Abstract

A new single-image acquisition technique for the determination of the dispersion relation of the propagating modes of a plasmonic multilayer stack is introduced. This technique is based on an electrically-driven, spectrally broad excitation source which is nanoscale in size: the inelastic electron tunnel current between the tip of a scanning tunneling microscope (STM) and the sample. The resulting light from the excited modes of the system is collected in transmission using a microscope objective. The energy-momentum dispersion relation of the excited optical modes is then determined from the angle-resolved optical spectrum of the collected light. Experimental and theoretical results are obtained for metal-insulator-metal (MIM) stacks consisting of a silicon oxide layer ($70$, $190$ or $310$ nm thick) between two gold films (each with a thickness of $30$ nm). The broadband characterization of hybrid plasmonic-photonic transverse magnetic (TM) modes involved in an avoided crossing is demonstrated and the advantages of this new technique over optical reflectivity measurements are evaluated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon polariton beams from an electrically excited plasmonic crystal

Damien Canneson, Eric Le Moal, Shuiyan Cao, Xavier Quélin, Hervé Dallaporta, Gérald Dujardin, and Elizabeth Boer-Duchemin
Opt. Express 24(23) 26186-26200 (2016)

Highly efficient tunable and localized on-chip electrical plasmon source using protruded metal-insulator-metal structure

Wee Kee Phua, Yuriy Akimov, Lin Wu, Hong Son Chu, Ping Bai, and Aaron Danner
Opt. Express 24(10) 10663-10674 (2016)

Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111)

Feng Geng, Yang Zhang, Yunjie Yu, Yanmin Kuang, Yuan Liao, Zhenchao Dong, and Jianguo Hou
Opt. Express 20(24) 26725-26735 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T.-H. Lan, Y.-K. Chung, J.-E. Li, and C.-H. Tien, “Plasmonic rainbow rings induced by white radial polarization,” Opt. Lett. 37(7), 1205–1207 (2012).
    [Crossref]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref]
  3. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
    [Crossref]
  4. S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing fluorescence with plasmonic and photonic structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
    [Crossref]
  5. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008).
    [Crossref]
  6. E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
    [Crossref]
  7. G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
    [Crossref]
  8. F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
    [Crossref]
  9. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
    [Crossref]
  10. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998).
    [Crossref]
  11. A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
    [Crossref]
  12. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
    [Crossref]
  13. L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
    [Crossref]
  14. L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83(11), 115326 (2011).
    [Crossref]
  15. J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
    [Crossref]
  16. S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
    [Crossref]
  17. A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,” Nano Lett. 14(5), 2623–2627 (2014).
    [Crossref]
  18. D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
    [Crossref]
  19. F. T. Rabouw, P. T. Prins, and D. J. Norris, “Europium-doped NaYF$_4$4 nanocrystals as probes for the electric and magnetic local density of optical states throughout the visible spectral range,” Nano Lett. 16(11), 7254–7260 (2016).
    [Crossref]
  20. R. Salas-Montiel, M. Berthel, J. Beltran-Madrigal, S. Huant, A. Drezet, and S. Blaize, “Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres,” Nanotechnology 28(20), 205207 (2017).
    [Crossref]
  21. T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett. 99(14), 143103 (2011).
    [Crossref]
  22. M. Kociak and O. Stéphan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43(11), 3865 (2014).
    [Crossref]
  23. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
    [Crossref]
  24. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental Verification of n=0 Structures for Visible Light,” Phys. Rev. Lett. 110(1), 013902 (2013).
    [Crossref]
  25. A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale Excitation Mapping of Plasmonic Patch Antennas,” ACS Photonics 1(11), 1134–1143 (2014).
    [Crossref]
  26. J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
    [Crossref]
  27. R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276–3294 (1981).
    [Crossref]
  28. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).
    [Crossref]
  29. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
    [Crossref]
  30. B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
    [Crossref]
  31. E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
    [Crossref]
  32. P. Johansson, “Light emission from a scanning tunneling microscope: Fully retarded calculation,” Phys. Rev. B 58(16), 10823–10834 (1998).
    [Crossref]
  33. T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
    [Crossref]
  34. E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
    [Crossref]
  35. M. J. Romero, J. van de Lagemaat, G. Rumbles, and M. M. Al-Jassim, “Plasmon excitations in scanning tunneling microscopy: Simultaneous imaging of modes with different localizations coupled at the tip,” Appl. Phys. Lett. 90(19), 193109 (2007).
    [Crossref]
  36. Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
    [Crossref]
  37. S. Divitt, P. Bharadwaj, and L. Novotny, “The role of gap plasmons in light emission from tunnel junctions,” Opt. Express 21(22), 27452–27459 (2013).
    [Crossref]
  38. T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679–6682 (2014).
    [Crossref]
  39. S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105(11), 111103 (2014).
    [Crossref]
  40. Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
    [Crossref]
  41. B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
    [Crossref]
  42. T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
    [Crossref]
  43. D. Canneson, E. Le Moal, S. Cao, X. Quélin, H. Dallaporta, G. Dujardin, and E. Boer-Duchemin, “Surface plasmon polariton beams from an electrically excited plasmonic crystal,” Opt. Express 24(23), 26186–26200 (2016).
    [Crossref]
  44. S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
    [Crossref]
  45. S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
    [Crossref]
  46. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
    [Crossref]
  47. J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts,” J. Appl. Phys. 124(4), 043102 (2018).
    [Crossref]
  48. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. total radiated power,” J. Opt. Soc. Am. 67(12), 1607–1615 (1977).
    [Crossref]
  49. R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (John Wiley & Sons, Inc., 1978), pp. 1–65.
  50. L. Novotny, “Allowed and forbidden light in near-field optics. I. a single dipolar light source,” J. Opt. Soc. Am. A 14(1), 91–104 (1997).
    [Crossref]
  51. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6(5), 910–916 (1989).
    [Crossref]
  52. J. Mooney and P. Kambhampati, “Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
    [Crossref]
  53. J. Mooney and P. Kambhampati, “Correction to “get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra”,” J. Phys. Chem. Lett. 5(20), 3497 (2014).
    [Crossref]
  54. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]
  55. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [Crossref]
  56. L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
    [Crossref]
  57. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
    [Crossref]
  58. H. Ditlbacher, N. Galler, D. Koller, A. Hohenau, A. Leitner, F. Aussenegg, and J. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
    [Crossref]
  59. D. Brissinger, L. Salomon, and F. D. Fornel, “Unguided plasmon-mode resonance in optically excited thin film: exact modal description of Kretschmann-Raether experiment,” J. Opt. Soc. Am. B 30(2), 333–337 (2013).
    [Crossref]
  60. Y. Akimov, M. E. Pam, and S. Sun, “Kretschmann-Raether configuration: Revision of the theory of resonant interaction,” Phys. Rev. B 96(15), 155433 (2017).
    [Crossref]
  61. Y. Akimov, “Optical resonances in Kretschmann and Otto configurations,” Opt. Lett. 43(6), 1195–1198 (2018).
    [Crossref]
  62. A. P. Vinogradov, A. V. Dorofeenko, A. A. Pukhov, and A. A. Lisyansky, “Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam,” Phys. Rev. B 97(23), 235407 (2018).
    [Crossref]
  63. F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
    [Crossref]
  64. S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
    [Crossref]
  65. R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Phys. B (Amsterdam, Neth.) 394(2), 137–140 (2007).
    [Crossref]
  66. P. Dvořák, Z. Édes, M. Kvapil, T. Šamořil, F. Ligmajer, M. Hrtoň, R. Kalousek, V. Křápek, P. Dub, J. Spousta, P. Varga, and T. Šikola, “Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state,” Opt. Express 25(14), 16560–16573 (2017).
    [Crossref]
  67. M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett. 94(23), 233118 (2009).
    [Crossref]
  68. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
    [Crossref]
  69. C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
    [Crossref]
  70. Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
    [Crossref]
  71. C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
    [Crossref]
  72. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).
  73. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [Crossref]
  74. S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behaviour of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
    [Crossref]

