Abstract

We propose an integrated two-dimensional beam-steering device based on an on-chip silicon-nitride switch/emitter structure and off-chip lens for light detection and ranging (Lidar) application at 1550 nm. In this device, light is guided by a 1 × 16 switch to one grating emitter in a 4 × 4 grating-emitter array. The beam from the grating emitter is collimated and steered by a fixed lens. By changing the grating emitter that emits light, different beam-steering angle can be achieved. A divergence angle of 0.06° and a field of view of 2.07° × 4.12° in the far field are achieved. The device has O(log2N) power consumption for N emitters, allows digital control and achieves 18 dB background suppression. Blind-zone elimination and broadband operation are also achieved in our lens-based beam-steering device. Therefore, it is suitable for broadband solid-state Lidar application.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single chip lidar with discrete beam steering by digital micromirror device

Braden Smith, Brandon Hellman, Adley Gin, Alonzo Espinoza, and Yuzuru Takashima
Opt. Express 25(13) 14732-14745 (2017)

Ultra-compact electrically controlled beam steering chip based on coherently coupled VCSEL array directly integrated with optical phased array

Guanzhong Pan, Chen Xu, Yiyang Xie, Yibo Dong, Qiuhua Wang, Jun Deng, Jie Sun, and Hongda Chen
Opt. Express 27(10) 13910-13922 (2019)

Prism lens for beam collimation in a silicon photonic crystal beam-steering device

Jun Maeda, Daichi Akiyama, Hiroyuki Ito, Hiroshi Abe, and Toshihiko Baba
Opt. Lett. 44(23) 5780-5783 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for autonomous driving,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 1907–1915.
  2. M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J.-W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541–3544 (2017).
    [Crossref]
  3. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
    [Crossref]
  4. J. K. Doylend, M. J. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref]
  5. J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref]
  6. Y. Wang, G. Zhou, X. Zhang, K. Kwon, P.-A. Blanche, N. Triesault, K.-S. Yu, and M. C. Wu, “2D broadband beamsteering with large-scale MEMS optical phased array,” Optica 6(5), 557–562 (2019).
    [Crossref]
  7. C. Errando-Herranz, N. Le Thomas, and K. B. Gylfason, “Low-power optical beam steering by microelectromechanical waveguide gratings,” Opt. Lett. 44(4), 855–858 (2019).
    [Crossref]
  8. B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25(13), 14732–14745 (2017).
    [Crossref]
  9. J. K. Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE7093, (2008).
  10. J. Lindle, A. Watnik, and V. Cassella, “Efficient multibeam large-angle nonmechanical laser beam steering from computer-generated holograms rendered on a liquid crystal spatial light modulator,” Appl. Opt. 55(16), 4336–4341 (2016).
    [Crossref]
  11. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
    [Crossref]
  12. M. Raval, A. Yaacobi, and M. R. Watts, “Integrated visible light phased array system for autostereoscopic image projection,” Opt. Lett. 43(15), 3678–3681 (2018).
    [Crossref]
  13. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express 25(3), 2511–2528 (2017).
    [Crossref]
  14. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
    [Crossref]
  15. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
    [Crossref]
  16. J. Xu, M. Cua, E. H. Zhou, Y. Horie, A. Faraon, and C. Yang, “Wide-angular-range and high-resolution beam steering by a metasurface-coupled phased array,” Opt. Lett. 43(21), 5255–5258 (2018).
    [Crossref]
  17. M. Zadka, Y. C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
    [Crossref]
  18. W. Xu, L. Zhou, L. Lu, and J. Chen, “Aliasing-free optical phased array beam-steering with a plateau envelope,” Opt. Express 27(3), 3354–3368 (2019).
    [Crossref]
  19. Y. Zhang, Y. C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. J. Ben Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27(3), 1929–1940 (2019).
    [Crossref]
  20. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref]
  21. R. Fatemi, B. Abiri, A. Khachaturian, and A. Hajimiri, “High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture,” Opt. Express 26(23), 29983–29999 (2018).
    [Crossref]
  22. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
    [Crossref]
  23. J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.
  24. S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.
  25. M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, “Lidar system with nonmechanical electrowetting-based wide-angle beam steering,” Opt. Express 27(4), 4404–4415 (2019).
    [Crossref]
  26. D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “Demonstration of a new optical scanner using silicon photonics integrated circuit,” Opt. Express 27(3), 2499–2508 (2019).
    [Crossref]
  27. Y.-C. Chang, M. C. Shin, C. T. Phare, S. A. Miller, E. Shim, and M. Lipson, “Metalens-enabled low-power solid-state 2D beam steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.5.
  28. J. W. Goodman, Introduction to Fourier optics, (Roberts and Company, 2005).
  29. Y.-C. Chang, S. P. Roberts, B. Stern, and M. Lipson, “Resonance-free light recycling,” Prepr. at https://arxiv.org/abs/1710.02891 (2017).
  30. K. J. Kanzler, “Transformation of a gaussian laser beam to an Airy pattern for use in focal plane intensity shaping using diffractive optics,” in Laser Beam Shaping II (International Society for Optics and Photonics, 2001), pp. 58–65.
  31. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref]
  32. M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
    [Crossref]
  33. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
    [Crossref]

