Abstract

An atomic magnetometer operated with elliptically polarized light is investigated theoretically and experimentally. To explore the potential of this magnetometric configuration, the analytical form of the outgoing signal is derived. Parameters that significantly influence the performance are optimized, which lead to a sensitivity of 300 ${\rm{fT}}/\sqrt {\rm{Hz}}$ at 45 $^{\circ }$C with a 2$\times$2$\times 2$ cm uncoated Rb vapor cell. It is remarkable that a sensitivity of 690 ${\rm{fT}}/\sqrt {\rm{Hz}}$ is achieved at room temperature of 24 $^{\circ }$C, which is improved by an order of magnitude compared with the conventional $M_x$ magnetometer under its own optimized condition. The elliptically polarized approach offers attractive features for developing compact, low-power magnetometers, which are available without heating the uncoated vapor cell.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light-shift suppression in a miniaturized Mx optically pumped Cs magnetometer array with enhanced resonance signal using off-resonant laser pumping

Theo Scholtes, Volkmar Schultze, Rob IJsselsteijn, Stefan Woetzel, and Hans-Georg Meyer
Opt. Express 20(28) 29217-29222 (2012)

Vector magnetocardiography measurement with a compact elliptically polarized laser-pumped magnetometer

Wenqiang Zheng, Shengran Su, Guoyi Zhang, Xin Bi, and Qiang Lin
Biomed. Opt. Express 11(2) 649-659 (2020)

Temperature characteristics of K-Rb hybrid optically pumped magnetometers with different density ratios

Sho Ito, Yosuke Ito, and Tetsuo Kobayashi
Opt. Express 27(6) 8037-8047 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
    [Crossref]
  2. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
    [Crossref]
  3. D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
    [Crossref]
  4. G. Lembke, S. N. Erné, H. Nowak, B. Menhorn, A. Pasquarelli, and G. Bison, “Optical multichannel room temperature magnetic field imaging system for clinical application,” Biomed. Opt. Express 5(3), 876 (2014).
    [Crossref]
  5. A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
    [Crossref]
  6. G. Zhang, S. Huang, F. Xu, Z. Hu, and Q. Lin, “Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography,” Opt. Express 27(2), 597–607 (2019).
    [Crossref]
  7. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
    [Crossref]
  8. E. B. Alexandrov and V. A. Bonch-Bruevich, “Optically pumped atomic magnetometers after three decades,” Opt. Eng. 31(4), 711 (1992).
    [Crossref]
  9. S. Xu, C. W. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78(1), 013404 (2008).
    [Crossref]
  10. C. D. Zhang, “Recent advances in the research and development of quantum magnetometers,” Geophys. Geochem. 29, 283 (2005).
  11. A. L. Bloom, “Principles of operation of the rubidium vapor magnetometer,” Appl. Opt. 1(1), 61 (1962).
    [Crossref]
  12. G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77 (2005).
    [Crossref]
  13. P. X. Miao, W. Q. Zheng, S. Y. Yang, B. Wu, B. Cheng, J. H. Tu, H. L. Ke, W. Yang, J. Wang, J. Z. Cui, and Q. Lin, “Wide-range and self-locking atomic magnetometer based on free spin precession,” J. Opt. Soc. Am. B 36(4), 819 (2019).
    [Crossref]
  14. V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
    [Crossref]
  15. K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
    [Crossref]
  16. W. Happer and B. S. Mathur, “Effective operator formalism in optical pumping,” Phys. Rev. 163(1), 12–25 (1967).
    [Crossref]
  17. S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. thesis, Princeton University (2008).
  18. Z. Ding, J. Yuan, Z. Wang, G. F. Lu, and H. Luo, “Optically pumped rubidium atomic magnetometer with elliptically polarized light,” Optik 127(13), 5270–5273 (2016).
    [Crossref]
  19. S. Groeger, G. Bison, J. L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
    [Crossref]

2019 (2)

2018 (1)

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

2017 (1)

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

2016 (1)

Z. Ding, J. Yuan, Z. Wang, G. F. Lu, and H. Luo, “Optically pumped rubidium atomic magnetometer with elliptically polarized light,” Optik 127(13), 5270–5273 (2016).
[Crossref]

2014 (2)

G. Lembke, S. N. Erné, H. Nowak, B. Menhorn, A. Pasquarelli, and G. Bison, “Optical multichannel room temperature magnetic field imaging system for clinical application,” Biomed. Opt. Express 5(3), 876 (2014).
[Crossref]

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

2013 (1)

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

2010 (1)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

2009 (1)

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
[Crossref]

2008 (1)

S. Xu, C. W. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78(1), 013404 (2008).
[Crossref]

2007 (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

2006 (1)

S. Groeger, G. Bison, J. L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[Crossref]

2005 (2)

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77 (2005).
[Crossref]

C. D. Zhang, “Recent advances in the research and development of quantum magnetometers,” Geophys. Geochem. 29, 283 (2005).