2019 (1)

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

2018 (5)

F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
[Crossref]

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts,” J. Appl. Phys. 124(4), 043102 (2018).
[Crossref]

Y. Akimov, “Optical resonances in Kretschmann and Otto configurations,” Opt. Lett. 43(6), 1195–1198 (2018).
[Crossref]

A. P. Vinogradov, A. V. Dorofeenko, A. A. Pukhov, and A. A. Lisyansky, “Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam,” Phys. Rev. B 97(23), 235407 (2018).
[Crossref]

2017 (4)

P. Dvořák, Z. Édes, M. Kvapil, T. Šamořil, F. Ligmajer, M. Hrtoň, R. Kalousek, V. Křápek, P. Dub, J. Spousta, P. Varga, and T. Šikola, “Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state,” Opt. Express 25(14), 16560–16573 (2017).
[Crossref]

Y. Akimov, M. E. Pam, and S. Sun, “Kretschmann-Raether configuration: Revision of the theory of resonant interaction,” Phys. Rev. B 96(15), 155433 (2017).
[Crossref]

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

R. Salas-Montiel, M. Berthel, J. Beltran-Madrigal, S. Huant, A. Drezet, and S. Blaize, “Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres,” Nanotechnology 28(20), 205207 (2017).
[Crossref]

2016 (7)

F. T. Rabouw, P. T. Prins, and D. J. Norris, “Europium-doped NaYF$_4$4 nanocrystals as probes for the electric and magnetic local density of optical states throughout the visible spectral range,” Nano Lett. 16(11), 7254–7260 (2016).
[Crossref]

B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
[Crossref]

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

D. Canneson, E. Le Moal, S. Cao, X. Quélin, H. Dallaporta, G. Dujardin, and E. Boer-Duchemin, “Surface plasmon polariton beams from an electrically excited plasmonic crystal,” Opt. Express 24(23), 26186–26200 (2016).
[Crossref]

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref]

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behaviour of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

2015 (6)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing fluorescence with plasmonic and photonic structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[Crossref]

2014 (7)

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

M. Kociak and O. Stéphan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43(11), 3865 (2014).
[Crossref]

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale Excitation Mapping of Plasmonic Patch Antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679–6682 (2014).
[Crossref]

S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105(11), 111103 (2014).
[Crossref]

J. Mooney and P. Kambhampati, “Correction to “get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra”,” J. Phys. Chem. Lett. 5(20), 3497 (2014).
[Crossref]

2013 (8)

D. Brissinger, L. Salomon, and F. D. Fornel, “Unguided plasmon-mode resonance in optically excited thin film: exact modal description of Kretschmann-Raether experiment,” J. Opt. Soc. Am. B 30(2), 333–337 (2013).
[Crossref]

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref]

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
[Crossref]

S. Divitt, P. Bharadwaj, and L. Novotny, “The role of gap plasmons in light emission from tunnel junctions,” Opt. Express 21(22), 27452–27459 (2013).
[Crossref]

J. Mooney and P. Kambhampati, “Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental Verification of n=0 Structures for Visible Light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

2012 (2)

J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

T.-H. Lan, Y.-K. Chung, J.-E. Li, and C.-H. Tien, “Plasmonic rainbow rings induced by white radial polarization,” Opt. Lett. 37(7), 1205–1207 (2012).
[Crossref]

2011 (4)

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83(11), 115326 (2011).
[Crossref]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett. 99(14), 143103 (2011).
[Crossref]

2010 (2)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref]

2009 (3)

C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett. 94(23), 233118 (2009).
[Crossref]

