Abstract

We report the characteristics of the strained In0.65Ga0.35As triple quantum well (QW) diode lasers grown by metalorganic vapor phase epitaxy (MOVPE) on lattice-mismatched substrates such as GaAs or Si, by utilizing InP metamorphic buffer layers (MBLs) in conjunction with InAs nanostructure-based dislocation filters. As the lattice-mismatch between the substrate and InP MBL increases, higher threshold current densities and lower slope efficiencies were observed, together with higher temperature sensitivities for the threshold current and slope efficiency. Structural analysis performed by both high-resolution X-ray diffraction (HR-XRD) and transmission electron microscopy indicates graded and/or rougher QW interfaces within the active region grown on the mismatched substrate, which accounts for the observed devices characteristics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates

Siming Chen, Mengya Liao, Mingchu Tang, Jiang Wu, Mickael Martin, Thierry Baron, Alwyn Seeds, and Huiyun Liu
Opt. Express 25(5) 4632-4639 (2017)

Continuous-wave electrically pumped 1550  nm lasers epitaxially grown on on-axis (001) silicon

Bei Shi, Hongwei Zhao, Lei Wang, Bowen Song, Simone Tommaso Suran Brunelli, and Jonathan Klamkin
Optica 6(12) 1507-1514 (2019)

C/L-band emission of InAs QDs monolithically grown on Ge substrate

Wen-Qi Wei, Jian-Huan Wang, Yue Gong, Jin-An Shi, Lin Gu, Hong-Xing Xu, Ting Wang, and Jian-Jun Zhang
Opt. Mater. Express 7(8) 2955-2961 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
    [Crossref]
  2. W. T. Tsang, “Chemical beam epitaxy of InP and GaAs,” Appl. Phys. Lett. 45(11), 1234–1236 (1984).
    [Crossref]
  3. Z. Griffith, Y. Kim, M. Dahlström, A. C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax > 268 GHz,” IEEE Electron Device Lett. 25(10), 675–677 (2004).
    [Crossref]
  4. B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
    [Crossref]
  5. D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
    [Crossref]
  6. R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
    [Crossref]
  7. M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, and O. Acher, “First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
    [Crossref]
  8. M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60(4), 472–473 (1992).
    [Crossref]
  9. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
    [Crossref]
  10. M. Tachikawa and H. Mori, “Dislocation generation of GaAs on Si in the cooling stage,” Appl. Phys. Lett. 56(22), 2225–2227 (1990).
    [Crossref]
  11. M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601–3606 (1985).
    [Crossref]
  12. I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
    [Crossref]
  13. M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
    [Crossref]
  14. H. Y. Liu, Y. Qiu, C. Y. Jin, T. Walther, and A. G. Cullis, “1.55 µm InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer,” Appl. Phys. Lett. 92(11), 111906 (2008).
    [Crossref]
  15. Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
    [Crossref]
  16. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
    [Crossref]
  17. M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing,” Appl. Phys. Lett. 53(23), 2293–2295 (1988).
    [Crossref]
  18. B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
    [Crossref]
  19. B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
    [Crossref]
  20. W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
    [Crossref]
  21. I. George, F. Becagli, H. Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
    [Crossref]
  22. A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
    [Crossref]
  23. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48(5), 353–355 (1986).
    [Crossref]
  24. V. M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, and B. Jenichen, “X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures,” Phys. Rev. B 55(3), 1793–1810 (1997).
    [Crossref]
  25. S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
    [Crossref]
  26. N. Tansu, J. Yeh, and L. J. Mawst, “Experimental evidence of carrier leakage in InGaAsN quantum-well lasers,” Appl. Phys. Lett. 83(11), 2112–2114 (2003).
    [Crossref]
  27. N. Ohnoki, G. Okazaki, F. Koyama, and K. Iga, “Record high characteristic temperature (T0 = 122 K) of 1.55 µm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier,” Electron. Lett. 35(1), 51–52 (1999).
    [Crossref]
  28. J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
    [Crossref]
  29. E. P. O’Reilly and M. Silver, “Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers,” Appl. Phys. Lett. 63(24), 3318–3320 (1993).
    [Crossref]
  30. T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
    [Crossref]
  31. A. Bhattacharya, L. J. Mawst, S. Nayak, J. Li, and T. F. Kuech, “Interface structures of InGaAs/InGaAsP/InGaP quantum well laser diodes grown by metalorganic chemical vapor deposition on GaAs substrates,” Appl. Phys. Lett. 68(16), 2240–2242 (1996).
    [Crossref]
  32. G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. 72(8), 3788–3791 (1992).
    [Crossref]
  33. T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
    [Crossref]
  34. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits (John Wiley & Sons, 2012)
  35. P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
    [Crossref]

