

Huang, H.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Hugues, M.

Hwang, D. K.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Iacopino, D.

A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Ilic, O.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref]

Ishida, K.

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

Jahnke, F.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

Jamadi, O.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

Jeantet, A.

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

Jiang, M.

M. Jiang, W. Mao, X. Zhou, C. Kan, and D. Shi, “Wavelength-tunable waveguide emissions from electrically driven single zno/zno:ga superlattice microwires,” ACS Appl. Mater. Interfaces 11(12), 11800–11811 (2019).
[Crossref]

Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
[Crossref]

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
[Crossref]

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

Jie, J. S.

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

Jo, G.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Joannopoulos, J. D.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref]

Johansen, K. M.

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Juska, G.

A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Kamp, M.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

Kan, C.

M. Jiang, W. Mao, X. Zhou, C. Kan, and D. Shi, “Wavelength-tunable waveguide emissions from electrically driven single zno/zno:ga superlattice microwires,” ACS Appl. Mater. Interfaces 11(12), 11800–11811 (2019).
[Crossref]

Kang, J.

L. N. Quan, J. Kang, C.-Z. Ning, and P. Yang, “Nanowires for photonics,” Chem. Rev. 119(15), 9153–9169 (2019).
[Crossref]

Kato, Y. K.

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Kawahara, K.

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

Khasminskaya, S.

Kim, H.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Kim, P.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Kim, S. H.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Kim, S. M.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Kim, Y. D.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Kim, Y. S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Kinkhabwala, A.

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Ko, H. J.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Kozikov, A.

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Kravets, V. G.

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Kreinberg, S.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

Krupke, R.

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

R. G. Fechner, F. Pyatkov, S. Khasminskaya, B. S. Flavel, R. Krupke, and W. H. P. Pernice, “Directional couplers with integrated carbon nanotube incandescent light emitters,” Opt. Express 24(2), 966–974 (2016).
[Crossref]

Kwon, S. S.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Lee, C. S.

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

Lee, S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Lee, S. T.

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

Lee, S. W.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Leedy, K. D.

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

Leroux, M.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

P.-M. Coulon, M. Hugues, B. Alloing, E. Beraudo, M. Leroux, and J. Zuniga-Perez, “Gan microwires as optical microcavities: whispering gallery modes vs fabry-perot modes,” Opt. Express 20(17), 18707–18716 (2012).
[Crossref]

Leymarie, J.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

Li, B.

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
[Crossref]

G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
[Crossref]

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

Li, D.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Li, J.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Li, L.

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

Li, S.

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

Li, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Li, Z.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Liang, Y.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Lin, H.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Liu, C. H.

C. H. Liu, C. C. Wu, and Z. Zhong, “A fully tunable single-walled carbon nanotube diode,” Nano Lett. 11(4), 1782–1785 (2011).
[Crossref]

Liu, J.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

S. B. Bashar, C. Wu, M. Suja, H. Tian, W. Shi, and J. Liu, “Electrically pumped whispering gallery mode lasing from au/zno microwire schottky junction,” Adv. Opt. Mater. 4(12), 2063–2067 (2016).
[Crossref]

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
[Crossref]

Liu, N.

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

Liu, R.

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Liu, R. B.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Liu, Y.

Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
[Crossref]

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

Look, D. C.

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

Lou, G.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Low, T.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Lozano, G.

G. Lozano, S. R. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient led lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

Lukaszewicz, M.

W. Strek, R. Tomala, and M. Lukaszewicz, “Laser induced white lighting of tungsten filament,” Opt. Mater. 78, 335–338 (2018).
[Crossref]

Luo, F.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Ma, W.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Maki, H.

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14(6), 3277–3283 (2014).
[Crossref]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

Mann, D.

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Mao, W.

M. Jiang, W. Mao, X. Zhou, C. Kan, and D. Shi, “Wavelength-tunable waveguide emissions from electrically driven single zno/zno:ga superlattice microwires,” ACS Appl. Mater. Interfaces 11(12), 11800–11811 (2019).
[Crossref]

Marquardt, C. W.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Martin, A.

A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Matsumoto, T.

Medard, F.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

Meyer, D. J.

T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, and P. R. Berger, “Near-uv electroluminescence in unipolar-doped, bipolar-tunneling gan/aln heterostructures,” Light: Sci. Appl. 7(2), 17150 (2018).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Mishchenko, A.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Miyoshi, Y.

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

Moreau, A.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

Mori, T.

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14(6), 3277–3283 (2014).
[Crossref]

Mullan, C.