G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[Crossref]

2008 (7)

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008).
[Crossref]

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[Crossref]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
[Crossref]

H. Ditlbacher, N. Galler, D. Koller, A. Hohenau, A. Leitner, F. Aussenegg, and J. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

2007 (3)

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Phys. B (Amsterdam, Neth.) 394(2), 137–140 (2007).
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref]

M. J. Romero, J. van de Lagemaat, G. Rumbles, and M. M. Al-Jassim, “Plasmon excitations in scanning tunneling microscopy: Simultaneous imaging of modes with different localizations coupled at the tip,” Appl. Phys. Lett. 90(19), 193109 (2007).
[Crossref]

2006 (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

2005 (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

1998 (2)

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998).
[Crossref]

P. Johansson, “Light emission from a scanning tunneling microscope: Fully retarded calculation,” Phys. Rev. B 58(16), 10823–10834 (1998).
[Crossref]

1997 (1)

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref]

1989 (1)

1981 (1)

R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276–3294 (1981).
[Crossref]

1977 (1)

1976 (1)

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Abidi, W.

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

Adamo, G.

G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[Crossref]

Akimov, Y.

Y. Akimov, “Optical resonances in Kretschmann and Otto configurations,” Opt. Lett. 43(6), 1195–1198 (2018).
[Crossref]

Y. Akimov, M. E. Pam, and S. Sun, “Kretschmann-Raether configuration: Revision of the theory of resonant interaction,” Phys. Rev. B 96(15), 155433 (2017).
[Crossref]

Akimov, Y. A.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Al-Jassim, M. M.

M. J. Romero, J. van de Lagemaat, G. Rumbles, and M. M. Al-Jassim, “Plasmon excitations in scanning tunneling microscopy: Simultaneous imaging of modes with different localizations coupled at the tip,” Appl. Phys. Lett. 90(19), 193109 (2007).
[Crossref]

Al-Shamery, K.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

Antoncecchi, A.

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale Excitation Mapping of Plasmonic Patch Antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

Attias, A.-J.

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

Atwater, H. A.

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[Crossref]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Aussenegg, F.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

H. Ditlbacher, N. Galler, D. Koller, A. Hohenau, A. Leitner, F. Aussenegg, and J. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref]

Badugu, R.

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing fluorescence with plasmonic and photonic structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[Crossref]

Bakker, R. M.

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Phys. B (Amsterdam, Neth.) 394(2), 137–140 (2007).
[Crossref]

Barbillon, G.

J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts,” J. Appl. Phys. 124(4), 043102 (2018).
[Crossref]

Bardou, N.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

Bartenlian, B.

J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts,” J. Appl. Phys. 124(4), 043102 (2018).
[Crossref]

Bellessa, J.

F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
[Crossref]

C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Beltran-Madrigal, J.

R. Salas-Montiel, M. Berthel, J. Beltran-Madrigal, S. Huant, A. Drezet, and S. Blaize, “Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres,” Nanotechnology 28(20), 205207 (2017).
[Crossref]

Benson, O.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Berthel, M.

R. Salas-Montiel, M. Berthel, J. Beltran-Madrigal, S. Huant, A. Drezet, and S. Blaize, “Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres,” Nanotechnology 28(20), 205207 (2017).
[Crossref]

Bethune, D. S.

Bharadwaj, P.

S. Divitt, P. Bharadwaj, and L. Novotny, “The role of gap plasmons in light emission from tunnel junctions,” Opt. Express 21(22), 27452–27459 (2013).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref]

Bigourdan, F.

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref]

Blaize, S.

R. Salas-Montiel, M. Berthel, J. Beltran-Madrigal, S. Huant, A. Drezet, and S. Blaize, “Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres,” Nanotechnology 28(20), 205207 (2017).
[Crossref]

Boer-Duchemin, E.

J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts,” J. Appl. Phys. 124(4), 043102 (2018).
[Crossref]

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
[Crossref]

D. Canneson, E. Le Moal, S. Cao, X. Quélin, H. Dallaporta, G. Dujardin, and E. Boer-Duchemin, “Surface plasmon polariton beams from an electrically excited plasmonic crystal,” Opt. Express 24(23), 26186–26200 (2016).
[Crossref]

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105(11), 111103 (2014).
[Crossref]

T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679–6682 (2014).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
[Crossref]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).
[Crossref]

Borisov, A. G.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[Crossref]

Boyle, M. G.

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett. 94(23), 233118 (2009).
[Crossref]

Braun, K.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

Brissinger, D.

Brueck, S. R. J.

Bryche, J.-F.

J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts,” J. Appl. Phys. 124(4), 043102 (2018).
[Crossref]

Busch, K.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Caglayan, H.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental Verification of n=0 Structures for Visible Light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

Calabrese, M.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

Canneson, D.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

D. Canneson, E. Le Moal, S. Cao, X. Quélin, H. Dallaporta, G. Dujardin, and E. Boer-Duchemin, “Surface plasmon polariton beams from an electrically excited plasmonic crystal,” Opt. Express 24(23), 26186–26200 (2016).
[Crossref]

Cao, D.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

Cao, S.

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
[Crossref]

D. Canneson, E. Le Moal, S. Cao, X. Quélin, H. Dallaporta, G. Dujardin, and E. Boer-Duchemin, “Surface plasmon polariton beams from an electrically excited plasmonic crystal,” Opt. Express 24(23), 26186–26200 (2016).
[Crossref]

S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105(11), 111103 (2014).
[Crossref]

Carminati, R.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

Cassan, E.

J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

Cazé, A.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (John Wiley & Sons, Inc., 1978), pp. 1–65.

Charra, F.

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

Charvolin, T.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

Chen, J.

Christoffers, J.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

Chu, H.-S.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Chung, Y.-K.

Cluzel, B.