2019 (1)

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

2018 (5)

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

2017 (2)

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

2015 (2)

I. George, F. Becagli, H. Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

2014 (1)

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
[Crossref]

2011 (1)

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

2008 (1)

H. Y. Liu, Y. Qiu, C. Y. Jin, T. Walther, and A. G. Cullis, “1.55 µm InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer,” Appl. Phys. Lett. 92(11), 111906 (2008).
[Crossref]

2007 (3)

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

2004 (1)

Z. Griffith, Y. Kim, M. Dahlström, A. C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax > 268 GHz,” IEEE Electron Device Lett. 25(10), 675–677 (2004).
[Crossref]

2003 (3)

Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
[Crossref]

N. Tansu, J. Yeh, and L. J. Mawst, “Experimental evidence of carrier leakage in InGaAsN quantum-well lasers,” Appl. Phys. Lett. 83(11), 2112–2114 (2003).
[Crossref]

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

2002 (1)

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

1999 (1)

N. Ohnoki, G. Okazaki, F. Koyama, and K. Iga, “Record high characteristic temperature (T0 = 122 K) of 1.55 µm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier,” Electron. Lett. 35(1), 51–52 (1999).
[Crossref]

1998 (1)

M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
[Crossref]

1997 (1)

V. M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, and B. Jenichen, “X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures,” Phys. Rev. B 55(3), 1793–1810 (1997).
[Crossref]

1996 (1)

A. Bhattacharya, L. J. Mawst, S. Nayak, J. Li, and T. F. Kuech, “Interface structures of InGaAs/InGaAsP/InGaP quantum well laser diodes grown by metalorganic chemical vapor deposition on GaAs substrates,” Appl. Phys. Lett. 68(16), 2240–2242 (1996).
[Crossref]

1993 (1)

E. P. O’Reilly and M. Silver, “Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers,” Appl. Phys. Lett. 63(24), 3318–3320 (1993).
[Crossref]

1992 (2)

G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. 72(8), 3788–3791 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60(4), 472–473 (1992).
[Crossref]

1990 (1)

M. Tachikawa and H. Mori, “Dislocation generation of GaAs on Si in the cooling stage,” Appl. Phys. Lett. 56(22), 2225–2227 (1990).
[Crossref]

1988 (2)

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing,” Appl. Phys. Lett. 53(23), 2293–2295 (1988).
[Crossref]

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, and O. Acher, “First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

1986 (1)

H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48(5), 353–355 (1986).
[Crossref]

1985 (1)

M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601–3606 (1985).
[Crossref]

1984 (1)

W. T. Tsang, “Chemical beam epitaxy of InP and GaAs,” Appl. Phys. Lett. 45(11), 1234–1236 (1984).
[Crossref]

Acher, O.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, and O. Acher, “First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Akasaki, I.

H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48(5), 353–355 (1986).
[Crossref]

Albrecht, A.

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

Allford, C. P.

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

Amano, C.

M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601–3606 (1985).
[Crossref]

Amano, H.

H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48(5), 353–355 (1986).
[Crossref]

Asonen, H.

G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. 72(8), 3788–3791 (1992).
[Crossref]

Balakrishnan, G.

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

Bar, H.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Beanland, R.

