Abstract

In this paper, an ultra-wideband terahertz metamaterial absorber is introduced based on a Snowflake Koch Fractal (SKF) dielectric loaded on a sheet of graphene. Instead of multilayered-graphene conventional structures, a single-layered non-structured graphene absorber is presented based on gradient width modulation and cavity method. The structure of the absorber is composed of four layers, which are upper SKF dielectric and metal film layer form two mirrors of an asymmetric Fabry-Perot cavity to confine terahertz electromagnetic (EM) waves. Full wave simulations demonstrate that the proposed structure is highly efficient whereas a 161% fractional bandwidth of over 0.9 absorbance is achieved under normal incident wave considering both TE and TM polarizations. The proposed structure is polarization insensitive yielding the same absorbance for both TE and TM polarizations. The absorbance and bandwidth of the structure is almost independent of altering the incident angle θ up to 60° and 30° for TM and TE polarizations, respectively. Avoiding graphene processing and simple shape geometry are the interesting advantages of this structure resulting in feasible fabrication. The proposed structure provides much greater absorbance bandwidth in comparison to previous works.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range

Longfang Ye, Yao Chen, Guoxiong Cai, Na Liu, Jinfeng Zhu, Zhengyong Song, and Qing Huo Liu
Opt. Express 25(10) 11223-11232 (2017)

Flexible dual-band all-graphene-dielectric terahertz absorber

Jiu-sheng Li, De-Xian Yan, and Jian-zhong Sun
Opt. Mater. Express 9(5) 2067-2075 (2019)

Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers

Yijun Cai, Kai-Da Xu, Naixing Feng, Rongrong Guo, Haijun Lin, and Jinfeng Zhu
Opt. Express 27(3) 3101-3112 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. R. Jha and G. Singh, Terahertz planar antennas for next generation communication. (Springer, 2014).
  2. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref]
  3. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  4. J. M. Jornet and I. F. Akyildiz, “Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks,” IEEE J. Select. Areas Commun. 31(12), 685–694 (2013).
    [Crossref]
  5. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  6. J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
    [Crossref]
  7. R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
    [Crossref]
  8. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
    [Crossref]
  9. C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications. (John Wiley & Sons, 2005).
  10. H. M. Nemat-Abad, E. Zareian-Jahromi, and R. Basiri, “Design and equivalent circuit model extraction of a third-order band-pass frequency selective surface filter for terahertz applications,” Int. J. Eng. Sci. Technol. 22(3), 862–868 (2019).
    [Crossref]
  11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  12. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
    [Crossref]
  13. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
    [Crossref]
  14. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref]
  15. C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
    [Crossref]
  16. Q. Bao, H. Hoh, and Y. Zhang, Graphene Photonics, Optoelectronics, and Plasmonics. (CRC Press, 2017).
  17. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref]
  18. X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W.-L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
    [Crossref]
  19. F. Gao, Z. Zhu, W. Xu, J. Zhang, C. Guo, K. Liu, X. Yuan, and S. Qin, “Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect,” Opt. Express 25(9), 9579–9586 (2017).
    [Crossref]
  20. Y. Cai and K.-D. Xu, “Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure,” Opt. Express 26(24), 31693–31705 (2018).
    [Crossref]
  21. J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
    [Crossref]
  22. L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref]
  23. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
    [Crossref]
  24. Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
    [Crossref]
  25. S. E. Hosseininejad, N. Komjani, and M. T. Noghani, “A comparison of graphene and noble metals as conductors for plasmonic one-dimensional waveguides,” IEEE Trans. Nanotechnol. 14(5), 829–836 (2015).
    [Crossref]
  26. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref]
  27. W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Dielectric loaded graphene plasmon waveguide,” Opt. Express 23(4), 5147–5153 (2015).
    [Crossref]
  28. P. R. Prajapati, G. G. K. Murthy, A. Patnaik, and M. V. Kartikeyan, “Design and testing of a compact circularly polarised microstrip antenna with fractal defected ground structure for L-band applications,” IET Microw. Antennas Propag. 9(11), 1179–1185 (2015).
    [Crossref]
  29. C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
    [Crossref]
  30. G. W. Hanson, “Dyadic Green's functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Propag. 56(3), 747–757 (2008).
    [Crossref]

2019 (1)

H. M. Nemat-Abad, E. Zareian-Jahromi, and R. Basiri, “Design and equivalent circuit model extraction of a third-order band-pass frequency selective surface filter for terahertz applications,” Int. J. Eng. Sci. Technol. 22(3), 862–868 (2019).
[Crossref]

2018 (3)

2017 (3)

2016 (1)

2015 (5)

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Dielectric loaded graphene plasmon waveguide,” Opt. Express 23(4), 5147–5153 (2015).
[Crossref]