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Nemilentsau, A.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Ning, C.-Z.

L. N. Quan, J. Kang, C.-Z. Ning, and P. Yang, “Nanowires for photonics,” Chem. Rev. 119(15), 9153–9169 (2019).
[Crossref]

Novoselov, K. S.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Ou, F.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Ozdemir, S.

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Pan, A.

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Pan, A. L.

Park, C.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Park, S. J.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Park, S.-N.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Park, Y. D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Peeters, F. M.

Pelucchi, E.

A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Peng, G.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Perebeinos, V.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
[Crossref]

Pernice, W.

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

Pernice, W. H. P.

Pescaglini, A.

A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Poot, M.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref]

Pop, E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Pyatkov, F.

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

R. G. Fechner, F. Pyatkov, S. Khasminskaya, B. S. Flavel, R. Krupke, and W. H. P. Pernice, “Directional couplers with integrated carbon nanotube incandescent light emitters,” Opt. Express 24(2), 966–974 (2016).
[Crossref]

Qin, S.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Quan, L. N.

L. N. Quan, J. Kang, C.-Z. Ning, and P. Yang, “Nanowires for photonics,” Chem. Rev. 119(15), 9153–9169 (2019).
[Crossref]

Rai, P.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref]

Reckmann, R.

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

Reitzenstein, S.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

Ren, W.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Ren, X.

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

Ren, Y.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Reveret, F.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

Rivas, J. G.

G. Lozano, S. R. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient led lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

Rodriguez, S. R.

G. Lozano, S. R. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient led lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

Ronning, C.

A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

Ruane, W. T.

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

Ryoo, J. H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Schneider, C.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

Sciascia, C.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Seo, D.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Shafiq, I.

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

Shan, C.

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
[Crossref]

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
[Crossref]

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

Shen, D.

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
[Crossref]

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
[Crossref]

M. Ding, D. Zhao, B. Yao, S. E Z. Guo, L. Zhang, and D. Shen, “The ultraviolet laser from individual zno microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012).
[Crossref]

Shepard, K. L.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Shi, D.

M. Jiang, W. Mao, X. Zhou, C. Kan, and D. Shi, “Wavelength-tunable waveguide emissions from electrically driven single zno/zno:ga superlattice microwires,” ACS Appl. Mater. Interfaces 11(12), 11800–11811 (2019).
[Crossref]

Shi, Q.

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

Shi, W.

S. B. Bashar, C. Wu, M. Suja, H. Tian, W. Shi, and J. Liu, “Electrically pumped whispering gallery mode lasing from au/zno microwire schottky junction,” Adv. Opt. Mater. 4(12), 2063–2067 (2016).
[Crossref]

Shi, X.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Shi, Y.

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

Shi, Z.

C. Xin, H. Wu, Y. Xie, S. Yu, N. Zhou, Z. Shi, X. Guo, and L. Tong, “Cdte microwires as mid-infrared optical waveguides,” Opt. Express 26(8), 10944–10952 (2018).
[Crossref]

C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Shiue, R.-J.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Siskins, M.

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Sohn, J. I.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Soljacic, M.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref]

Solnyshkov, D.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

Son, S. K.

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Song, S.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Steeneken, P. G.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref]

Storm, D. F.

T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, and P. R. Berger, “Near-uv electroluminescence in unipolar-doped, bipolar-tunneling gan/aln heterostructures,” Light: Sci. Appl. 7(2), 17150 (2018).
[Crossref]

Strek, W.

W. Strek, R. Tomala, and M. Lukaszewicz, “Laser induced white lighting of tungsten filament,” Opt. Mater. 78, 335–338 (2018).
[Crossref]

Su, J.

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

Suja, M.

S. B. Bashar, C. Wu, M. Suja, H. Tian, W. Shi, and J. Liu, “Electrically pumped whispering gallery mode lasing from au/zno microwire schottky junction,” Adv. Opt. Mater. 4(12), 2063–2067 (2016).
[Crossref]

Sun, H.

J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical breakdown of nanowires,” Nano Lett. 11(11), 4647–4651 (2011).
[Crossref]

Sun, Q.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Sun, X.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Sun, X. W.

J. Dai, C. X. Xu, and X. W. Sun, “Zno-microrod/p-gan heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref]

Sun, Y.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Tan, C.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Tang, J. X.

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

Tang, Z.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Taniguchi, T.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Tian, H.