I. George, F. Becagli, H. Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Becagli, F.

I. George, F. Becagli, H. Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Bhattacharya, A.

A. Bhattacharya, L. J. Mawst, S. Nayak, J. Li, and T. F. Kuech, “Interface structures of InGaAs/InGaAsP/InGaP quantum well laser diodes grown by metalorganic chemical vapor deposition on GaAs substrates,” Appl. Phys. Lett. 68(16), 2240–2242 (1996).
[Crossref]

Blondeau, R.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, and O. Acher, “First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Blood, P.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Bolognesi, C. R.

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

Bonte, B.

M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
[Crossref]

Botez, D.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
[Crossref]

Bowers, J. E.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Brubaker, C.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Chapman, D. C.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Cheng, M.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits (John Wiley & Sons, 2012)

Cordier, Y.

M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
[Crossref]

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits (John Wiley & Sons, 2012)

Crosnier, Y.

M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
[Crossref]

Cullis, A. G.

H. Y. Liu, Y. Qiu, C. Y. Jin, T. Walther, and A. G. Cullis, “1.55 µm InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer,” Appl. Phys. Lett. 92(11), 111906 (2008).
[Crossref]

Dahlström, M.

Z. Griffith, Y. Kim, M. Dahlström, A. C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax > 268 GHz,” IEEE Electron Device Lett. 25(10), 675–677 (2004).
[Crossref]

Dawson, L. R.

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
[Crossref]

Defour, M.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, and O. Acher, “First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Druelle, Y.

M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
[Crossref]

Eisenbach, A.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Fang, X. M.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Fastenau, J. M.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Fetters, M.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Figueiredo, P.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Furlong, M. J.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Galstad, C.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
[Crossref]

Gaquiere, C.

M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
[Crossref]

Garrod, T.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
[Crossref]

George, I.

I. George, F. Becagli, H. Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Go, R.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Gossard, A. C.

Z. Griffith, Y. Kim, M. Dahlström, A. C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax > 268 GHz,” IEEE Electron Device Lett. 25(10), 675–677 (2004).
[Crossref]

Griffith, Z.

Z. Griffith, Y. Kim, M. Dahlström, A. C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax > 268 GHz,” IEEE Electron Device Lett. 25(10), 675–677 (2004).
[Crossref]

Herman, J. L.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

Hill, R. J. W.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

Hu, E. L.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

Huang, S. S.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

Huffaker, D. L.

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
[Crossref]

Iga, K.

N. Ohnoki, G. Okazaki, F. Koyama, and K. Iga, “Record high characteristic temperature (T0 = 122 K) of 1.55 µm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier,” Electron. Lett. 35(1), 51–52 (1999).
[Crossref]

Itoh, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60(4), 472–473 (1992).
[Crossref]

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing,” Appl. Phys. Lett. 53(23), 2293–2295 (1988).
[Crossref]

Jallipalli, A.

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

Jenichen, B.

V. M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, and B. Jenichen, “X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures,” Phys. Rev. B 55(3), 1793–1810 (1997).
[Crossref]

Jin, C. Y.

H. Y. Liu, Y. Qiu, C. Y. Jin, T. Walther, and A. G. Cullis, “1.55 µm InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer,” Appl. Phys. Lett. 92(11), 111906 (2008).
[Crossref]

Juodawlkis, P. W.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Kaganer, V. M.

V. M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, and B. Jenichen, “X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures,” Phys. Rev. B 55(3), 1793–1810 (1997).
[Crossref]

Karim, Z.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

Kim, H.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

Kim, Y.

Z. Griffith, Y. Kim, M. Dahlström, A. C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax > 268 GHz,” IEEE Electron Device Lett. 25(10), 675–677 (2004).
[Crossref]

Kirch, J. D.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

Klaus, M.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
[Crossref]

Köhler, R.

V. M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, and B. Jenichen, “X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures,” Phys. Rev. B 55(3), 1793–1810 (1997).
[Crossref]

Koyama, F.

N. Ohnoki, G. Okazaki, F. Koyama, and K. Iga, “Record high characteristic temperature (T0 = 122 K) of 1.55 µm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier,” Electron. Lett. 35(1), 51–52 (1999).
[Crossref]

Krysiak, H.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Kuech, T. F.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

A. Bhattacharya, L. J. Mawst, S. Nayak, J. Li, and T. F. Kuech, “Interface structures of InGaAs/InGaAsP/InGaP quantum well laser diodes grown by metalorganic chemical vapor deposition on GaAs substrates,” Appl. Phys. Lett. 68(16), 2240–2242 (1996).
[Crossref]

Kutty, M. N.