P. R. Prajapati, G. G. K. Murthy, A. Patnaik, and M. V. Kartikeyan, “Design and testing of a compact circularly polarised microstrip antenna with fractal defected ground structure for L-band applications,” IET Microw. Antennas Propag. 9(11), 1179–1185 (2015).
[Crossref]

S. E. Hosseininejad, N. Komjani, and M. T. Noghani, “A comparison of graphene and noble metals as conductors for plasmonic one-dimensional waveguides,” IEEE Trans. Nanotechnol. 14(5), 829–836 (2015).
[Crossref]

2014 (3)

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

2013 (1)

J. M. Jornet and I. F. Akyildiz, “Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks,” IEEE J. Select. Areas Commun. 31(12), 685–694 (2013).
[Crossref]

2012 (2)

2011 (5)

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green's functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Propag. 56(3), 747–757 (2008).
[Crossref]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Akyildiz, I. F.

J. M. Jornet and I. F. Akyildiz, “Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks,” IEEE J. Select. Areas Commun. 31(12), 685–694 (2013).
[Crossref]

Alaee, R.

Al-Naib, I.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Bao, Q.

Q. Bao, H. Hoh, and Y. Zhang, Graphene Photonics, Optoelectronics, and Plasmonics. (CRC Press, 2017).

Basiri, R.

H. M. Nemat-Abad, E. Zareian-Jahromi, and R. Basiri, “Design and equivalent circuit model extraction of a third-order band-pass frequency selective surface filter for terahertz applications,” Int. J. Eng. Sci. Technol. 22(3), 862–868 (2019).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Boudouris, B. W.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Cai, G.

Cai, Y.

Caloz, C.

C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications. (John Wiley & Sons, 2005).

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Chen, C.-F.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Chen, Y.

Chern, R.-L.

Cole, M. T.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref]

Cong, L.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Crommie, M. F.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Fan, K.

Farhat, M.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Gao, B.

Gao, F.

Geng, B.

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Girit, C.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Gou, J.

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

Guo, C.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref]

F. Gao, Z. Zhu, W. Xu, J. Zhang, C. Guo, K. Liu, X. Yuan, and S. Qin, “Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect,” Opt. Express 25(9), 9579–9586 (2017).
[Crossref]

Guo, C. C.

Guo, W.

Han, T.

Hanson, G. W.

G. W. Hanson, “Dyadic Green's functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Propag. 56(3), 747–757 (2008).
[Crossref]

Hao, Y.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

He, W.

Hoh, H.

Q. Bao, H. Hoh, and Y. Zhang, Graphene Photonics, Optoelectronics, and Plasmonics. (CRC Press, 2017).

Horng, J.

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Hosseininejad, S. E.

S. E. Hosseininejad, N. Komjani, and M. T. Noghani, “A comparison of graphene and noble metals as conductors for plasmonic one-dimensional waveguides,” IEEE Trans. Nanotechnol. 14(5), 829–836 (2015).
[Crossref]

Huang, X.

Itoh, T.

C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications. (John Wiley & Sons, 2005).

Jen, A. K.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Jha, K. R.

K. R. Jha and G. Singh, Terahertz planar antennas for next generation communication. (Springer, 2014).

Jornet, J. M.

J. M. Jornet and I. F. Akyildiz, “Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks,” IEEE J. Select. Areas Commun. 31(12), 685–694 (2013).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Kartikeyan, M. V.

P. R. Prajapati, G. G. K. Murthy, A. Patnaik, and M. V. Kartikeyan, “Design and testing of a compact circularly polarised microstrip antenna with fractal defected ground structure for L-band applications,” IET Microw. Antennas Propag. 9(11), 1179–1185 (2015).
[Crossref]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Komjani, N.

S. E. Hosseininejad, N. Komjani, and M. T. Noghani, “A comparison of graphene and noble metals as conductors for plasmonic one-dimensional waveguides,” IEEE Trans. Nanotechnol. 14(5), 829–836 (2015).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lederer, F.

Li, W.

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Lin, C.-H.

Lin, H.-Y.

Liu, K.

Liu, N.

Liu, Q. H.

Liu, X.

Liu, Y.

Louie, S. G

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Lu, Q. S.

Luo, J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Ma, T.

Martin, M.

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Milne, M. I.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Murthy, G. G. K.

P. R. Prajapati, G. G. K. Murthy, A. Patnaik, and M. V. Kartikeyan, “Design and testing of a compact circularly polarised microstrip antenna with fractal defected ground structure for L-band applications,” IET Microw. Antennas Propag. 9(11), 1179–1185 (2015).
[Crossref]

Naeem, M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref]

Nemat-Abad, H. M.