S. B. Bashar, C. Wu, M. Suja, H. Tian, W. Shi, and J. Liu, “Electrically pumped whispering gallery mode lasing from au/zno microwire schottky junction,” Adv. Opt. Mater. 4(12), 2063–2067 (2016).
[Crossref]

Tomala, R.

W. Strek, R. Tomala, and M. Lukaszewicz, “Laser induced white lighting of tungsten filament,” Opt. Mater. 78, 335–338 (2018).
[Crossref]

Tomita, M.

Tong, L.

Tsang, J.

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

van der Zant, H. S. J.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref]

Verschuuren, M. A.

G. Lozano, S. R. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient led lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

Vijayaraghavan, A.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Voisin, C.

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

von Wenckstern, H.

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

Wan, Q.

G. Z. Dai, R. B. Liu, Q. Wan, Q. L. Zhang, A. L. Pan, and B. S. Zou, “Color-tunable periodic spatial emission of alloyed cds1-xsex/ sn: Cds1-xsex superlattice microwires,” Opt. Mater. Express 1(7), 1185–1191 (2011).
[Crossref]

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Wang, C.

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

Wang, F.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Wang, L.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

Wang, Q.

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Wang, S.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Wang, W.

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

Wang, X.

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Wang, Y.

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical breakdown of nanowires,” Nano Lett. 11(11), 4647–4651 (2011).
[Crossref]

Wang, Z.

G. Dai, B. Zou, and Z. Wang, “Preparation and periodic emission of superlattice cds/cds:sns2 microwires,” J. Am. Chem. Soc. 132(35), 12174–12175 (2010).
[Crossref]

Watanabe, K.

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Welland, M. E.

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

Wolters, J.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

Wu, C.

S. B. Bashar, C. Wu, M. Suja, H. Tian, W. Shi, and J. Liu, “Electrically pumped whispering gallery mode lasing from au/zno microwire schottky junction,” Adv. Opt. Mater. 4(12), 2063–2067 (2016).
[Crossref]

Wu, C. C.

C. H. Liu, C. C. Wu, and Z. Zhong, “A fully tunable single-walled carbon nanotube diode,” Nano Lett. 11(4), 1782–1785 (2011).
[Crossref]

Wu, H.

Wu, Y.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Xie, Y.

Xin, C.

Xiu, F.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Xu, C.

C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Xu, C. X.

J. Dai, C. X. Xu, and X. W. Sun, “Zno-microrod/p-gan heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref]

Xu, S.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Xu, W.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

H. M. Dong, W. Xu, and F. M. Peeters, “Electrical generation of terahertz blackbody radiation from graphene,” Opt. Express 26(19), 24621–24626 (2018).
[Crossref]

Yamauchi, Y.

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14(6), 3277–3283 (2014).
[Crossref]

Yang, B.

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

Yang, P.

L. N. Quan, J. Kang, C.-Z. Ning, and P. Yang, “Nanowires for photonics,” Chem. Rev. 119(15), 9153–9169 (2019).
[Crossref]

Yang, Y.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Yang, Z.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Yao, B.

Ye, Y.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Ye, Z. Z.

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

Yi, L.

C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Yin, J.

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Yip, S. P.

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Yokoi, T.

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

Yoo, Y. S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Yoon, D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Yu, S.

Yuan, G. D.

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

Yuan, K.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Z. Guo, S. E

Zhang, A.

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

Zhang, D.

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

Zhang, J.

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Zhang, L.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

M. Ding, D. Zhao, B. Yao, S. E Z. Guo, L. Zhang, and D. Shen, “The ultraviolet laser from individual zno microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012).
[Crossref]

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

Zhang, Q.

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Zhang, Q. L.

Zhang, W.

T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, and P. R. Berger, “Near-uv electroluminescence in unipolar-doped, bipolar-tunneling gan/aln heterostructures,” Light: Sci. Appl. 7(2), 17150 (2018).
[Crossref]

Zhang, W. J.

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

Zhang, X.

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

Zhang, X.-A.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Zhang, Y.

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Zhang, Z.

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
[Crossref]

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
[Crossref]

Zhao, D.

Zhao, H.

Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
[Crossref]

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
[Crossref]

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

Zhao, J.

J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical breakdown of nanowires,” Nano Lett. 11(11), 4647–4651 (2011).
[Crossref]

Zheng, L.

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

Zhong, Z.

C. H. Liu, C. C. Wu, and Z. Zhong, “A fully tunable single-walled carbon nanotube diode,” Nano Lett. 11(4), 1782–1785 (2011).
[Crossref]

Zhou, C.