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

Lai, Z. H.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

Larsson, A.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

Lau, K. M.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

Leshin, J.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Lester, L. F.

Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
[Crossref]

Lewis, G. M.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Li, J.

A. Bhattacharya, L. J. Mawst, S. Nayak, J. Li, and T. F. Kuech, “Interface structures of InGaAs/InGaAsP/InGaP quantum well laser diodes grown by metalorganic chemical vapor deposition on GaAs substrates,” Appl. Phys. Lett. 68(16), 2240–2242 (1996).
[Crossref]

Li, Q.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

Li, Y.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Li, Z.

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

Liang, D.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Lin, Y.

Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
[Crossref]

Liu, A. W. K.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Liu, H.

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

Liu, H. G.

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

Liu, H. Y.

I. George, F. Becagli, H. Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

H. Y. Liu, Y. Qiu, C. Y. Jin, T. Walther, and A. G. Cullis, “1.55 µm InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer,” Appl. Phys. Lett. 92(11), 111906 (2008).
[Crossref]

Lubyshev, D.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Lutti, J.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Lyakh, A.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Mann, C.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Mashanovitch, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits (John Wiley & Sons, 2012)

Maurel, P.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, and O. Acher, “First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Mawst, L.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
[Crossref]

Mawst, L. J.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

N. Tansu, J. Yeh, and L. J. Mawst, “Experimental evidence of carrier leakage in InGaAsN quantum-well lasers,” Appl. Phys. Lett. 83(11), 2112–2114 (2003).
[Crossref]

A. Bhattacharya, L. J. Mawst, S. Nayak, J. Li, and T. F. Kuech, “Interface structures of InGaAs/InGaAsP/InGaP quantum well laser diodes grown by metalorganic chemical vapor deposition on GaAs substrates,” Appl. Phys. Lett. 68(16), 2240–2242 (1996).
[Crossref]

Mehta, M.

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

Mori, H.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60(4), 472–473 (1992).
[Crossref]

M. Tachikawa and H. Mori, “Dislocation generation of GaAs on Si in the cooling stage,” Appl. Phys. Lett. 56(22), 2225–2227 (1990).
[Crossref]

Napoleone, T.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Näppi, J.

G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. 72(8), 3788–3791 (1992).
[Crossref]

Nayak, S.

A. Bhattacharya, L. J. Mawst, S. Nayak, J. Li, and T. F. Kuech, “Interface structures of InGaAs/InGaAsP/InGaP quantum well laser diodes grown by metalorganic chemical vapor deposition on GaAs substrates,” Appl. Phys. Lett. 68(16), 2240–2242 (1996).
[Crossref]

Ni, H. Q.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

Niu, Z. C.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

O’Brien, B.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

O’Reilly, E. P.

E. P. O’Reilly and M. Silver, “Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers,” Appl. Phys. Lett. 63(24), 3318–3320 (1993).
[Crossref]

Oakley, D. C.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Ohnoki, N.

N. Ohnoki, G. Okazaki, F. Koyama, and K. Iga, “Record high characteristic temperature (T0 = 122 K) of 1.55 µm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier,” Electron. Lett. 35(1), 51–52 (1999).
[Crossref]

Okazaki, G.

N. Ohnoki, G. Okazaki, F. Koyama, and K. Iga, “Record high characteristic temperature (T0 = 122 K) of 1.55 µm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier,” Electron. Lett. 35(1), 51–52 (1999).
[Crossref]

Olson, D.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
[Crossref]

Omnes, F.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, and O. Acher, “First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Opitz, R.

V. M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, and B. Jenichen, “X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures,” Phys. Rev. B 55(3), 1793–1810 (1997).
[Crossref]

Oresick, K.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

Orzali, T.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

Ovtchinnikov, A.