J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83(11), 115326 (2011).
[Crossref]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

Coenen, T.

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale Excitation Mapping of Plasmonic Patch Antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental Verification of n=0 Structures for Visible Light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett. 99(14), 143103 (2011).
[Crossref]

Collin, S.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

Comtet, G.

B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679–6682 (2014).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
[Crossref]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).
[Crossref]

Coolen, L.

F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
[Crossref]

Dallaporta, H.

Dawson, P.

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett. 94(23), 233118 (2009).
[Crossref]

de Fornel, F.

J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83(11), 115326 (2011).
[Crossref]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

De Wilde, Y.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

Dellinger, J.

J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

Dionne, J. A.

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[Crossref]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

H. Ditlbacher, N. Galler, D. Koller, A. Hohenau, A. Leitner, F. Aussenegg, and J. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref]

Divitt, S.

Dong, Z.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Dorofeenko, A. V.

A. P. Vinogradov, A. V. Dorofeenko, A. A. Pukhov, and A. A. Lisyansky, “Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam,” Phys. Rev. B 97(23), 235407 (2018).
[Crossref]

Dos Santos, P.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

Douillard, L.

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

Drachev, V. P.

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Phys. B (Amsterdam, Neth.) 394(2), 137–140 (2007).
[Crossref]

Drezet, A.

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

R. Salas-Montiel, M. Berthel, J. Beltran-Madrigal, S. Huant, A. Drezet, and S. Blaize, “Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres,” Nanotechnology 28(20), 205207 (2017).
[Crossref]

T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
[Crossref]

S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105(11), 111103 (2014).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679–6682 (2014).
[Crossref]

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

Du, P.

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

Du, W.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Dub, P.

Dujardin, G.

J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts,” J. Appl. Phys. 124(4), 043102 (2018).
[Crossref]

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
[Crossref]

D. Canneson, E. Le Moal, S. Cao, X. Quélin, H. Dallaporta, G. Dujardin, and E. Boer-Duchemin, “Surface plasmon polariton beams from an electrically excited plasmonic crystal,” Opt. Express 24(23), 26186–26200 (2016).
[Crossref]

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
[Crossref]

S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105(11), 111103 (2014).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679–6682 (2014).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
[Crossref]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).
[Crossref]

Dumas, C.

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83(11), 115326 (2011).
[Crossref]

Dutta Choudhury, S.

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing fluorescence with plasmonic and photonic structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[Crossref]

Dvorák, P.

Ebbesen, T. W.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref]

Édes, Z.

Engel, P.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Engheta, N.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental Verification of n=0 Structures for Visible Light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

Esteban, R.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

Feng, F.

F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
[Crossref]

Fiorini-Debuisschert, C.

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

Fornel, F. D.

Fu, Y.

G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[Crossref]

Galler, N.

García de Abajo, F.

G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Genet, C.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref]

Giessen, H.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

Goh, K. E. J.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Goh, W. P.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref]

Greffet, J. J.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref]

Greffet, J.-J.

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref]

Grewal, A.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Gruber, C.

Gunnarsson, O.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Hadji, E.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

Hayashi, S.

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behaviour of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).

Hentschel, M.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

Hohenau, A.

Homeyer, E.

C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Hooper, I. R.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

Horeis, R.

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

Hrton, M.

Huant, S.

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

R. Salas-Montiel, M. Berthel, J. Beltran-Madrigal, S. Huant, A. Drezet, and S. Blaize, “Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres,” Nanotechnology 28(20), 205207 (2017).
[Crossref]

T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
[Crossref]

S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105(11), 111103 (2014).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679–6682 (2014).
[Crossref]

Hugonin, J.-P.

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
[Crossref]

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref]

Jäger, R.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

Jäger, S.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

Jiang, Q.

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

Johansson, P.

P. Johansson, “Light emission from a scanning tunneling microscope: Fully retarded calculation,” Phys. Rev. B 58(16), 10823–10834 (1998).
[Crossref]

Kalousek, R.

Kambhampati, P.

J. Mooney and P. Kambhampati, “Correction to “get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra”,” J. Phys. Chem. Lett. 5(20), 3497 (2014).
[Crossref]

J. Mooney and P. Kambhampati, “Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
[Crossref]

Kano, H.

Kawata, S.

Kern, A. M.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

Kern, K.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Kociak, M.

M. Kociak and O. Stéphan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43(11), 3865 (2014).
[Crossref]

Koenderink, A. F.

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale Excitation Mapping of Plasmonic Patch Antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

H. Ditlbacher, N. Galler, D. Koller, A. Hohenau, A. Leitner, F. Aussenegg, and J. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref]

Krachmalnicoff, V.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

Krápek, V.

Kreher, D.

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

Krenn, J.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

H. Ditlbacher, N. Galler, D. Koller, A. Hohenau, A. Leitner, F. Aussenegg, and J. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref]

Krenn, J. R.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Kuhnke, K.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Kuipers, L. K.

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[Crossref]

Kunz, R. E.

Kvapil, M.

Lakowicz, J. R.

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing fluorescence with plasmonic and photonic structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[Crossref]

Lalanne, P.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

Lalouat, L.

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83(11), 115326 (2011).
[Crossref]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

Lambe, J.

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

Lan, T.-H.

Le Liepvre, S.

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

Le Moal, E.

J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts,” J. Appl. Phys. 124(4), 043102 (2018).
[Crossref]

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

D. Canneson, E. Le Moal, S. Cao, X. Quélin, H. Dallaporta, G. Dujardin, and E. Boer-Duchemin, “Surface plasmon polariton beams from an electrically excited plasmonic crystal,” Opt. Express 24(23), 26186–26200 (2016).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105(11), 111103 (2014).
[Crossref]

T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679–6682 (2014).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
[Crossref]

Le Roux, X.

