Abstract

By irradiating a water jet with double pulses, we demonstrate 4-fold higher THz wave generation than for a single pump pulse. The dependence of the enhanced THz signal on the temporal delay between two collinear pulses reveals the optimal time for launching signal pulse is near 2-4 ps, which corresponds to the time needed to create the complete pre-ionization state when sufficient electron density is already induced, and there is no plasma reflection of the pump pulse radiation. The increase in THz waves generation efficiency corresponds to the case of water jet excitation by the pulses with an optimal duration for a certain jet thickness, which is determined by the spatial pulse size. Using a theoretical model of the interaction of a high-intensity sub-picosecond pulse with an isotropic medium, we held a numerical simulation, which well describes the experimental results when using 3 ps value of population relaxation time. Thus, in this work, double pump method allows not only to increase the energy of the generated THz waves, but also to determine the characteristic excited state lifetime of liquid water. The optical-to-terahertz conversion efficiency in case of double pulse excitation of water column is of the order of 0.5$\cdot$10$^{-3}$, which exceeds the typical values for THz waves generation during two-color filamentation in air and comparable with the achievable values due to the optical rectification in some crystals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flat liquid jet as a highly efficient source of terahertz radiation

Anton N. Tcypkin, Evgenia A. Ponomareva, Sergey E. Putilin, Semen V. Smirnov, Sviatoslav A. Shtumpf, Maksim V. Melnik, Yiwen E, Sergei A. Kozlov, and Xi-Cheng Zhang
Opt. Express 27(11) 15485-15494 (2019)

Optimal wavelength for two-color filamentation-induced terahertz sources

Vladimir Yu. Fedorov and Stelios Tzortzakis
Opt. Express 26(24) 31150-31159 (2018)

Terahertz wave generation from liquid nitrogen

Alexei V. Balakin, Jean-Louis Coutaz, Vladimir A. Makarov, Igor A. Kotelnikov, Yan Peng, Peter M. Solyankin, Yiming Zhu, and Alexander P. Shkurinov
Photon. Res. 7(6) 678-686 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
    [Crossref]
  2. S. Hwu, K. deSilva, and C. Jih, “Terahertz (thz) wireless systems for space applications,” in 2013 IEEE Sensors Applications Symposium Proceedings, (IEEE, 2013).
  3. C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
    [Crossref]
  4. K. Kim, J. Glownia, A. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007).
    [Crossref]
  5. F. Jahangiri, M. Hashida, S. Tokita, S. Sakabe, T. Nagashima, and M. Hangyo, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Appl. Phys. Lett. 99(26), 261503 (2011).
    [Crossref]
  6. Q. Jin, Y. E K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111(7), 071103 (2017).
    [Crossref]
  7. A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
    [Crossref]
  8. Y. E Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113(18), 181103 (2018).
    [Crossref]
  9. A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, Y. E S. Kozlov, and X.-C. Zhang, “Flat liquid jet as a highly efficient source of terahertz radiation,” Opt. Express 27(11), 15485–15494 (2019).
    [Crossref]
  10. L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
    [Crossref]
  11. L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta, Part B 53(3), 407–415 (1998).
    [Crossref]
  12. R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
    [Crossref]
  13. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
    [Crossref]
  14. X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
    [Crossref]
  15. K. Mori, M. Hashida, T. Nagashima, K. T. D. Li, Y. Nakamiya, and S. S. S. Inoue, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111(24), 241107 (2017).
    [Crossref]
  16. A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye laser,” Opt. Commun. 71(5), 301–304 (1989).
    [Crossref]
  17. C. Sarpe, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88(26), 261109 (2006).
    [Crossref]
  18. S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
    [Crossref]
  19. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. (General Publishing Company, 2000).