G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. 72(8), 3788–3791 (1992).
[Crossref]

Papa Rao, S. S.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

Pessa, M.

G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. 72(8), 3788–3791 (1992).
[Crossref]

Piprek, J.

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

Qiu, Y.

H. Y. Liu, Y. Qiu, C. Y. Jin, T. Walther, and A. G. Cullis, “1.55 µm InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer,” Appl. Phys. Lett. 92(11), 111906 (2008).
[Crossref]

Raday, O.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Rajeev, A.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

Razeghi, M.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, and O. Acher, “First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Rodwell, M. J. W.

Z. Griffith, Y. Kim, M. Dahlström, A. C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax > 268 GHz,” IEEE Electron Device Lett. 25(10), 675–677 (2004).
[Crossref]

Sakai, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60(4), 472–473 (1992).
[Crossref]

Sawaki, N.

H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48(5), 353–355 (1986).
[Crossref]

Schmidbauer, M.

V. M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, and B. Jenichen, “X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures,” Phys. Rev. B 55(3), 1793–1810 (1997).
[Crossref]

Shi, B.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

Shutts, S.

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

Sigler, C.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

Silver, M.

E. P. O’Reilly and M. Silver, “Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers,” Appl. Phys. Lett. 63(24), 3318–3320 (1993).
[Crossref]

Smowton, P. M.

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Sobiesierski, A.

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

Spinnler, C.

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

SpringThorpe, A. J.

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

Stintz, A.

Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
[Crossref]

Sugo, M.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60(4), 472–473 (1992).
[Crossref]

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing,” Appl. Phys. Lett. 53(23), 2293–2295 (1988).
[Crossref]

Summers, H.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Suttinger, M.

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

Tachikawa, M.

M. Tachikawa and H. Mori, “Dislocation generation of GaAs on Si in the cooling stage,” Appl. Phys. Lett. 56(22), 2225–2227 (1990).
[Crossref]

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing,” Appl. Phys. Lett. 53(23), 2293–2295 (1988).
[Crossref]

Tan, A.

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

Tang, C. W.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

Tang, M.

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

I. George, F. Becagli, H. Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Tångring, I.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

Tansu, N.

N. Tansu, J. Yeh, and L. J. Mawst, “Experimental evidence of carrier leakage in InGaAsN quantum-well lasers,” Appl. Phys. Lett. 83(11), 2112–2114 (2003).
[Crossref]

Tao, N. G.

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

Tatebayashi, J.

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

Theron, D.

M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
[Crossref]

Thomson, J.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

Toyoda, Y.

H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48(5), 353–355 (1986).
[Crossref]

Tsang, W. T.

W. T. Tsang, “Chemical beam epitaxy of InP and GaAs,” Appl. Phys. Lett. 45(11), 1234–1236 (1984).
[Crossref]

Vaughn, L. G.

Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
[Crossref]

Vert, A.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

Vivekanand, S.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

Walther, T.

H. Y. Liu, Y. Qiu, C. Y. Jin, T. Walther, and A. G. Cullis, “1.55 µm InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer,” Appl. Phys. Lett. 92(11), 111906 (2008).
[Crossref]

Wan, Y.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

Wang, S. M.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

White, J. K.

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

Wu, B. P.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

Wu, D. H.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

Wu, J.

I. George, F. Becagli, H. Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Xin, Y. C.

Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
[Crossref]

Xiong, Y. H.

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

Yamaguchi, M.

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing,” Appl. Phys. Lett. 53(23), 2293–2295 (1988).
[Crossref]

M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601–3606 (1985).
[Crossref]

Yamamoto, A.

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing,” Appl. Phys. Lett. 53(23), 2293–2295 (1988).
[Crossref]

Yeh, J.

N. Tansu, J. Yeh, and L. J. Mawst, “Experimental evidence of carrier leakage in InGaAsN quantum-well lasers,” Appl. Phys. Lett. 83(11), 2112–2114 (2003).
[Crossref]

Zaknoune, M.

M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
[Crossref]

Zeng, Y.

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

Zenner, C.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
[Crossref]

Zhang, G.