1992 (1)

E. B. Alexandrov and V. A. Bonch-Bruevich, “Optically pumped atomic magnetometers after three decades,” Opt. Eng. 31(4), 711 (1992).
[Crossref]

1967 (1)

W. Happer and B. S. Mathur, “Effective operator formalism in optical pumping,” Phys. Rev. 163(1), 12–25 (1967).
[Crossref]

1962 (1)

Alexandrov, E. B.

E. B. Alexandrov and V. A. Bonch-Bruevich, “Optically pumped atomic magnetometers after three decades,” Opt. Eng. 31(4), 711 (1992).
[Crossref]

Barnes, G. R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Begus, S.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Berry, C.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Bestmann, S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Bison, G.

Bloom, A. L.

Bonch-Bruevich, V. A.

E. B. Alexandrov and V. A. Bonch-Bruevich, “Optically pumped atomic magnetometers after three decades,” Opt. Eng. 31(4), 711 (1992).
[Crossref]

Borna, A.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Boto, E.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Bowtell, R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Brookes, M. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Budker, D.

S. Xu, C. W. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78(1), 013404 (2008).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Carter, T. R.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Cheng, B.

Colombo, A. P.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Crawford, C. W.

S. Xu, C. W. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78(1), 013404 (2008).
[Crossref]

Cui, J. Z.

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Ding, Z.

Z. Ding, J. Yuan, Z. Wang, G. F. Lu, and H. Luo, “Optically pumped rubidium atomic magnetometer with elliptically polarized light,” Optik 127(13), 5270–5273 (2016).
[Crossref]

Dural, N.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

Erné, S. N.

Goldberg, J. D.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Groeger, S.

S. Groeger, G. Bison, J. L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[Crossref]

Happer, W.

W. Happer and B. S. Mathur, “Effective operator formalism in optical pumping,” Phys. Rev. 163(1), 12–25 (1967).
[Crossref]

Holmes, N.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Hu, Z.

Huang, S.

Jau, Y.-Y.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Jazbinsek, V.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Ke, H. L.

Kim, K.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Lee, S.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Leggett, J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Lembke, G.

Li, S.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

Lin, Q.

Lu, G. F.

Z. Ding, J. Yuan, Z. Wang, G. F. Lu, and H. Luo, “Optically pumped rubidium atomic magnetometer with elliptically polarized light,” Optik 127(13), 5270–5273 (2016).
[Crossref]

Luo, H.

Z. Ding, J. Yuan, Z. Wang, G. F. Lu, and H. Luo, “Optically pumped rubidium atomic magnetometer with elliptically polarized light,” Optik 127(13), 5270–5273 (2016).
[Crossref]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Mathur, B. S.

W. Happer and B. S. Mathur, “Effective operator formalism in optical pumping,” Phys. Rev. 163(1), 12–25 (1967).
[Crossref]

McKay, J.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Menhorn, B.

Meyer, S. S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Miao, P. X.

Mullinger, K. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Muñoz, L. D.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Nowak, H.

Pasquarelli, A.

Pines, A.

S. Xu, C. W. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78(1), 013404 (2008).
[Crossref]

Roberts, G.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Rochester, S.

S. Xu, C. W. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78(1), 013404 (2008).
[Crossref]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Romalis, M. V.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
[Crossref]

Schenker, J. L.

S. Groeger, G. Bison, J. L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[Crossref]

Schwindt, P. D. D.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Seltzer, S. J.

S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. thesis, Princeton University (2008).

Shah, V.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
[Crossref]

Sheng, D.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

Stephen, J.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Tierney, T. M.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Trontelj, Z.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Tu, J. H.

Wang, J.

Wang, Z.

Z. Ding, J. Yuan, Z. Wang, G. F. Lu, and H. Luo, “Optically pumped rubidium atomic magnetometer with elliptically polarized light,” Optik 127(13), 5270–5273 (2016).
[Crossref]

Weis, A.

S. Groeger, G. Bison, J. L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[Crossref]

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77 (2005).
[Crossref]

Weisend, M.

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Wu, B.

Wynands, R.

S. Groeger, G. Bison, J. L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[Crossref]

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77 (2005).
[Crossref]

Xia, H.

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Xu, F.

Xu, S.

S. Xu, C. W. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78(1), 013404 (2008).
[Crossref]

Yang, S. Y.

Yang, W.

Yashchuk, V.

S. Xu, C. W. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78(1), 013404 (2008).
[Crossref]

Yuan, J.

