Abstract

Recently, ghost imaging has been attracting attention because its mechanism could lead to many applications inaccessible to conventional imaging methods. However, it is challenging for high-contrast and high-resolution imaging, due to its low signal-to-noise ratio (SNR) and the demand of high sampling rate in detection. To circumvent these challenges, we propose a ghost imaging scheme that exploits Haar wavelets as illuminating patterns with a bi-frequency light projecting system and frequency-selecting single-pixel detectors. This method provides a theoretically 100% image contrast and high-detection SNR, which reduces the requirement of high dynamic range of detectors, enabling high-resolution ghost imaging. Moreover, it can highly reduce the sampling rate (far below Nyquist limit) for a sparse object by adaptively abandoning unnecessary patterns during the measurement. These characteristics are experimentally verified with a resolution of $512\times 512$ and a sampling rate lower than 5%. A high-resolution ($1000\times 1000\times 1000$) 3D reconstruction of an object is also achieved from multi-angle images.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed all-optical Haar wavelet transform for real-time image compression

Milad Alemohammad, Jasper R. Stroud, Bryan T. Bosworth, and Mark A. Foster
Opt. Express 25(9) 9802-9811 (2017)

Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform

Le Wang and Shengmei Zhao
Photon. Res. 4(6) 240-244 (2016)

Adaptive compressed 3D ghost imaging based on the variation of surface normals

Yan Qian, Ruiqing He, Qian Chen, Guohua Gu, Feng Shi, and Wenwen Zhang
Opt. Express 27(20) 27862-27872 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref]
  2. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
    [Crossref]
  3. D. Zhang, Y. Zhai, L. Wu, and X. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
    [Crossref]
  4. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  5. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
    [Crossref]
  6. G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
    [Crossref]
  7. P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
    [Crossref]
  8. H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences held June–July 2015, vol. 9795 (International Society for Optics and Photonics, 2015), p. 97952O.
  9. H. Liu and S. Zhang, “Computational ghost imaging of hot objects in long-wave infrared range,” Appl. Phys. Lett. 111(3), 031110 (2017).
    [Crossref]
  10. R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2(12), 1049–1052 (2015).
    [Crossref]
  11. W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
    [Crossref]
  12. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
    [Crossref]
  13. H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
    [Crossref]
  14. A. Zhang, Y. He, L. Wu, L. Chen, and B. Wang, “Tabletop x-ray ghost imaging with ultra-low radiation,” Optica 5(4), 374–377 (2018).
    [Crossref]
  15. S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
    [Crossref]
  16. R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
    [Crossref]
  17. K. Baldwin, R. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, and A. Truscott, “Ghost imaging with atoms and photons for remote sensing,” in Optics and Photonics for Energy and the Environment, (Optical Society of America, 2017), pp. EM4B-1.
  18. S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989).
    [Crossref]
  19. I. Daubechies, Ten lectures on wavelets, vol. 61 (SIAM, 1992).
  20. A. Haar, “Zur theorie der orthogonalen funktionensysteme,” Math. Ann. 69(3), 331–371 (1910).
    [Crossref]
  21. W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
    [Crossref]
  22. R. Szeliski, “Rapid octree construction from image sequences,” Comput. Vis. Image Underst. 58(1), 23–32 (1993).
    [Crossref]
  23. A. Laurentini, “How far 3d shapes can be understood from 2d silhouettes,” IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 188–195 (1995).
    [Crossref]
  24. K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38(3), 199–218 (2000).
    [Crossref]
  25. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
    [Crossref]
  26. C. Zhou, T. Tian, C. Gao, W. Gong, and L. Song, “Multi-resolution progressive computational ghost imaging,” J. Opt. 21(5), 055702 (2019).
    [Crossref]
  27. M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
    [Crossref]
  28. W. Yu, M. Li, X. Yao, X. Liu, L. Wu, and G. Zhai, “Adaptive compressive ghost imaging based on wavelet trees and sparse representation,” Opt. Express 22(6), 7133–7144 (2014).
    [Crossref]
  29. F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Trans. Comput. Imaging 3(1), 36–46 (2017).
    [Crossref]
  30. M. Alemohammad, J. R. Stroud, B. T. Bosworth, and M. A. Foster, “High-speed all-optical haar wavelet transform for real-time image compression,” Opt. Express 25(9), 9802–9811 (2017).
    [Crossref]
  31. G. Strang, “Wavelet transforms versus fourier transforms,” Bull. Amer. Math. Soc. 28(2), 288–306 (1993).
    [Crossref]
  32. G. Strang and T. Nguyen, Wavelets and filter banks (SIAM, 1996).