G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. 72(8), 3788–3791 (1992).
[Crossref]

Zhou, W.

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

Zhu, J.

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

Zhu, S.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26(11), 14514–14523 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

Appl. Phys. A (1)

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103(1), 213–218 (2011).
[Crossref]

Appl. Phys. Lett. (15)

R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, J. Leshin, X. M. Fang, J. M. Fastenau, D. Lubyshev, A. W. K. Liu, A. Eisenbach, M. J. Furlong, and A. Lyakh, “Room temperature operation of quantum cascade lasers monolithically integrated onto a lattice-mismatched substrate,” Appl. Phys. Lett. 112(3), 031103 (2018).
[Crossref]

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, and O. Acher, “First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60(4), 472–473 (1992).
[Crossref]

W. T. Tsang, “Chemical beam epitaxy of InP and GaAs,” Appl. Phys. Lett. 45(11), 1234–1236 (1984).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

M. Tachikawa and H. Mori, “Dislocation generation of GaAs on Si in the cooling stage,” Appl. Phys. Lett. 56(22), 2225–2227 (1990).
[Crossref]

I. Tångring, H. Q. Ni, B. P. Wu, D. H. Wu, Y. H. Xiong, S. S. Huang, Z. C. Niu, S. M. Wang, Z. H. Lai, and A. Larsson, “1.58 µm InGaAs quantum well laser on GaAs,” Appl. Phys. Lett. 91(22), 221101 (2007).
[Crossref]

H. Y. Liu, Y. Qiu, C. Y. Jin, T. Walther, and A. G. Cullis, “1.55 µm InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer,” Appl. Phys. Lett. 92(11), 111906 (2008).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, “Defect reduction effects in GaAs on Si substrates by thermal annealing,” Appl. Phys. Lett. 53(23), 2293–2295 (1988).
[Crossref]

H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48(5), 353–355 (1986).
[Crossref]

N. Tansu, J. Yeh, and L. J. Mawst, “Experimental evidence of carrier leakage in InGaAsN quantum-well lasers,” Appl. Phys. Lett. 83(11), 2112–2114 (2003).
[Crossref]

E. P. O’Reilly and M. Silver, “Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers,” Appl. Phys. Lett. 63(24), 3318–3320 (1993).
[Crossref]

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% continuous-wave wallplug efficiency from 1.53 µm-emitting broad-area diode lasers,” Appl. Phys. Lett. 105(7), 071101 (2014).
[Crossref]

A. Bhattacharya, L. J. Mawst, S. Nayak, J. Li, and T. F. Kuech, “Interface structures of InGaAs/InGaAsP/InGaP quantum well laser diodes grown by metalorganic chemical vapor deposition on GaAs substrates,” Appl. Phys. Lett. 68(16), 2240–2242 (1996).
[Crossref]

Electron. Lett. (1)

N. Ohnoki, G. Okazaki, F. Koyama, and K. Iga, “Record high characteristic temperature (T0 = 122 K) of 1.55 µm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier,” Electron. Lett. 35(1), 51–52 (1999).
[Crossref]

IEEE Electron Device Lett. (3)

W. Zhou, C. W. Tang, J. Zhu, K. M. Lau, Y. Zeng, H. G. Liu, N. G. Tao, and C. R. Bolognesi, “Metamorphic Heterostructure InP/GaAsSb/InP HBTs on GaAs Substrates by MOCVD,” IEEE Electron Device Lett. 28(7), 539–542 (2007).
[Crossref]

M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett. 19(9), 345–347 (1998).
[Crossref]

Z. Griffith, Y. Kim, M. Dahlström, A. C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax > 268 GHz,” IEEE Electron Device Lett. 25(10), 675–677 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Shutts, C. P. Allford, C. Spinnler, Z. Li, A. Sobiesierski, M. Tang, H. Liu, and P. M. Smowton, “Degradation of III–V Quantum Dot Lasers Grown Directly on Silicon Substrates,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–6 (2019).
[Crossref]

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Mehta, A. Jallipalli, J. Tatebayashi, M. N. Kutty, A. Albrecht, G. Balakrishnan, L. R. Dawson, and D. L. Huffaker, “Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 µm,” IEEE Photonics Technol. Lett. 19(20), 1628–1630 (2007).
[Crossref]