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Zhou, J.

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

Zhou, K.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Zhou, N.

Zhou, X.

M. Jiang, W. Mao, X. Zhou, C. Kan, and D. Shi, “Wavelength-tunable waveguide emissions from electrically driven single zno/zno:ga superlattice microwires,” ACS Appl. Mater. Interfaces 11(12), 11800–11811 (2019).
[Crossref]

Zhou, Y.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Zhu, G.

C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Zhu, H.

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

Zhu, J.

J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical breakdown of nanowires,” Nano Lett. 11(11), 4647–4651 (2011).
[Crossref]

Zhu, M.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Zhu, Z. H.

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Zou, B.

G. Dai, B. Zou, and Z. Wang, “Preparation and periodic emission of superlattice cds/cds:sns2 microwires,” J. Am. Chem. Soc. 132(35), 12174–12175 (2010).
[Crossref]

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Zou, B. S.

Zunigaperez, J.

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

Zuniga-Perez, J.

2D Mater. (1)

S. K. Son, M. Siskins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, and K. Watanabe, “Graphene hot-electron light bulb: incandescence from hbn-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

M. Jiang, W. Mao, X. Zhou, C. Kan, and D. Shi, “Wavelength-tunable waveguide emissions from electrically driven single zno/zno:ga superlattice microwires,” ACS Appl. Mater. Interfaces 11(12), 11800–11811 (2019).
[Crossref]

Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Wavelength-tunable ultraviolet electroluminescence from ga-doped zno microwires,” ACS Appl. Mater. Interfaces 9(46), 40743–40751 (2017).
[Crossref]

ACS Photonics (2)

A. Chen, H. Zhu, Y. Wu, G. Lou, Y. Liang, J. Li, Z. Chen, Y. Ren, X. Gui, S. Wang, and Z. Tang, “Electrically driven single microwire-based heterojuction light-emitting devices,” ACS Photonics 4(5), 1286–1291 (2017).
[Crossref]

F. Luo, Y. Fan, G. Peng, S. Xu, Y. Yang, K. Yuan, J. Liu, W. Ma, W. Xu, Z. H. Zhu, X.-A. Zhang, A. Mishchenko, Y. Ye, H. Huang, Z. Han, W. Ren, K. S. Novoselov, M. Zhu, and S. Qin, “Graphene thermal emitter with enhanced joule heating and localized light emission in air,” ACS Photonics 6(8), 2117–2125 (2019).
[Crossref]

Adv. Mater. (3)

G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, “Tunable n-type conductivity and transport properties of ga-doped zno nanowire arrays,” Adv. Mater. 20(1), 168–173 (2008).
[Crossref]

J. Dai, C. X. Xu, and X. W. Sun, “Zno-microrod/p-gan heterostructured whispering-gallery-mode microlaser diodes,” Adv. Mater. 23(35), 4115–4119 (2011).
[Crossref]

N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, and G. Dong, “Tunable electronic transport properties of metal-cluster-decorated iii-v nanowire transistors,” Adv. Mater. 25(32), 4445–4451 (2013).
[Crossref]

Adv. Opt. Mater. (1)

S. B. Bashar, C. Wu, M. Suja, H. Tian, W. Shi, and J. Liu, “Electrically pumped whispering gallery mode lasing from au/zno microwire schottky junction,” Adv. Opt. Mater. 4(12), 2063–2067 (2016).
[Crossref]

Chem. Rev. (1)

L. N. Quan, J. Kang, C.-Z. Ning, and P. Yang, “Nanowires for photonics,” Chem. Rev. 119(15), 9153–9169 (2019).
[Crossref]

J. Am. Chem. Soc. (1)

G. Dai, B. Zou, and Z. Wang, “Preparation and periodic emission of superlattice cds/cds:sns2 microwires,” J. Am. Chem. Soc. 132(35), 12174–12175 (2010).
[Crossref]

J. Mater. Chem. C (1)

G. He, M. Jiang, B. Li, Z. Zhang, H. Zhao, C. Shan, and D. Shen, “Sb-doped zno microwires: emitting filament and homojunction light-emitting diodes,” J. Mater. Chem. C 5(42), 10938–10946 (2017).
[Crossref]

Laser Photonics Rev. (2)

X. Zhang, L. Li, J. Su, Y. Wang, Y. Shi, X. Ren, N. Liu, A. Zhang, J. Zhou, and Y. Gao, “Bandgap engineering of gaxzn1-xo nanowire arrays for wavelength-tunable light-emitting diodes,” Laser Photonics Rev. 8(3), 429–435 (2014).
[Crossref]