J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

H. Ditlbacher, N. Galler, D. Koller, A. Hohenau, A. Leitner, F. Aussenegg, and J. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref]

Lemaître, A.

C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Leon, C. C.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Li, J.-E.

Ligmajer, F.

Lisyansky, A. A.

A. P. Vinogradov, A. V. Dorofeenko, A. A. Pukhov, and A. A. Lisyansky, “Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam,” Phys. Rev. B 97(23), 235407 (2018).
[Crossref]

Liu, Z.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref]

Lukosz, W.

MacDonald, K.

G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[Crossref]

Maître, A.

F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
[Crossref]

Malloy, K. J.

Marguet, S.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

Marinica, D.-C.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

Marquier, F.

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref]

Mathevet, F.

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

Mayne, A.

B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
[Crossref]

McCarthy, S. L.

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

Meixner, A. J.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

Mitra, J.

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett. 94(23), 233118 (2009).
[Crossref]

Mizuguchi, S.

Moal, E. L.

B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
[Crossref]

Mohtashami, A.

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale Excitation Mapping of Plasmonic Patch Antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

Mooney, J.

J. Mooney and P. Kambhampati, “Correction to “get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra”,” J. Phys. Chem. Lett. 5(20), 3497 (2014).
[Crossref]

J. Mooney and P. Kambhampati, “Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
[Crossref]

Mukherjee, S.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

Nesterenko, D.

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behaviour of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

Nijhuis, C. A.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Norris, D. J.

F. T. Rabouw, P. T. Prins, and D. J. Norris, “Europium-doped NaYF$_4$4 nanocrystals as probes for the electric and magnetic local density of optical states throughout the visible spectral range,” Nano Lett. 16(11), 7254–7260 (2016).
[Crossref]

Novotny, L.

S. Divitt, P. Bharadwaj, and L. Novotny, “The role of gap plasmons in light emission from tunnel junctions,” Opt. Express 21(22), 27452–27459 (2013).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref]

L. Novotny, “Allowed and forbidden light in near-field optics. I. a single dipolar light source,” J. Opt. Soc. Am. A 14(1), 91–104 (1997).
[Crossref]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).

Pam, M. E.

Y. Akimov, M. E. Pam, and S. Sun, “Kretschmann-Raether configuration: Revision of the theory of resonant interaction,” Phys. Rev. B 96(15), 155433 (2017).
[Crossref]

Peyrade, D.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

Picard, E.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

Pierrat, R.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

Plenet, J. C.

C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref]

Polman, A.

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale Excitation Mapping of Plasmonic Patch Antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental Verification of n=0 Structures for Visible Light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett. 99(14), 143103 (2011).
[Crossref]

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[Crossref]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Prins, P. T.

F. T. Rabouw, P. T. Prins, and D. J. Norris, “Europium-doped NaYF$_4$4 nanocrystals as probes for the electric and magnetic local density of optical states throughout the visible spectral range,” Nano Lett. 16(11), 7254–7260 (2016).
[Crossref]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (John Wiley & Sons, Inc., 1978), pp. 1–65.

Pukhov, A. A.

A. P. Vinogradov, A. V. Dorofeenko, A. A. Pukhov, and A. A. Lisyansky, “Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam,” Phys. Rev. B 97(23), 235407 (2018).
[Crossref]

Quélin, X.

Rabouw, F. T.

F. T. Rabouw, P. T. Prins, and D. J. Norris, “Europium-doped NaYF$_4$4 nanocrystals as probes for the electric and magnetic local density of optical states throughout the visible spectral range,” Nano Lett. 16(11), 7254–7260 (2016).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Rahmouni, A.

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behaviour of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

Refki, S.

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behaviour of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

Remita, H.

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

Rendell, R. W.

R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276–3294 (1981).
[Crossref]

Rogez, B.

B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
[Crossref]

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
[Crossref]

Romero, M. J.

M. J. Romero, J. van de Lagemaat, G. Rumbles, and M. M. Al-Jassim, “Plasmon excitations in scanning tunneling microscopy: Simultaneous imaging of modes with different localizations coupled at the tip,” Appl. Phys. Lett. 90(19), 193109 (2007).
[Crossref]

Roslawska, A.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Rumbles, G.

M. J. Romero, J. van de Lagemaat, G. Rumbles, and M. M. Al-Jassim, “Plasmon excitations in scanning tunneling microscopy: Simultaneous imaging of modes with different localizations coupled at the tip,” Appl. Phys. Lett. 90(19), 193109 (2007).
[Crossref]

Salas-Montiel, R.

R. Salas-Montiel, M. Berthel, J. Beltran-Madrigal, S. Huant, A. Drezet, and S. Blaize, “Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres,” Nanotechnology 28(20), 205207 (2017).
[Crossref]

Salomon, L.

D. Brissinger, L. Salomon, and F. D. Fornel, “Unguided plasmon-mode resonance in optically excited thin film: exact modal description of Kretschmann-Raether experiment,” J. Opt. Soc. Am. B 30(2), 333–337 (2013).
[Crossref]

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83(11), 115326 (2011).
[Crossref]

Šamoril, T.

Sauvan, C.

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref]

Scalapino, D. J.

R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276–3294 (1981).
[Crossref]

Schell, A. W.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Schwob, C.

F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
[Crossref]

Sekkat, Z.

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behaviour of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

Shalaev, V. M.

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Phys. B (Amsterdam, Neth.) 394(2), 137–140 (2007).
[Crossref]

Šikola, T.

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (John Wiley & Sons, Inc., 1978), pp. 1–65.

Smith, L. H.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

Smolyakov, G. A.

Spousta, J.

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

Stéphan, O.

M. Kociak and O. Stéphan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43(11), 3865 (2014).
[Crossref]

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

Sun, S.