2019 (2)

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, Y. E S. Kozlov, and X.-C. Zhang, “Flat liquid jet as a highly efficient source of terahertz radiation,” Opt. Express 27(11), 15485–15494 (2019).
[Crossref]

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

2018 (1)

Y. E Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113(18), 181103 (2018).
[Crossref]

2017 (4)

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

Q. Jin, Y. E K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111(7), 071103 (2017).
[Crossref]

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

K. Mori, M. Hashida, T. Nagashima, K. T. D. Li, Y. Nakamiya, and S. S. S. Inoue, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111(24), 241107 (2017).
[Crossref]

2016 (1)

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

2011 (1)

F. Jahangiri, M. Hashida, S. Tokita, S. Sakabe, T. Nagashima, and M. Hangyo, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Appl. Phys. Lett. 99(26), 261503 (2011).
[Crossref]

2008 (1)

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

2007 (3)

K. Kim, J. Glownia, A. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007).
[Crossref]

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[Crossref]

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

2006 (1)

C. Sarpe, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88(26), 261109 (2006).
[Crossref]

2004 (1)

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

1998 (1)

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta, Part B 53(3), 407–415 (1998).
[Crossref]

1989 (1)

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye laser,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Akturk, S.

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Amico, C.

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Arai, G.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Assion, A.

C. Sarpe, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88(26), 261109 (2006).
[Crossref]

Baumert, T.

C. Sarpe, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88(26), 261109 (2006).
[Crossref]

Bloas, J. L.

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Cielo, P.

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta, Part B 53(3), 407–415 (1998).
[Crossref]

Corsi, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

Couairon, A.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Cristoforetti, G.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

Dai, J.

Q. Jin, Y. E K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111(7), 071103 (2017).
[Crossref]

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[Crossref]

deSilva, K.

S. Hwu, K. deSilva, and C. Jih, “Terahertz (thz) wireless systems for space applications,” in 2013 IEEE Sensors Applications Symposium Proceedings, (IEEE, 2013).

Dinh, T.-H.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Dubietis, A.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Dunne, P.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Ejima, T.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Feng, S.-J.

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

Franco, M.

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Giuffrida, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

Glownia, J.

Hangyo, M.

F. Jahangiri, M. Hashida, S. Tokita, S. Sakabe, T. Nagashima, and M. Hangyo, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Appl. Phys. Lett. 99(26), 261503 (2011).
[Crossref]

Hara, H.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Hashida, M.

K. Mori, M. Hashida, T. Nagashima, K. T. D. Li, Y. Nakamiya, and S. S. S. Inoue, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111(24), 241107 (2017).
[Crossref]

F. Jahangiri, M. Hashida, S. Tokita, S. Sakabe, T. Nagashima, and M. Hangyo, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Appl. Phys. Lett. 99(26), 261503 (2011).
[Crossref]

Hatano, T.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Hidalgo, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

Higashiguchi, T.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Houard, A.

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Hwu, S.

S. Hwu, K. deSilva, and C. Jih, “Terahertz (thz) wireless systems for space applications,” in 2013 IEEE Sensors Applications Symposium Proceedings, (IEEE, 2013).

Inoue, S. S. S.

K. Mori, M. Hashida, T. Nagashima, K. T. D. Li, Y. Nakamiya, and S. S. S. Inoue, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111(24), 241107 (2017).
[Crossref]

Ishida, Y.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye laser,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Jahangiri, F.

F. Jahangiri, M. Hashida, S. Tokita, S. Sakabe, T. Nagashima, and M. Hangyo, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Appl. Phys. Lett. 99(26), 261503 (2011).
[Crossref]

Jiang, W.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Jih, C.

S. Hwu, K. deSilva, and C. Jih, “Terahertz (thz) wireless systems for space applications,” in 2013 IEEE Sensors Applications Symposium Proceedings, (IEEE, 2013).

Jin, Q.

Q. Jin, Y. E K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111(7), 071103 (2017).
[Crossref]

Jukna, V.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

K. Williams, Y. E

Q. Jin, Y. E K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111(7), 071103 (2017).
[Crossref]

Kang, K.

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

Kim, K.

Kondo, Y.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Korn, G.

G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. (General Publishing Company, 2000).

Korn, T.

G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. (General Publishing Company, 2000).

Korolev, A.

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

Kozlov, S.

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

Legnaioli, S.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

Li, B.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Li, K. T. D.