C. Xu, J. Dai, G. Zhu, G. Zhu, L. Yi, J. Li, and Z. Shi, “Whispering gallery mode lasing in zno microcavities,” Laser Photonics Rev. 8(4), 469–494 (2014).
[Crossref]

Light: Sci. Appl. (6)

O. Jamadi, F. Reveret, P. Disseix, F. Medard, J. Leymarie, A. Moreau, D. Solnyshkov, C. Deparis, M. Leroux, and J. Zunigaperez, “Edge-emitting polariton laser and amplifier based on a zno waveguide,” Light: Sci. Appl. 7(1), 82 (2018).
[Crossref]

T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, and P. R. Berger, “Near-uv electroluminescence in unipolar-doped, bipolar-tunneling gan/aln heterostructures,” Light: Sci. Appl. 7(2), 17150 (2018).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Hofling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6(8), e17030 (2017).
[Crossref]

G. Lozano, S. R. Rodriguez, M. A. Verschuuren, and J. G. Rivas, “Metallic nanostructures for efficient led lighting,” Light: Sci. Appl. 5(6), e16080 (2016).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, and X. Sun, “Room-temperature continuous-wave electrically pumped ingan/gan quantum well blue laser diode directly grown on si,” Light: Sci. Appl. 7(1), 13 (2018).
[Crossref]

Mater. Des. (1)

Q. Shi, B. Yang, Q. Wang, H. Hu, D. Zhang, S. Li, C. Wang, W. Wang, and J. Zhang, “Enhanced fluorescence from mg0.1zn0.9o due to localized surface plasmon resonance of ag nanoparticles,” Mater. Des. 110, 138–144 (2016).
[Crossref]

Nano Lett. (8)

A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, and D. Iacopino, “Hot-electron injection in au nanorod-zno nanowire hybrid device for near-infrared photodetection,” Nano Lett. 14(11), 6202–6209 (2014).
[Crossref]

W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, and M. E. Welland, “Tunable electronic transport characteristics of surface-architecture-controlled zno nanowire field effect transistors,” Nano Lett. 8(3), 950–956 (2008).
[Crossref]

J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical breakdown of nanowires,” Nano Lett. 11(11), 4647–4651 (2011).
[Crossref]

T. Mori, Y. Yamauchi, S. Honda, and H. Maki, “An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes,” Nano Lett. 14(6), 3277–3283 (2014).
[Crossref]

C. H. Liu, C. C. Wu, and Z. Zhong, “A fully tunable single-walled carbon nanotube diode,” Nano Lett. 11(4), 1782–1785 (2011).
[Crossref]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, and F. Bonaccorso, “Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene,” Nano Lett. 10(5), 1589–1594 (2010).
[Crossref]

Y. D. Kim, Y. Gao, R.-J. Shiue, L. Wang, O. B. Aslan, M.-H. Bae, H. Kim, D. Seo, H.-J. Choi, S. H. Kim, A. Nemilentsau, T. Low, C. Tan, D. K. Efetov, T. Taniguchi, K. Watanabe, K. L. Shepard, T. F. Heinz, D. Englund, and J. Hone, “Ultrafast graphene light emitters,” Nano Lett. 18(2), 934–940 (2018).
[Crossref]

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref]

Nano Res. (1)

Y. Li, G. Dai, C. Zhou, Q. Zhang, Q. Wan, L. Fu, J. Zhang, R. Liu, C. Cao, A. Pan, Y. Zhang, and B. Zou, “Formation and optical properties of zno:znfe2o4 superlattice microwires,” Nano Res. 3(5), 326–338 (2010).
[Crossref]

Nanoscale (3)

W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, H. von Wenckstern, M. Grundmann, G. C. Farlow, and L. J. Brillson, “Defect segregation and optical emission in zno nano- and microwires,” Nanoscale 8(14), 7631–7637 (2016).
[Crossref]

Z. Li, M. Jiang, Y. Sun, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically pumped fabry–perot microlasers from single ga-doped zno microbelt based heterostructure diodes,” Nanoscale 10(39), 18774–18785 (2018).
[Crossref]

Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, and D. Shen, “Electrically excited hot-electron dominated fluorescent emitters using individual ga-doped zno microwires via metal quasiparticle film decoration,” Nanoscale 10(12), 5678–5688 (2018).
[Crossref]

Nat. Commun. (1)