2019 (7)

Y. Wang, G. Zhou, X. Zhang, K. Kwon, P.-A. Blanche, N. Triesault, K.-S. Yu, and M. C. Wu, “2D broadband beamsteering with large-scale MEMS optical phased array,” Optica 6(5), 557–562 (2019).
[Crossref]

C. Errando-Herranz, N. Le Thomas, and K. B. Gylfason, “Low-power optical beam steering by microelectromechanical waveguide gratings,” Opt. Lett. 44(4), 855–858 (2019).
[Crossref]

W. Xu, L. Zhou, L. Lu, and J. Chen, “Aliasing-free optical phased array beam-steering with a plateau envelope,” Opt. Express 27(3), 3354–3368 (2019).
[Crossref]

Y. Zhang, Y. C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. J. Ben Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27(3), 1929–1940 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, “Lidar system with nonmechanical electrowetting-based wide-angle beam steering,” Opt. Express 27(4), 4404–4415 (2019).
[Crossref]

D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “Demonstration of a new optical scanner using silicon photonics integrated circuit,” Opt. Express 27(3), 2499–2508 (2019).
[Crossref]

2018 (6)

2017 (5)

2016 (2)

2015 (1)

2013 (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

2011 (1)

2009 (1)

2000 (1)

Abediasl, H.

Abiri, B.

Baets, R.

Barbastathis, G.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

Ben Yoo, S. J.

Blanche, P.-A.

Bogaerts, W.

Bovington, J. T.

Bowers, J. E.

Bramhavar, S.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

Bright, V. M.

Byrd, M. J.

Cassella, V.

Chang, Y. C.

Chang, Y.-C.

Y.-C. Chang, M. C. Shin, C. T. Phare, S. A. Miller, E. Shim, and M. Lipson, “Metalens-enabled low-power solid-state 2D beam steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.5.

Y.-C. Chang, S. P. Roberts, B. Stern, and M. Lipson, “Resonance-free light recycling,” Prepr. at https://arxiv.org/abs/1710.02891 (2017).

Chen, J.

Chen, X.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for autonomous driving,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 1907–1915.

Chulwoo Oh, J. K.

J. K. Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE7093, (2008).

Coldren, L.

Coldren, L. A.

Cole, D. B.

Colosimo, J.

Coolbaugh, D.

Cormack, R. H.

Cua, M.

Dou, X.

Doylend, J. K.

Errando-Herranz, C.

Escuti, Michael J.

J. K. Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE7093, (2008).

Espinoza, A.

Faraon, A.

Fatemi, R.

Feshali, A.

Freude, W.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Ganin, D.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Gentry, C.

Gin, A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics, (Roberts and Company, 2005).

Gopinath, J. T.

Gylfason, K. B.

Hajimiri, A.

Hashemi, H.

Heck, J.

Heck, M. J.

Helkey, R.

Hellman, B.

Herd, J.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Horie, Y.

Hosting, Lance

J. K. Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE7093, (2008).

Houdré, R.

Hutchison, D. N.

Ichikawa, T.

Inoue, D.

Jágerská, J.

Johnson, S.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

Juodawlkis, P.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Kanzler, K. J.

K. J. Kanzler, “Transformation of a gaussian laser beam to an Airy pattern for use in focal plane intensity shaping using diffractive optics,” in Laser Beam Shaping II (International Society for Optics and Photonics, 2001), pp. 58–65.

Karpov, M.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kawasaki, A.

Khachaturian, A.

Khandaker, M.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Kharas, D.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

Kim, S.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

Kim, W.

Kippenberg, T. J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Komljenovic, T.

Koos, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kordts, A.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Krockenberger, J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Kumar, R.

Kwon, K.

Le Thomas, N.

Li, B.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for autonomous driving,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 1907–1915.

Li, N.

Lim, W. Y.

Lin, S.

Lindle, J.

Ling, Y. C.

Lipson, M.

M. Zadka, Y. C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref]

Y.-C. Chang, S. P. Roberts, B. Stern, and M. Lipson, “Resonance-free light recycling,” Prepr. at https://arxiv.org/abs/1710.02891 (2017).

Y.-C. Chang, M. C. Shin, C. T. Phare, S. A. Miller, E. Shim, and M. Lipson, “Metalens-enabled low-power solid-state 2D beam steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.5.