2019 (1)

C. Zhou, T. Tian, C. Gao, W. Gong, and L. Song, “Multi-resolution progressive computational ghost imaging,” J. Opt. 21(5), 055702 (2019).
[Crossref]

2018 (2)

A. Zhang, Y. He, L. Wu, L. Chen, and B. Wang, “Tabletop x-ray ghost imaging with ultra-low radiation,” Optica 5(4), 374–377 (2018).
[Crossref]

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

2017 (3)

H. Liu and S. Zhang, “Computational ghost imaging of hot objects in long-wave infrared range,” Appl. Phys. Lett. 111(3), 031110 (2017).
[Crossref]

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Trans. Comput. Imaging 3(1), 36–46 (2017).
[Crossref]

M. Alemohammad, J. R. Stroud, B. T. Bosworth, and M. A. Foster, “High-speed all-optical haar wavelet transform for real-time image compression,” Opt. Express 25(9), 9802–9811 (2017).
[Crossref]

2016 (4)

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

2015 (4)

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2(12), 1049–1052 (2015).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

2014 (1)

2013 (1)

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
[Crossref]

2009 (1)

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

2008 (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

2006 (1)

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

2005 (2)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

D. Zhang, Y. Zhai, L. Wu, and X. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
[Crossref]

2000 (1)

K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38(3), 199–218 (2000).
[Crossref]

1995 (2)

A. Laurentini, “How far 3d shapes can be understood from 2d silhouettes,” IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 188–195 (1995).
[Crossref]

T. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

1993 (2)

R. Szeliski, “Rapid octree construction from image sequences,” Comput. Vis. Image Underst. 58(1), 23–32 (1993).
[Crossref]

G. Strang, “Wavelet transforms versus fourier transforms,” Bull. Amer. Math. Soc. 28(2), 288–306 (1993).
[Crossref]

1989 (1)

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989).
[Crossref]

1910 (1)

A. Haar, “Zur theorie der orthogonalen funktionensysteme,” Math. Ann. 69(3), 331–371 (1910).
[Crossref]

Alemohammad, M.

Aspden, R. S.

Aßmann, M.

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
[Crossref]

Baldwin, K.

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

K. Baldwin, R. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, and A. Truscott, “Ghost imaging with atoms and photons for remote sensing,” in Optics and Photonics for Energy and the Environment, (Optical Society of America, 2017), pp. EM4B-1.

Bayer, M.

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
[Crossref]

Bell, J. E.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

Berardi, V.

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

Bosworth, B. T.

Boyd, R. W.

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Buller, G. S.

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Chen, L.

Chen, M.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Chen, X.

D’Andrea, C.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Trans. Comput. Imaging 3(1), 36–46 (2017).
[Crossref]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Dall, R.

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

K. Baldwin, R. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, and A. Truscott, “Ghost imaging with atoms and photons for remote sensing,” in Optics and Photonics for Energy and the Environment, (Optical Society of America, 2017), pp. EM4B-1.

Daubechies, I.

I. Daubechies, Ten lectures on wavelets, vol. 61 (SIAM, 1992).

Du, G.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Ducros, N.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Trans. Comput. Imaging 3(1), 36–46 (2017).
[Crossref]

Farina, A.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Trans. Comput. Imaging 3(1), 36–46 (2017).
[Crossref]

Foster, M. A.

Fujiu, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Gao, C.

C. Zhou, T. Tian, C. Gao, W. Gong, and L. Song, “Multi-resolution progressive computational ghost imaging,” J. Opt. 21(5), 055702 (2019).
[Crossref]

Gemmell, N. R.

Gong, W.

C. Zhou, T. Tian, C. Gao, W. Gong, and L. Song, “Multi-resolution progressive computational ghost imaging,” J. Opt. 21(5), 055702 (2019).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

Haar, A.

A. Haar, “Zur theorie der orthogonalen funktionensysteme,” Math. Ann. 69(3), 331–371 (1910).
[Crossref]

Hadfield, R. H.

Han, S.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

Hashimoto, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

He, Y.

Henson, B.

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

K. Baldwin, R. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, and A. Truscott, “Ghost imaging with atoms and photons for remote sensing,” in Optics and Photonics for Energy and the Environment, (Optical Society of America, 2017), pp. EM4B-1.

Hodgman, S.