Y. Miyoshi, Y. Fukazawa, Y. Amasaka, R. Reckmann, T. Yokoi, K. Ishida, K. Kawahara, H. Ago, and H. Maki, “High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer,” Nat. Commun. 9(1), 1279 (2018).
[Crossref]

Nat. Mater. (1)

X. He, H. Htoon, S. Doorn, W. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, “Carbon nanotubes as emerging quantum-light sources,” Nat. Mater. 17(8), 663–670 (2018).
[Crossref]

Nat. Nanotechnol. (3)

D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission from individual single-walled carbon nanotubes,” Nat. Nanotechnol. 2(1), 33–38 (2007).
[Crossref]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljacic, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Opt. Express (6)

Opt. Mater. (1)

W. Strek, R. Tomala, and M. Lukaszewicz, “Laser induced white lighting of tungsten filament,” Opt. Mater. 78, 335–338 (2018).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Lett. (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: Significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref]

Science (1)

J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes,” Science 310(5751), 1171–1174 (2005).
[Crossref]

Small (1)

M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, and X. Fang, “Wavelength-tunable electroluminescent light sources from individual ga-doped zno microwires,” Small 13(19), 1604034 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The synthesis of individual ZnO:Ga MWs: (a) Schematic diagram of the synthesized procedure for the ZnO:Ga MWs via a CVD method. (b) Optical photograph of the as-synthesized ZnO:Ga MWs, the product located around Si-substrate, as well as the alundum boat wall. (c) SEM image of ZnO:Ga MWs array. (d) SEM image of single ZnO:Ga MW. (e) SEM image of single ZnO:Ga MW possessing quadrilateral cross section.
Fig. 2.
Fig. 2. (a) EDX elemental mappings of Zn, O and Ga species, respectively. (b) HRTEM image of the as-synthesized ZnO:Ga MW. (c) Amplified SEM image of the as-synthesized ZnO:Ga MW. (d) XRD patterns of as-prepared ZnO:Ga MWs. The peaks correspond to wurtzite ZnO structure with lattice constants $a$ = 3.25 $\dot {A}$ and $c$ = 5.21 $\dot {A}$, consistent with JCPD Card No. 36-1451. (e) Temperature-dependent PL emission spectra of the as-prepared ZnO:Ga MW. (f) Temperature-dependent $I$-$V$ characteristic curves of single ZnO:Ga MW.
Fig. 3.
Fig. 3. Typical incandescent light source based on single ZnO:Ga MW: (a) Schematic illustration of electrically biased single ZnO:Ga MW based incandescent-type light source, with the light emission located at the center of the wire. (b) $I$-$V$ characteristics curves of individual ZnO:Ga MWs with controlled Ga-incorporation. (c) Normalized EL emission spectra of individual ZnO:Ga MWs based incandescent-type light sources. (d) Optical micrographic images of bright visible light emission from individual ZnO:Ga MWs based incandescent-type light sources.
Fig. 4.
Fig. 4. Light-emitting features from electrically biased single ZnO:Ga MW, with a segment of the MW covered by Au quasiparticle nanofilm decoration (the sputtering time: 60 s): (a) $I$-$V$ characteristics curves of single ZnO:Ga MW, with a segment of the MW covered by Au quasiparticle nanofilm decoration. (b) EL emission spectra from single ZnO:Ga MW based incandescent-type source. (c) EL emission spectra from incandescent-type light source composed of single ZnO:Ga MW, with one segment covered by Au quasiparticle nanofilm decoration. (d) Optical micrographic images of bright and green light emission from single ZnO:Ga MW based incandescent-type light source. (e) Optical micrographic images of bright visible light emission from electrically biased single ZnO:Ga MW, with a segment of the wire covered by Au quasiparticle nanofilm decoration.
Fig. 5.
Fig. 5. Light-emitting features from electrically biased single ZnO:Ga MW, with Au quasiparticle nanofilm deposited on the MW periodically (the sputtering time: 60 s): (a) $I$-$V$ characteristics curves of single ZnO:Ga MW, and then covered by Au quasiparticle nanofilms periodically. (b) EL emission spectra from single ZnO:Ga MW based incandescent-type light source. (c) EL emission spectra from incandescent-type light source composed of single ZnO:Ga MW covered by Au quasiparticle nanofilm periodically. (d) Optical micrographic images of bright and green light emission from single ZnO:Ga MW based incandescent-type light source. (e) Optical micrographic images of green and red light emission periodically distributed along the wire from electrically biased single ZnO:Ga MW covered by Au quasiparticle nanofilm periodically.

Metrics