López, J. J.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Lu, L.

Ma, H.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for autonomous driving,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 1907–1915.

Marin-Palomo, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Matsumoto, H.

Miller, S. A.

Y.-C. Chang, M. C. Shin, C. T. Phare, S. A. Miller, E. Shim, and M. Lipson, “Metalens-enabled low-power solid-state 2D beam steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.5.

Minoshima, K.

Mohanty, A.

Pan, J.-W.

Peters, J. D.

Pfeiffer, M. H. P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Phare, C. T.

Poulton, C. V.

Qiu, J.

Randel, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Raval, M.

Roberts, S. P.

Rong, H.

Russo, P.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Sadighi, D.

Serati, Steve

J. K. Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE7093, (2008).

Shah Hosseini, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Shangguan, M.

Shim, E.

Y.-C. Chang, M. C. Shin, C. T. Phare, S. A. Miller, E. Shim, and M. Lipson, “Metalens-enabled low-power solid-state 2D beam steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.5.

Shin, M. C.

Y.-C. Chang, M. C. Shin, C. T. Phare, S. A. Miller, E. Shim, and M. Lipson, “Metalens-enabled low-power solid-state 2D beam steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.5.

Skirlo, S. A.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Sloan, J.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

Smith, B.

Soljacic, M.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

Sorace-Agaskar, C.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

Stern, B.

Y.-C. Chang, S. P. Roberts, B. Stern, and M. Lipson, “Resonance-free light recycling,” Prepr. at https://arxiv.org/abs/1710.02891 (2017).

Su, Z.

Suh, M.-G.

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Suni, P.

Supekar, O. D.

Takashima, Y.

Timurdogan, E.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Triesault, N.

Trocha, P.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Vahala, K. J.

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

Van Acoleyen, K.

Vermeulen, D.

Wan, J.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for autonomous driving,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 1907–1915.

Wang, C.

Wang, Y.

Watnik, A.

Watts, M. R.

Weimann, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Whaley, G.

Wolf, S.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Wu, M. C.

Xia, H.

Xia, T.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for autonomous driving,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 1907–1915.

Xu, J.

Xu, W.

Yaacobi, A.

Yamashita, T.

Yang, C.

Yu, K.-S.

Zadka, M.

Zhang, K.

Zhang, Q.

Zhang, X.

Zhang, Y.

Zhou, E. H.

Zhou, G.

Zhou, L.

Zohrabi, M.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Opt. Express (10)

J. K. Doylend, M. J. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref]

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
[Crossref]

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express 25(3), 2511–2528 (2017).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25(13), 14732–14745 (2017).
[Crossref]

R. Fatemi, B. Abiri, A. Khachaturian, and A. Hajimiri, “High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture,” Opt. Express 26(23), 29983–29999 (2018).
[Crossref]

Y. Zhang, Y. C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. J. Ben Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27(3), 1929–1940 (2019).
[Crossref]

D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, “Demonstration of a new optical scanner using silicon photonics integrated circuit,” Opt. Express 27(3), 2499–2508 (2019).
[Crossref]

W. Xu, L. Zhou, L. Lu, and J. Chen, “Aliasing-free optical phased array beam-steering with a plateau envelope,” Opt. Express 27(3), 3354–3368 (2019).
[Crossref]

M. Zadka, Y. C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
[Crossref]

M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, “Lidar system with nonmechanical electrowetting-based wide-angle beam steering,” Opt. Express 27(4), 4404–4415 (2019).
[Crossref]

Opt. Lett. (7)

M. Raval, A. Yaacobi, and M. R. Watts, “Integrated visible light phased array system for autostereoscopic image projection,” Opt. Lett. 43(15), 3678–3681 (2018).
[Crossref]

J. Xu, M. Cua, E. H. Zhou, Y. Horie, A. Faraon, and C. Yang, “Wide-angular-range and high-resolution beam steering by a metasurface-coupled phased array,” Opt. Lett. 43(21), 5255–5258 (2018).
[Crossref]

C. Errando-Herranz, N. Le Thomas, and K. B. Gylfason, “Low-power optical beam steering by microelectromechanical waveguide gratings,” Opt. Lett. 44(4), 855–858 (2019).
[Crossref]

M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J.-W. Pan, “Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector,” Opt. Lett. 42(18), 3541–3544 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[Crossref]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref]

Optica (2)

Science (2)

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359(6378), 884–887 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359(6378), 887–891 (2018).
[Crossref]

Other (8)

J. K. Chulwoo Oh, Michael J. Escuti, Lance Hosting, and Steve Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE7093, (2008).

J. J. López, S. A. Skirlo, D. Kharas, J. Sloan, J. Herd, P. Juodawlkis, M. Soljačić, and C. Sorace-Agaskar, “Planar-lens Enabled Beam Steering for Chip-scale LIDAR,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SM3I.1.