Z. Ding, J. Yuan, Z. Wang, G. F. Lu, and H. Luo, “Optically pumped rubidium atomic magnetometer with elliptically polarized light,” Optik 127(13), 5270–5273 (2016).
[Crossref]

Zhang, C. D.

C. D. Zhang, “Recent advances in the research and development of quantum magnetometers,” Geophys. Geochem. 29, 283 (2005).

Zhang, G.

Zheng, W. Q.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Biomed. Opt. Express (1)

Eur. Phys. J. D (1)

S. Groeger, G. Bison, J. L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[Crossref]

Geophys. Geochem. (1)

C. D. Zhang, “Recent advances in the research and development of quantum magnetometers,” Geophys. Geochem. 29, 283 (2005).

J. Opt. Soc. Am. B (2)

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Nature (1)

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

NeuroImage (1)

K. Kim, S. Begus, H. Xia, S. Lee, V. Jazbinsek, Z. Trontelj, and M. V. Romalis, “Multi-channel atomic magnetometer for magnetoencephalography: A configuration study,” NeuroImage 89, 143–151 (2014).
[Crossref]

Opt. Eng. (1)

E. B. Alexandrov and V. A. Bonch-Bruevich, “Optically pumped atomic magnetometers after three decades,” Opt. Eng. 31(4), 711 (1992).
[Crossref]

Opt. Express (1)

Optik (1)

Z. Ding, J. Yuan, Z. Wang, G. F. Lu, and H. Luo, “Optically pumped rubidium atomic magnetometer with elliptically polarized light,” Optik 127(13), 5270–5273 (2016).
[Crossref]

Phys. Med. Biol. (1)

A. Borna, T. R. Carter, J. D. Goldberg, A. P. Colombo, Y.-Y. Jau, C. Berry, J. McKay, J. Stephen, M. Weisend, and P. D. D. Schwindt, “A 20-channel magnetoencephalography system based on optically pumped magnetometers,” Phys. Med. Biol. 62(23), 8909–8923 (2017).
[Crossref]

Phys. Rev. (1)

W. Happer and B. S. Mathur, “Effective operator formalism in optical pumping,” Phys. Rev. 163(1), 12–25 (1967).
[Crossref]

Phys. Rev. A (2)

S. Xu, C. W. Crawford, S. Rochester, V. Yashchuk, D. Budker, and A. Pines, “Submillimeter-resolution magnetic resonance imaging at the earth’s magnetic field with an atomic magnetometer,” Phys. Rev. A 78(1), 013404 (2008).
[Crossref]

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80(1), 013416 (2009).
[Crossref]

Phys. Rev. Lett. (1)

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110(16), 160802 (2013).
[Crossref]

Other (1)

S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. thesis, Princeton University (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup. BE: beam expander, LP: linear polarizer, $\lambda$ /4: quarter-wave plate, $\lambda$ /2: half-wave plate, PBS: polarized beam splitter, PD: photodiode.
Fig. 2.
Fig. 2. Measured magnetic-resonance line shapes of the quadrature (top), in-phase (middle) and their relative phase (bottom) signals by scanning $B_{\textrm {rf}}$ frequency. The blue dots represent the experimental data, while the red solid lines are their fitted Lorentzian line shapes. The fitted half-widths are 32 Hz, 31 Hz and 26.7 Hz for X, Y and $\theta$ outputs, respectively.
Fig. 3.
Fig. 3. Atomic frequency response for optical absorption near the $^{87}$ Rb D $_1$ transition, taking into account the hyperfine splitting of the ground and excited states (Eq. (13)). Frequency is expressed as detuning from the transition $F=2$ $\to$ $F'=1$ . Corresponding to our experimental condition, we set $\Gamma _G$ =0.53 GHz (Doppler broading at 333 $K$ ) and $\Gamma _L$ =4.36 GHz (pressure broadening caused by 200 torr nitrogen gas).
Fig. 4.
Fig. 4. Optical rotation of an elliptically polarized light. The major axis of the polarization ellipse rotates an angle $\varphi$ when the light experiences optical rotation.
Fig. 5.
Fig. 5. The signal amplitude as a function of the $\lambda /4$ waveplate angle $\phi$ . Red hollow dots represent experimentally measured results. The blue solid line is the theoretical prediction taking ellipticity variations into account. The dashed line shows the function of $\left | {\sin \left ( {4\phi } \right )} \right |$ .
Fig. 6.
Fig. 6. The signal amplitude as a function of frequency detuning from D $_1$ $F=2$ $\to$ $F'=1$ transition. Red dots represent experimental data. The blue line is theoretical prediction as Eq. (21). The experiment is taken at temperature of 60 $^{\circ }$ C and light intensity of 30 $\rm {\mu }$ W.
Fig. 7.
Fig. 7. Sensitivity characterizations of CPMx and EPMx AMs as a function of incident light power at temperatures of 24 $^{\circ }$ C and 45 $^{\circ }$ C. Red dots and blue pentacles represent the measured results at 24 $^{\circ }$ C and 45 $^{\circ }$ C, respectively. (a) The half resonance width. The solid lines are linear fitting results. Note that two curves of each AM configuration are almost overlapped. (b) The noise level. The solid lines are fitting results with the function $1/\sqrt {{\mathcal {I}}_{in}}$ . (c) The noise equivalent magnetic flux density. The solid lines are obtained by substituting $V_n$ and $\Delta \omega _{\textrm {HW}}^\theta$ of Eq. (23) with the fitting results of (a) and (b).
Fig. 8.
Fig. 8. Sensitivity comparison between CPMx AM and EPMx AM as varying the incident light power and temperature in the range 24 $^{\circ }$ C to 75 $^{\circ }$ C. The background magnetic field is 1000 nT.
Fig. 9.
Fig. 9. PSD comparison between CPMx AM and EPMx AM at 24 $^{\circ }$ C and 45 $^{\circ }$ C. 50 Hz is the power frequency.