H. M. Nemat-Abad, E. Zareian-Jahromi, and R. Basiri, “Design and equivalent circuit model extraction of a third-order band-pass frequency selective surface filter for terahertz applications,” Int. J. Eng. Sci. Technol. 22(3), 862–868 (2019).
[Crossref]

Noghani, M. T.

S. E. Hosseininejad, N. Komjani, and M. T. Noghani, “A comparison of graphene and noble metals as conductors for plasmonic one-dimensional waveguides,” IEEE Trans. Nanotechnol. 14(5), 829–836 (2015).
[Crossref]

Padilla, W. J.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Park, C.-H.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Patnaik, A.

P. R. Prajapati, G. G. K. Murthy, A. Patnaik, and M. V. Kartikeyan, “Design and testing of a compact circularly polarised microstrip antenna with fractal defected ground structure for L-band applications,” IET Microw. Antennas Propag. 9(11), 1179–1185 (2015).
[Crossref]

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Prajapati, P. R.

P. R. Prajapati, G. G. K. Murthy, A. Patnaik, and M. V. Kartikeyan, “Design and testing of a compact circularly polarised microstrip antenna with fractal defected ground structure for L-band applications,” IET Microw. Antennas Propag. 9(11), 1179–1185 (2015).
[Crossref]

Qin, S.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref]

F. Gao, Z. Zhu, W. Xu, J. Zhang, C. Guo, K. Liu, X. Yuan, and S. Qin, “Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect,” Opt. Express 25(9), 9579–9586 (2017).
[Crossref]

Qin, S. Q.

Ran, J.

Rockstuhl, C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Segalman, R. A.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Shadrivov, I. V.

Shen, Y. R.

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Singh, G.

K. R. Jha and G. Singh, Terahertz planar antennas for next generation communication. (Springer, 2014).

Singh, R.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Song, Z.

Tan, S.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Tuncer, H. M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref]

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Wang, J.

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

William, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wu, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref]

Xu, K.-D.

Xu, W.

Yahiaoui, R.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Yan, F.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Yang, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref]

Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
[Crossref]

Yang, F.

Yang, J.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref]

Ye, L.

Ye, W. M.

Yuan, X.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref]

F. Gao, Z. Zhu, W. Xu, J. Zhang, C. Guo, K. Liu, X. Yuan, and S. Qin, “Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect,” Opt. Express 25(9), 9579–9586 (2017).
[Crossref]

Yuan, X. D.

Zareian-Jahromi, E.

H. M. Nemat-Abad, E. Zareian-Jahromi, and R. Basiri, “Design and equivalent circuit model extraction of a third-order band-pass frequency selective surface filter for terahertz applications,” Int. J. Eng. Sci. Technol. 22(3), 862–868 (2019).
[Crossref]

Zettl, A.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Zhang, J.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref]

F. Gao, Z. Zhu, W. Xu, J. Zhang, C. Guo, K. Liu, X. Yuan, and S. Qin, “Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect,” Opt. Express 25(9), 9579–9586 (2017).
[Crossref]

Zhang, J. F.

Zhang, W.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Zhang, W.-L.

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Zhang, Y.

Q. Bao, H. Hoh, and Y. Zhang, Graphene Photonics, Optoelectronics, and Plasmonics. (CRC Press, 2017).

Zhu, J.

Zhu, Z.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref]

F. Gao, Z. Zhu, W. Xu, J. Zhang, C. Guo, K. Liu, X. Yuan, and S. Qin, “Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect,” Opt. Express 25(9), 9579–9586 (2017).
[Crossref]

Zhu, Z. H.

Zhuo, X. H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Adv. Opt. Mater. (1)

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

AIP Adv. (1)

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

Appl. Phys. Lett. (1)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

IEEE J. Select. Areas Commun. (1)

J. M. Jornet and I. F. Akyildiz, “Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks,” IEEE J. Select. Areas Commun. 31(12), 685–694 (2013).
[Crossref]

IEEE Trans. Antennas Propag. (1)

G. W. Hanson, “Dyadic Green's functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Propag. 56(3), 747–757 (2008).
[Crossref]

IEEE Trans. Nanotechnol. (1)

S. E. Hosseininejad, N. Komjani, and M. T. Noghani, “A comparison of graphene and noble metals as conductors for plasmonic one-dimensional waveguides,” IEEE Trans. Nanotechnol. 14(5), 829–836 (2015).
[Crossref]

IET Microw. Antennas Propag. (1)

P. R. Prajapati, G. G. K. Murthy, A. Patnaik, and M. V. Kartikeyan, “Design and testing of a compact circularly polarised microstrip antenna with fractal defected ground structure for L-band applications,” IET Microw. Antennas Propag. 9(11), 1179–1185 (2015).
[Crossref]