K. Mori, M. Hashida, T. Nagashima, K. T. D. Li, Y. Nakamiya, and S. S. S. Inoue, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111(24), 241107 (2017).
[Crossref]

Li, Y. Z. Y.

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

Limpouch, J.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Liu, Y.

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Lokasani, R.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Makimura, T.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Melnik, M.

Mori, K.

K. Mori, M. Hashida, T. Nagashima, K. T. D. Li, Y. Nakamiya, and S. S. S. Inoue, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111(24), 241107 (2017).
[Crossref]

Mysyrowicz, A.

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Nagashima, T.

K. Mori, M. Hashida, T. Nagashima, K. T. D. Li, Y. Nakamiya, and S. S. S. Inoue, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111(24), 241107 (2017).
[Crossref]

F. Jahangiri, M. Hashida, S. Tokita, S. Sakabe, T. Nagashima, and M. Hangyo, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Appl. Phys. Lett. 99(26), 261503 (2011).
[Crossref]

Nakamiya, Y.

K. Mori, M. Hashida, T. Nagashima, K. T. D. Li, Y. Nakamiya, and S. S. S. Inoue, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111(24), 241107 (2017).
[Crossref]

Nakamoto, M.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye laser,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

O’Sullivan, G.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Palleschi, V.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

Ponomareva, E.

Prade, B.

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Putilin, S.

Q. Jin, Y. E

Y. E Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113(18), 181103 (2018).
[Crossref]

Rodriguez, G.

S. Kozlov, Y. E

Sabsabi, M.

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta, Part B 53(3), 407–415 (1998).
[Crossref]

Saito, H.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye laser,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Sakabe, S.

F. Jahangiri, M. Hashida, S. Tokita, S. Sakabe, T. Nagashima, and M. Hangyo, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Appl. Phys. Lett. 99(26), 261503 (2011).
[Crossref]

Salvetti, A.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

Sarpe, C.

C. Sarpe, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88(26), 261109 (2006).
[Crossref]

Sheng, Z.-M.

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

Shkurinov, A.

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

Shtumpf, S.

Smirnov, S.

St-Onge, L.

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta, Part B 53(3), 407–415 (1998).
[Crossref]

Stumpf, S.

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

Šuminas, R.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Tamošauskas, G.

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Taylor, A.

Tcypkin, A.

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, Y. E S. Kozlov, and X.-C. Zhang, “Flat liquid jet as a highly efficient source of terahertz radiation,” Opt. Express 27(11), 15485–15494 (2019).
[Crossref]

Y. E Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113(18), 181103 (2018).
[Crossref]

Tikhonchuk, V.

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Tognoni, E.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

Tokita, S.

F. Jahangiri, M. Hashida, S. Tokita, S. Sakabe, T. Nagashima, and M. Hangyo, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Appl. Phys. Lett. 99(26), 261503 (2011).
[Crossref]

Vallebona, C.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

Wang, W.-M.

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

Watanabe, A.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye laser,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Winter, M.

C. Sarpe, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88(26), 261109 (2006).
[Crossref]

Wollenhaupt, M.

C. Sarpe, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88(26), 261109 (2006).
[Crossref]

Wu, T.

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

Xie, X.

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[Crossref]

Xu, J.

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[Crossref]

Yajima, T.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye laser,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Zhang, C.-L.

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

Zhang, L.

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

Zhang, X.-C.

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, Y. E S. Kozlov, and X.-C. Zhang, “Flat liquid jet as a highly efficient source of terahertz radiation,” Opt. Express 27(11), 15485–15494 (2019).
[Crossref]

Y. E Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113(18), 181103 (2018).
[Crossref]

Q. Jin, Y. E K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111(7), 071103 (2017).
[Crossref]

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[Crossref]

Zhang, Y.