J. Appl. Phys. (5)

M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 58(9), 3601–3606 (1985).
[Crossref]

Y. C. Xin, L. G. Vaughn, L. R. Dawson, A. Stintz, Y. Lin, L. F. Lester, and D. L. Huffaker, “InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers,” J. Appl. Phys. 94(3), 2133–2135 (2003).
[Crossref]

G. Zhang, J. Näppi, A. Ovtchinnikov, H. Asonen, and M. Pessa, “Effects of rapid thermal annealing on lasing properties of InGaAs/GaAs/GaInP quantum well lasers,” J. Appl. Phys. 72(8), 3788–3791 (1992).
[Crossref]

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118(10), 105307 (2015).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123(19), 193104 (2018).
[Crossref]

J. Cryst. Growth (1)

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

V. M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz, and B. Jenichen, “X-ray diffraction peaks due to misfit dislocations in heteroepitaxial structures,” Phys. Rev. B 55(3), 1793–1810 (1997).
[Crossref]

Phys. Status Solidi A (1)

A. Rajeev, B. Shi, Q. Li, J. D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K. M. Lau, T. F. Kuech, and L. J. Mawst, “III–V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈ 4.8 µm Quantum Cascade Lasers,” Phys. Status Solidi A 216(1), 1800493 (2018).
[Crossref]

Semicond. Sci. Technol. (1)

I. George, F. Becagli, H. Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Other (1)

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits (John Wiley & Sons, 2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Structure details of the complete laser structure grown on InP MBL on (001) GaAs substrate where InP MBL employs 2 period of triple layered InAs QW dislocation filters (DF).
Fig. 2.
Fig. 2. Structure details of the complete laser structure grown on InP MBL on on-axis (001) Si substrate.
Fig. 3.
Fig. 3. Schematic view of cross section and top-view SEM of fabricated device structure
Fig. 4.
Fig. 4. (a) in situ reflectance during the growth of InP buffer layer on GaAs substrate and (b) Atomic force microscopic image taken before laser structure grown on InP MBL on GaAs substrate (RMS roughness: 1.04nm)
Fig. 5.
Fig. 5. (a) STEM bright field image within a limited field of view where dislocations appear as dark lines (b) the number of threading dislocation (# of TD) per width (w = 3.18µm) counted from the STEM image shown in Fig. 5(a)
Fig. 6.
Fig. 6. (a) High resolution X-ray diffraction (HRXRD) ω/2θ scans around (004) reflection from the laser structure grown on InP substrate and InP MBLs on either Si or GaAs substrate and (b) magnified view around (004) InP peak.
Fig. 7.
Fig. 7. The output power – injection current relation of the laser devices grown on InP substrate and InP MBLs on either GaAs or Si substrates tested at 20°.
Fig. 8.
Fig. 8. (a) The change in the threshold current as a function of heat-sink temperature from 10 to 50°C (b) The change in the slope efficiency as a function of heat-sink temperature from 10 to 35°C and from 35 to 50°C, respectively.
Fig. 9.
Fig. 9. Lasing spectrum above lasing threshold of the laser devices grown on either InP substrate or InP MBLs on GaAs or Si substrates tested at 20°C.
Fig. 10.
Fig. 10. (a) STEM dark field image of an In0.65Ga0.35As QW within the active region grown on Si substrate, (b) STEM dark field image of an In0.65Ga0.35As QW within the active region grown on InP substrate, and (c) corresponding STEM intensity profile showing a more graded/rougher interface of the In0.65Ga0.35As QW on Si substrate.
Fig. 11.
Fig. 11. STEM image showing a V-pit, which is apparently nucleated by a threading dislocation.

Tables (3)

Tables Icon

Table 1. The growth parameters used for the InP MBL on GaAs substrate

Tables Icon

Table 2. The growth parameters used for the complete laser structure

Tables Icon

Table 3. Summary of prior reports on the QW laser diodes grown on mismatched substrate emitting near telecom C-band

Metrics