Tables (1)

Tables Icon

Table 1. Relative strengths A F , F a b s of the individual D 1 hyperfine resonances for photon absorption and relative strengths A F , F r o t for optical rotation as functions of polarization P [17].

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E i n ( z = 0 ) = E 0 ( cos ϕ + sin ϕ 2 L + cos ϕ sin ϕ 2 R ) ,
d S dt = γ S × B + Γ P ( S 0 S ) Γ r e l S ,
P qu ( δ ) = P 0 sin ( 2 ϑ ) Ω Γ 2 Ω 2 Γ 2 / Γ 1 + Γ 2 2 + δ 2 .
P ip ( δ ) = P 0 sin ( 2 ϑ ) δ Ω Ω 2 Γ 2 / Γ 1 + Γ 2 2 + δ 2 ,
P 0 = 2 S 0 = s Γ p Γ p + Γ r e l .
Δ ω HW = Ω 2 Γ 2 / Γ 1 + Γ 2 2 .
tan ( θ ) = P ip P qu = δ Γ 2 .
Δ ω HW θ = Γ 2 .
σ F , F ( ν ) = π r e c f D 1 Re [ V ( ν ν F , F ) ] ,
V ( ν ν F , F ) = 0 L ( ν ν ) G ( ν ν F , F ) d ν .
V ( ν ν 0 ) = 2 ln 2 / π Γ G w ( 2 ln 2 ( ν ν 0 ) + i Γ L / 2 Γ G ) ,
w ( x ) = e x 2 ( 1 erf ( i x ) ) .
σ total ( ν ) = π r e c f D 1 F , F A F , F a b s Re [ V ( ν ν F , F ) ] ,
Γ P ( ν ) = σ total ( ν ) Φ ( ν ) ,
P 0 = s σ total ( ν ) Φ ( ν ) σ total ( ν ) Φ ( ν ) + Γ r e l .
n + ( ν ) = 1 + n r e c 2 f D1 2 ν 1 + P 2 F , F A F , F r o t I m [ V ( ν ν F , F ) ] ,
n ( ν ) = 1 + n r e c 2 f D1 2 ν 1 P 2 F , F A F , F r o t I m [ V ( ν ν F , F ) ] ,
E o u t ( z = l ) = E 1 ( cos ϕ 1 + sin ϕ 1 2 e i φ + L + cos ϕ 1 sin ϕ 1 2 e i φ R ) ,
φ = φ + φ 2 = π ν l c ( n + n ) .
D E 1 2 1 s 1 2 sin ( 2 φ ) Φ 1 1 s 1 2 sin ( 2 φ ) ,
S i g ( s , ν ) Φ 1 1 s 1 2 2 π ν l c ( n + n ) Φ 1 1 s 1 2 P C r o t Φ 1 1 s 1 2 P 0 Γ 2 Ω 2 Γ 2 / Γ 1 + Γ 2 2 C r o t s 1 s 1 2 Φ 1 Φ 0 σ total σ total Φ 0 + Γ r e l Γ 2 Ω 2 Γ 2 / Γ 1 + Γ 2 2 C r o t ,
Φ 1 + = 1 +  s 2 Φ 0 e n l σ t o t a l ( 1 P ) , Φ 1 = 1 -  s 2 Φ 0 e n l σ t o t a l ( 1 + P ) .
δ B = V n Δ ω HW θ γ k .

Metrics