Y. Akimov, M. E. Pam, and S. Sun, “Kretschmann-Raether configuration: Revision of the theory of resonant interaction,” Phys. Rev. B 96(15), 155433 (2017).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Symonds, C.

F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
[Crossref]

C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Taylor, M. C.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

Teperik, T. V.

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref]

Tien, C.-H.

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Troadec, C.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Tsai, D.

G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[Crossref]

van de Lagemaat, J.

M. J. Romero, J. van de Lagemaat, G. Rumbles, and M. M. Al-Jassim, “Plasmon excitations in scanning tunneling microscopy: Simultaneous imaging of modes with different localizations coupled at the tip,” Appl. Phys. Lett. 90(19), 193109 (2007).
[Crossref]

Van Do, K.

J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

Varga, P.

Velha, P.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

Verhagen, E.

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[Crossref]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental Verification of n=0 Structures for Visible Light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett. 99(14), 143103 (2011).
[Crossref]

Vinogradov, A. P.

A. P. Vinogradov, A. V. Dorofeenko, A. A. Pukhov, and A. A. Lisyansky, “Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam,” Phys. Rev. B 97(23), 235407 (2018).
[Crossref]

Wang, C.-M.

G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[Crossref]

Wang, T.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
[Crossref]

T. Wang, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, S. Huant, and E. Boer-Duchemin, “Temporal coherence of propagating surface plasmons,” Opt. Lett. 39(23), 6679–6682 (2014).
[Crossref]

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
[Crossref]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).
[Crossref]

Werra, J. F. M.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Wiederrecht, G. P.

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[Crossref]

Wolff, C.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Xiong, Y.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref]

Yang, J. K. W.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Yuan, H.-K.

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Phys. B (Amsterdam, Neth.) 394(2), 137–140 (2007).
[Crossref]

Zhang, D.

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

Zhang, X.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

Zhang, Y.

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
[Crossref]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).
[Crossref]

Zheludev, N.

G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[Crossref]

Zhu, D.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

Acc. Chem. Res. (1)

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing fluorescence with plasmonic and photonic structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[Crossref]

ACS Photonics (4)

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2(2), 189–193 (2015).
[Crossref]

A. Mohtashami, T. Coenen, A. Antoncecchi, A. Polman, and A. F. Koenderink, “Nanoscale Excitation Mapping of Plasmonic Patch Antennas,” ACS Photonics 1(11), 1134–1143 (2014).
[Crossref]

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photonics 2(3), 385–391 (2015).
[Crossref]

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-J. Attias, C. Fiorini-Debuisschert, L. Douillard, and F. Charra, “Fluorescent Self-Assembled Molecular Monolayer on Graphene,” ACS Photonics 3(12), 2291–2296 (2016).
[Crossref]

Appl. Phys. Lett. (7)

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett. 94(23), 233118 (2009).
[Crossref]

C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

M. J. Romero, J. van de Lagemaat, G. Rumbles, and M. M. Al-Jassim, “Plasmon excitations in scanning tunneling microscopy: Simultaneous imaging of modes with different localizations coupled at the tip,” Appl. Phys. Lett. 90(19), 193109 (2007).
[Crossref]

S. Cao, E. Le Moal, E. Boer-Duchemin, G. Dujardin, A. Drezet, and S. Huant, “Cylindrical vector beams of light from an electrically excited plasmonic lens,” Appl. Phys. Lett. 105(11), 111103 (2014).
[Crossref]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett. 99(14), 143103 (2011).
[Crossref]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[Crossref]

J. Dellinger, K. Van Do, X. Le Roux, F. de Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

Beilstein J. Nanotechnol. (1)

S. Cao, E. Le Moal, Q. Jiang, A. Drezet, S. Huant, J.-P. Hugonin, G. Dujardin, and E. Boer-Duchemin, “Directional light beams by design from electrically driven elliptical slit antennas,” Beilstein J. Nanotechnol. 9, 2361–2371 (2018).
[Crossref]

Chem. Soc. Rev. (1)

M. Kociak and O. Stéphan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43(11), 3865 (2014).
[Crossref]

J. Appl. Phys. (1)

J.-F. Bryche, G. Barbillon, B. Bartenlian, G. Dujardin, E. Boer-Duchemin, and E. Le Moal, “k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts,” J. Appl. Phys. 124(4), 043102 (2018).
[Crossref]

J. Mod. Opt. (1)

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. C (1)

B. Rogez, R. Horeis, E. Le Moal, J. Christoffers, K. Al-Shamery, G. Dujardin, and E. Boer-Duchemin, “Optical and electrical excitation of hybrid guided modes in an organic nanofiber - gold film system,” J. Phys. Chem. C 119(38), 22217–22224 (2015).
[Crossref]

J. Phys. Chem. Lett. (2)

J. Mooney and P. Kambhampati, “Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
[Crossref]

J. Mooney and P. Kambhampati, “Correction to “get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra”,” J. Phys. Chem. Lett. 5(20), 3497 (2014).
[Crossref]

Mater. Sci. Eng., B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149(3), 220–229 (2008).
[Crossref]

Nano Lett. (6)

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13(9), 4198–4205 (2013).
[Crossref]

F. T. Rabouw, P. T. Prins, and D. J. Norris, “Europium-doped NaYF$_4$4 nanocrystals as probes for the electric and magnetic local density of optical states throughout the visible spectral range,” Nano Lett. 16(11), 7254–7260 (2016).
[Crossref]

S. Jäger, A. M. Kern, M. Hentschel, R. Jäger, K. Braun, D. Zhang, H. Giessen, and A. J. Meixner, “Au nanotip as luminescent near-field probe,” Nano Lett. 13(8), 3566–3570 (2013).
[Crossref]

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref]

Nanotechnology (4)

R. Salas-Montiel, M. Berthel, J. Beltran-Madrigal, S. Huant, A. Drezet, and S. Blaize, “Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres,” Nanotechnology 28(20), 205207 (2017).
[Crossref]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).
[Crossref]