S. Kim, J. Sloan, J. J. López, D. Kharas, J. Herd, S. Bramhavar, P. Juodawlkis, G. Barbastathis, S. Johnson, C. Sorace-Agaskar, and M. Soljačić, “Luneburg Lens for Wide-Angle Chip-Scale Optical Beam Steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.7.

Y.-C. Chang, M. C. Shin, C. T. Phare, S. A. Miller, E. Shim, and M. Lipson, “Metalens-enabled low-power solid-state 2D beam steering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper SF3N.5.

J. W. Goodman, Introduction to Fourier optics, (Roberts and Company, 2005).

Y.-C. Chang, S. P. Roberts, B. Stern, and M. Lipson, “Resonance-free light recycling,” Prepr. at https://arxiv.org/abs/1710.02891 (2017).

K. J. Kanzler, “Transformation of a gaussian laser beam to an Airy pattern for use in focal plane intensity shaping using diffractive optics,” in Laser Beam Shaping II (International Society for Optics and Photonics, 2001), pp. 58–65.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network for autonomous driving,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017), pp. 1907–1915.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. Principle of lens-based beam-steering device.
Fig. 2.
Fig. 2. Simulation of the proposed lens-based beam-steering device. (a) System schematics. Beam patterns at the (b) emitter array in the 1st FP, (c) “S” point in the 2nd FP, and (d) 3rd FP.
Fig. 3.
Fig. 3. Schematic diagram of the device. Inset: cross section of the device with Ti heater.
Fig. 4.
Fig. 4. Images of the chip and grating-emitter array. Inset: SEM image of the single emitter.
Fig. 5.
Fig. 5. (a) Near-field intensity profile of single the grating emitter simulated using finite-difference time-domain method. (b) Near-field intensity of the single emitter in the experiment. (c) Near-field intensity in the x and y directions of the single emitter in the experiment. (d) Beam divergence angle of the single emitter versus wavelength.
Fig. 6.
Fig. 6. (a) Optical output controlled by the thermo-optical switch. (b) Measured phase shift at different electrical power.
Fig. 7.
Fig. 7. (a) Experimental setup. (b) Photograph of the experimental setup.
Fig. 8.
Fig. 8. Three-dimensional FF beam pattern of the single spot at four different positions of the 4 × 4 emitter array.
Fig. 9.
Fig. 9. FF patterns of all the single spots along the (a) θ direction and (b) φ direction. The four colors in each panel represent the measured four FF patterns of four different emitters.
Fig. 10.
Fig. 10. Beam patterns in the(a) near field, (b) far field. (c) Far field pattern with an “N” shape.
Fig. 11.
Fig. 11. Principle of the blind-zone elimination in the FF using the defocusing method.
Fig. 12.
Fig. 12. Simulation results of the FF beam pattern (a) before and (b) after defocusing. (c) FF beam pattern after defocusing in an ideal lens system.
Fig. 13.
Fig. 13. Measured FF beam pattern (a) before and (b) after the defocusing process. Insets: measured beam pattern from an end-cut single-mode fiber.
Fig. 14.
Fig. 14. Simulated FF patterns with grating emission angles of (a) 10° at1540 nm, (b) 9° at1550 nm, and (c) 8° at 1560 nm using a commercial lens. Emission angles of (d) 10° at 1540 nm, (e) 9° at 1550 nm, and (f) 8° at 1560 nm using an ideal lens. Beam cross sections along the φ direction with light wavelengths of 1540, 1550, and 1560 nm in the (g) commercial lens system and (f) ideal lens system.
Fig. 15.
Fig. 15. FF spot array with wavelength varying from 1550 to 1580 nm.
Fig. 16.
Fig. 16. (a) Spot cross sections along the φ direction in the FF with wavelength varying from 1550 to 1580 nm. (b) Zoom-in view of the spot cross sections at a steering angle of −1.03°.
Fig. 17.
Fig. 17. (a) Near-field pattern with pulse input. (b) Far-field pattern with pulse input. (c) Waveform of the input pulse and emission output in the time domain. Inset: zoom-in view of the single pulse. (d) Optical spectra of the input and output pulses.

Tables (1)

Tables Icon

Table 1. Performance comparison of different lens-based integrated beam-steering devices

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E o u t 1 ( x , y ) = i λ f F [ E i n ( x 0 , y 0 ) ] | f x = x λ f , f y = y λ f
E o u t 2 ( x e , y e ) = i λ f F [ E o u t 1 ( x , y ) ] | f x e = x e λ f , f y e = y e λ f   = 1 λ 2 f 2 exp ( i 2 π λ f ) E i n ( x 0 , y 0 )
Δ θ = tan 1 ( w f )
θ = tan 1 ( l f )

Metrics