Int. J. Eng. Sci. Technol. (1)

H. M. Nemat-Abad, E. Zareian-Jahromi, and R. Basiri, “Design and equivalent circuit model extraction of a third-order band-pass frequency selective surface filter for terahertz applications,” Int. J. Eng. Sci. Technol. 22(3), 862–868 (2019).
[Crossref]

J. Appl. Phys. (2)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhuo, J. Luo, A. K. Jen, J. C. William, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083103 (2015).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Nature (1)

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011).
[Crossref]

Opt. Express (9)

C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref]

W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, and S. Q. Qin, “Dielectric loaded graphene plasmon waveguide,” Opt. Express 23(4), 5147–5153 (2015).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref]

F. Gao, Z. Zhu, W. Xu, J. Zhang, C. Guo, K. Liu, X. Yuan, and S. Qin, “Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect,” Opt. Express 25(9), 9579–9586 (2017).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref]

X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W.-L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
[Crossref]

Y. Cai and K.-D. Xu, “Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure,” Opt. Express 26(24), 31693–31705 (2018).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Sci. Rep. (2)

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, M. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2015).
[Crossref]

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref]

Other (3)

Q. Bao, H. Hoh, and Y. Zhang, Graphene Photonics, Optoelectronics, and Plasmonics. (CRC Press, 2017).

K. R. Jha and G. Singh, Terahertz planar antennas for next generation communication. (Springer, 2014).

C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications. (John Wiley & Sons, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Proposed periodic graphene-based terahertz absorber. (b) perspective view, (c) top view, (d) side view of corresponding unit cell.
Fig. 2.
Fig. 2. Different iteration of snowflake Koch curve (a) 0th order iteration (b) 1st order iteration (c) 2nd order iteration with parameters: P = 23µm and $R = P\sqrt 3 /2$ [28].
Fig. 3.
Fig. 3. Absorption spectra corresponding to the 0th order structure in Fig. 2(a) for TE and TM polarization under normal incidence considering μc=0.5 eV.
Fig. 4.
Fig. 4. Absorption spectra corresponding to the 1st order structure in Fig. 2(b) for TE and TM polarization under normal incidence considering μc = 0.5 eV.
Fig. 5.
Fig. 5. 2nd order SKF in Fig. 2(c) divided into infinite infinitesimal trapezoids along x direction.
Fig. 6.
Fig. 6. Absorption spectra corresponding to the 2nd order structure in Fig. 2(c) for TE and TM polarization under normal incidence considering μc=0.5 eV.
Fig. 7.
Fig. 7. Electric field distribution of Fig. 1 considering μc=0.5 eV at the interface of snowflake Koch dielectric and graphene for TM polarization at frequency of (a) 0.3 THz (b) 4.5 THz (c) 9 THz and for TE polarization at frequency of (d) 0.3 THz (e) 4.5 THz (f) 9 THz.
Fig. 8.
Fig. 8. Absorbance of the proposed structure in Fig. 1 considering ts=20 µm, td=3 µm, and different q values.
Fig. 9.
Fig. 9. Electric field distribution at the center of structure in Fig. 1 considering two adjacent unit cells in (a) yz plane and (b) xz plane.
Fig. 10.
Fig. 10. Absorbance of the proposed structure for different thicknesses of (a) separating dielectric when q = 30 µm, and ts=3 μm (b) upper Snowflake Koch Fractal dielectric when q = 30 µm, and ts=20 µm.
Fig. 11.
Fig. 11. Absorbance of the proposed structure in Fig. 1 as a function of frequency and incident angle for (a) TM polarization and (b) TE polarization.
Fig. 12.
Fig. 12. Absorption spectra of the proposed absorber in Fig. 1: (a) as a function of frequency and μc (b) considering μc=0 (c) magnetic field distribution of the proposed structure for μc=0.

Tables (1)

Tables Icon

Table 1. Physical and practical characteristics

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε G = ε G r + j ε G i m = ( σ G i m ω d g + ε 0 ) + j ( σ G r ω d g ) ,
σ G ( ω , μ c , τ , T ) = σ int ra + σ in ter ,
σ int ra = j ω j τ 1 e 2 K B T π 2 ( μ c K B T + 2 ln ( e μ c K B T + 1 ) ) ,
σ in ter = j ( ω j τ 1 ) e 2 π 2 0 f ( ε ) f ( + ε ) ( ω j τ 1 ) 2 4 ( ε / ) 2 d ε ,
σ G int r a = j ω j τ 1 e 2 K B T π 2 ( μ c K B T + 2 ln ( e μ c K B T + 1 ) ) .
A = 1 T R ,
k G S P ( ω ) = π 2 e 2 E f ε 0 ( ε s + ε d ) ω ( ω + j τ 1 ) ,

Metrics