T. Wang, E. Boer-Duchemin, G. Comtet, E. Le Moal, G. Dujardin, A. Drezet, and S. Huant, “Plasmon scattering from holes: from single hole scattering to Young’s experiment,” Nanotechnology 25(12), 125202 (2014).
[Crossref]

B. Rogez, S. Cao, G. Dujardin, G. Comtet, E. L. Moal, A. Mayne, and E. Boer-Duchemin, “The mechanism of light emission from a scanning tunnelling microscope operating in air,” Nanotechnology 27(46), 465201 (2016).
[Crossref]

New J. Phys. (1)

F. Feng, C. Symonds, C. Schwob, J. Bellessa, A. Maître, J.-P. Hugonin, and L. Coolen, “Active control of radiation beaming from tamm nanostructures by optical microscopy,” New J. Phys. 20(3), 033020 (2018).
[Crossref]

Opt. Express (7)

S. Divitt, P. Bharadwaj, and L. Novotny, “The role of gap plasmons in light emission from tunnel junctions,” Opt. Express 21(22), 27452–27459 (2013).
[Crossref]

P. Dvořák, Z. Édes, M. Kvapil, T. Šamořil, F. Ligmajer, M. Hrtoň, R. Kalousek, V. Křápek, P. Dub, J. Spousta, P. Varga, and T. Šikola, “Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state,” Opt. Express 25(14), 16560–16573 (2017).
[Crossref]

J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
[Crossref]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008).
[Crossref]

H. Ditlbacher, N. Galler, D. Koller, A. Hohenau, A. Leitner, F. Aussenegg, and J. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref]

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. Le Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express 21(12), 13938 (2013).
[Crossref]

D. Canneson, E. Le Moal, S. Cao, X. Quélin, H. Dallaporta, G. Dujardin, and E. Boer-Duchemin, “Surface plasmon polariton beams from an electrically excited plasmonic crystal,” Opt. Express 24(23), 26186–26200 (2016).
[Crossref]

Opt. Lett. (3)

Phys. B (Amsterdam, Neth.) (1)

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Phys. B (Amsterdam, Neth.) 394(2), 137–140 (2007).
[Crossref]

Phys. Rev. B (11)

Y. Akimov, M. E. Pam, and S. Sun, “Kretschmann-Raether configuration: Revision of the theory of resonant interaction,” Phys. Rev. B 96(15), 155433 (2017).
[Crossref]

A. P. Vinogradov, A. V. Dorofeenko, A. A. Pukhov, and A. A. Lisyansky, “Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam,” Phys. Rev. B 97(23), 235407 (2018).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[Crossref]

L. Lalouat, B. Cluzel, C. Dumas, L. Salomon, and F. de Fornel, “Imaging photoexcited optical modes in photonic-crystal cavities with a near-field probe,” Phys. Rev. B 83(11), 115326 (2011).
[Crossref]

E. Le Moal, S. Marguet, D. Canneson, B. Rogez, E. Boer-Duchemin, G. Dujardin, T. V. Teperik, D.-C. Marinica, and A. G. Borisov, “Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle,” Phys. Rev. B 93(3), 035418 (2016).
[Crossref]

T. Wang, B. Rogez, G. Comtet, E. Le Moal, W. Abidi, H. Remita, G. Dujardin, and E. Boer-Duchemin, “Scattering of electrically excited surface plasmon polaritons by gold nanoparticles studied by optical interferometry with a scanning tunneling microscope,” Phys. Rev. B 92(4), 045438 (2015).
[Crossref]

S. Cao, E. Le Moal, F. Bigourdan, J.-P. Hugonin, J.-J. Greffet, A. Drezet, S. Huant, G. Dujardin, and E. Boer-Duchemin, “Revealing the spectral response of a plasmonic lens using low-energy electrons,” Phys. Rev. B 96(11), 115419 (2017).
[Crossref]

P. Johansson, “Light emission from a scanning tunneling microscope: Fully retarded calculation,” Phys. Rev. B 58(16), 10823–10834 (1998).
[Crossref]

R. W. Rendell and D. J. Scalapino, “Surface plasmons confined by microstructures on tunnel junctions,” Phys. Rev. B 24(6), 3276–3294 (1981).
[Crossref]

Phys. Rev. Lett. (8)

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental Verification of n=0 Structures for Visible Light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37(14), 923–925 (1976).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[Crossref]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref]

G. Adamo, K. MacDonald, Y. Fu, C.-M. Wang, D. Tsai, F. García de Abajo, and N. Zheludev, “Light Well: A Tunable Free-Electron Light Source on a Chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[Crossref]

Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality,” Phys. Rev. Lett. 110(20), 203906 (2013).
[Crossref]

F. Bigourdan, J.-P. Hugonin, F. Marquier, C. Sauvan, and J.-J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref]

Plasmonics (1)

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behaviour of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010).
[Crossref]

Sci. Adv. (1)

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23(12), 2135–2136 (1968).
[Crossref]

Other (2)