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

Appl. Phys. Lett. (7)

Y. E Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113(18), 181103 (2018).
[Crossref]

F. Jahangiri, M. Hashida, S. Tokita, S. Sakabe, T. Nagashima, and M. Hangyo, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Appl. Phys. Lett. 99(26), 261503 (2011).
[Crossref]

Q. Jin, Y. E K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111(7), 071103 (2017).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft x-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

X. Xie, J. Xu, J. Dai, and X.-C. Zhang, “Enhancement of terahertz wave generation from laser induced plasma,” Appl. Phys. Lett. 90(14), 141104 (2007).
[Crossref]

K. Mori, M. Hashida, T. Nagashima, K. T. D. Li, Y. Nakamiya, and S. S. S. Inoue, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Appl. Phys. Lett. 111(24), 241107 (2017).
[Crossref]

C. Sarpe, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett. 88(26), 261109 (2006).
[Crossref]

Lith. J. Phys. (1)

A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, “Ultrafast supercontinuum generation in bulk condensed media,” Lith. J. Phys. 57(3), 113–157 (2017).
[Crossref]

Nat. Photonics (1)

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

New J. Phys. (1)

C. Amico, A. Houard, S. Akturk, Y. Liu, J. L. Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, “Forward thz radiation emission by femtosecond filamentation in gases: Theory and experiment,” New J. Phys. 10(1), 013015 (2008).
[Crossref]

Opt. Commun. (1)

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye laser,” Opt. Commun. 71(5), 301–304 (1989).
[Crossref]

Opt. Express (2)

Phys. Rev. Appl. (1)

L. Zhang, W.-M. Wang, T. Wu, S.-J. Feng, K. Kang, C.-L. Zhang, Y. Z. Y. Li, Z.-M. Sheng, and X.-C. Zhang, “Strong terahertz radiation from a liquid-water line,” Phys. Rev. Appl. 12(1), 014005 (2019).
[Crossref]

Proc. SPIE (1)

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

Spectrochim. Acta, Part B (2)

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta, Part B 59(5), 723–735 (2004).
[Crossref]

L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta, Part B 53(3), 407–415 (1998).
[Crossref]

Other (2)

S. Hwu, K. deSilva, and C. Jih, “Terahertz (thz) wireless systems for space applications,” in 2013 IEEE Sensors Applications Symposium Proceedings, (IEEE, 2013).

G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. (General Publishing Company, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. The double-pump experimental scheme. The pump laser radiation (consisting of the reference and signal pulses with a temporal delay of $\Delta \tau$) is focused on the lens L1 with a focal length of 5 cm. The focused radiation further falls on the water jet at the optimal angle of incidence $\varphi$ = $60^{\circ }$. The generated THz radiation, collected and collimated by TPX lens L2 and filtered by a teflon filter F, is registred on the standard electro-optical scheme EOS.
Fig. 2.
Fig. 2. a. The temporal forms of THz signals (left) generated during single-color double pulse excitation of a water jet with a temporal delay $\Delta \tau$ = 2.3 ps. The corresponding spectra are presented on the right. b. THz waves energy dependence on the temporal delay $\Delta \tau$ between two pump pulses during propagation in water jet with thickness of 100 $\mu$m (left) and 270 $\mu$m (right).
Fig. 3.
Fig. 3. THz waves energy enhancement dependence on temporal delay between two collinear pulses with durations of 61 fs (black), 90 fs (red) and 145 fs (blue). Dashed line corresponds to the exponential fit.
Fig. 4.
Fig. 4. a. Numerically simulated THz waveforms, generated while launching two collinear 200 fs pulses with energy of 450 $\mu$J and 6 ps temporal delay. b. The dependence of the THz waves energy enhancement in the simulation of a single-color double pulse water jet excitation with the population relaxation time values from 1 to 3 ps. c. The correspondence of the experimental data (dots) to the result of numerical simulation for $\tau _p$=3 ps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ E z a 3 E τ 3 + g E 2 E τ + 2 π c n 0 j = 0 j τ + j τ c = β ρ E 3 ρ τ + ρ τ p = α E 2
E ~ ( τ ~ ) = e x p ( ( τ ~ τ ~ p u l s e ) 2 ) s i n ( τ ~ + A τ ~ 2 ) + e x p ( ( τ ~ Δ τ ~ τ ~ p u l s e ) 2 ) s i n ( ( τ ~ Δ τ ~ ) + A ( τ ~ Δ τ ~ ) 2 )

Metrics