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (John Wiley & Sons, Inc., 1978), pp. 1–65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematics of the experimental setup. (a) Optical excitation and (b) electrical excitation.
Fig. 2.
Fig. 2. Electrical excitation of a MIM stack: theory and experiment. (a) Schematic of the modeled system (not to scale). A vertical oscillating electric dipole is located at a distance $h=1$ nm above a MIM stack. The stack consists of a silicon oxide layer of thickness $d_{\textrm{SiO}_2}$ sandwiched between two $30$ nm-thick gold layers on a glass substrate. A 2-nm-thick titanium layer is used to increase the adhesion of the gold to the glass. [(b),(c)] Experimental Fourier-space images measured upon STM excitation of an $\textrm{Au}$-$\textrm{SiO}_2$-$\textrm{Au}$ MIM system with $d_{\textrm{SiO}_2}=310$ nm (acquisition time $300$ s, sample bias $2.8$ V, setpoint current $1$ nA). In (c), a polarizer is set in front of the CCD camera with its transmission axis along $\mathbf {k_x}$. The corresponding theoretical Fourier-space images for parts (b) and (c) are shown in parts (d) and (e) respectively. In the simulations, the spectrally broad excitation has a flat power spectrum ranging in wavelength from $\lambda _0=400$ to $1000$ nm.
Fig. 3.
Fig. 3. Dispersion relations of the propagating modes in three MIM stacks as obtained by electrical excitation. [(a)–(c)] Experimental dispersion relations measured upon STM excitation of $\textrm{Au}$-$\textrm{SiO}_2$-$\textrm{Au}$ MIM stacks with $\textrm{SiO}_2$ layer thicknesses of (a) $70$ nm, (b) $190$ nm and (c) $310$ nm (acquisition time $300$ s, sample bias $2.8$ V, setpoint current $1$ nA). The white dashed lines are freehand curves added to guide the eye along the maxima of the intensity plot. [(d)–(f)] Theoretical dispersion calculations of the transmitted photon flux for the same MIM stacks as in the experiment. On the horizontal axis, $k_{\rho }/k_0=n_{glass}\sin {\theta }$ where $k_{\rho }$ is the in-plane wavevector component, $k_0$ equals $\omega /c$, $n_{glass}$ is the refractive index of glass and $\theta$ is the detection angle in glass. The experimental data in wavelength has been converted to energy using a Jacobian transformation [52,53].
Fig. 4.
Fig. 4. Theoretical calculations of the modulus of the electric field in MIM stacks as a function of $z$ (spatial coordinate in the direction perpendicular to the stack layers) and energy, for different values of the in-plane wavevector $k_{\rho }/k_0$. $\textrm{SiO}_2$ layer thicknesses of $190$ nm and $310$ nm are considered (see left and right columns respectively). The $k_{\rho }/k_0$ values used are (a)–(b) 1.01, (c)–(d) 1.05, (e)–(f) 1.11 and (g)–(h) 1.30.
Fig. 5.
Fig. 5. Comparison of optical and electrical excitation. The experimental data is measured on the $\textrm{Au}$-$\textrm{SiO}_2$-$\textrm{Au}$ MIM stacks with (a)–(c) $d_{\textrm{SiO}_2}=190$ nm and (d)–(f) $d_{\textrm{SiO}_2}=310$ nm. Parts (a) and (d): Fourier-space images acquired in reflection when the sample is back-illuminated with a focused laser beam emitting at $\lambda _0=632.8$ nm. Parts (b) and (e): Fourier-space images acquired using STM excitation of the sample; a bandpass filter centered at $\lambda _0=625$ nm with a bandwidth of $26$ nm is placed before the detector (acquisition time $300$ s, sample bias $2.8$ V, setpoint current $1$ nA). [(c) and (f)] Intensity profiles taken along the $\mathbf {k_x}$-axis (dashed lines) in the Fourier-space images shown in (a), (b), (d) and (e), respectively. In (a) and (d), a spinning diffuser is placed in front of the laser source to reduce the speckle of the laser beam in the recorded reflection images.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

exp ( i k 0 R 0 ) R 0 = i 0 d k ρ k ρ k z J 0 ( k ρ ρ ) exp ( i k z | z h | )
S g l a s s ( k ρ , z , ω ) = E g l a s s ρ H g l a s s ϕ .
E g l a s s ρ ( k ρ , z ) = k ρ 2 4 π ε 0 ε a i r k z g l a s s k z a i r ε a i r ε g l a s s J 0 ( k ρ ρ ) t ( p ) ( δ ) exp { i [ k z a i r h k z g l a s s ( z + δ ) ] }
H g l a s s ϕ ( k ρ , z ) = ω 4 π k ρ 2 k z a i r J 0 ( k ρ ρ ) t ( p ) ( δ ) exp { i [ k z a i r h k z g l a s s ( z + δ ) ] }
S a ( k ρ , z , ω ) = Re { k 0 2 k z g l a s s ω μ 0 μ k ρ 2 | t 1 m ( p ) ( k ρ , z ) | 2 | k z a i r | 2 } .
S f ( k ρ , z , ω ) = Re { k 0 2 k z g l a s s ω μ 0 μ k ρ 2 | t m 1 ( p ) ( k ρ , z ) | 2 | k z a i r | 2 exp ( 2 k z a i r h ) } .
T ( ω ) = M m ( m 1 ) Φ m 1 Φ 2 M 21 .
M j k = 1 t j k ( 1 r j k r j k 1 )
Φ j = ( ϕ j 0 0 ϕ ¯ j )
( E m + E m ) = ( T 11 T 12 T 21 T 22 ) ( 1 r ) E 1
E m = 0 = T 21 + T 22 r .
r = E 1 E 1 + = T 21 T 22 .
t = E m + E 1 + = T 11 + r T 12 = T 11 T 12 T 21 T 22 .
E 1 ( z ) = ( E 1 + E 1 ) = ( 1 r ) E 0 E 2 ( z ) = ( e i k 2 z ( z z 1 ) 0 0 e i k 2 z ( z z 1 ) ) M 21 E 1 ( z 1 ) z [ z 1 , z 2 ] E j ( z ) = ( e i k j z ( z z j 1 ) 0 0 e i k j z ( z z j 1 ) ) M j j 1 Φ j 1 E j 1 ( z j 1 ) z [ z j 1 , z j ] E m ( z ) = ( e i k m z ( z z m 1 ) 0 0 e i k m z ( z z m 1 ) ) M m ( m 1 ) Φ m 1 E m 1 ( z m 1 ) z [ z m 1 , z m ]

Metrics