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

K. Baldwin, R. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, and A. Truscott, “Ghost imaging with atoms and photons for remote sensing,” in Optics and Photonics for Energy and the Environment, (Optical Society of America, 2017), pp. EM4B-1.

Horisaki, R.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Kamesawa, R.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Kawamura, Y.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Khakimov, R.

K. Baldwin, R. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, and A. Truscott, “Ghost imaging with atoms and photons for remote sensing,” in Optics and Photonics for Energy and the Environment, (Optical Society of America, 2017), pp. EM4B-1.

Khakimov, R. I.

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Kirkwood, R. A.

Kutulakos, K. N.

K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38(3), 199–218 (2000).
[Crossref]

Laurentini, A.

A. Laurentini, “How far 3d shapes can be understood from 2d silhouettes,” IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 188–195 (1995).
[Crossref]

Li, D.

H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences held June–July 2015, vol. 9795 (International Society for Optics and Photonics, 2015), p. 97952O.

Li, M.

Liu, H.

H. Liu and S. Zhang, “Computational ghost imaging of hot objects in long-wave infrared range,” Appl. Phys. Lett. 111(3), 031110 (2017).
[Crossref]

Liu, X.

Lu, R.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

Mallat, S. G.

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989).
[Crossref]

Mertens, L.

Morris, P. A.

Nguyen, T.

G. Strang and T. Nguyen, Wavelets and filter banks (SIAM, 1996).

Noji, H.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Ota, S.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Padgett, M. J.

Paganin, D. M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Pelliccia, D.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Peng, H.

H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences held June–July 2015, vol. 9795 (International Society for Optics and Photonics, 2015), p. 97952O.

Peyrin, F.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Trans. Comput. Imaging 3(1), 36–46 (2017).
[Crossref]

Pittman, T.

T. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Rack, A.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Rousset, F.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Trans. Comput. Imaging 3(1), 36–46 (2017).
[Crossref]

Ruggeri, A.

Sato, I.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Scarcelli, G.

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Seitz, S. M.

K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38(3), 199–218 (2000).
[Crossref]

Sergienko, A. V.

T. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Setoyama, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Shih, Y.

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

T. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Shin, D.

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

K. Baldwin, R. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, and A. Truscott, “Ghost imaging with atoms and photons for remote sensing,” in Optics and Photonics for Energy and the Environment, (Optical Society of America, 2017), pp. EM4B-1.

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Song, L.

C. Zhou, T. Tian, C. Gao, W. Gong, and L. Song, “Multi-resolution progressive computational ghost imaging,” J. Opt. 21(5), 055702 (2019).
[Crossref]

Strang, G.

G. Strang, “Wavelet transforms versus fourier transforms,” Bull. Amer. Math. Soc. 28(2), 288–306 (1993).
[Crossref]

G. Strang and T. Nguyen, Wavelets and filter banks (SIAM, 1996).

Strekalov, D.

T. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Stroud, J. R.

Szeliski, R.

R. Szeliski, “Rapid octree construction from image sequences,” Comput. Vis. Image Underst. 58(1), 23–32 (1993).
[Crossref]

Tanner, M. G.

Tasca, D. S.

Tian, T.

C. Zhou, T. Tian, C. Gao, W. Gong, and L. Song, “Multi-resolution progressive computational ghost imaging,” J. Opt. 21(5), 055702 (2019).
[Crossref]

Tosi, A.

Truscott, A.

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

K. Baldwin, R. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, and A. Truscott, “Ghost imaging with atoms and photons for remote sensing,” in Optics and Photonics for Energy and the Environment, (Optical Society of America, 2017), pp. EM4B-1.

Ugawa, M.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Valentini, G.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Trans. Comput. Imaging 3(1), 36–46 (2017).
[Crossref]

Waki, K.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Wang, B.

Wu, L.

Xiao, T.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Xie, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Xu, W.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Yamaguchi, S.

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Yang, Z.

H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences held June–July 2015, vol. 9795 (International Society for Optics and Photonics, 2015), p. 97952O.

Yao, X.

Yu, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Yu, W.

Zhai, G.

Zhai, Y.

Zhang, A.

Zhang, D.

Zhang, S.

H. Liu and S. Zhang, “Computational ghost imaging of hot objects in long-wave infrared range,” Appl. Phys. Lett. 111(3), 031110 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

Zhao, C.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Zhong, J.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

Zhou, C.

C. Zhou, T. Tian, C. Gao, W. Gong, and L. Song, “Multi-resolution progressive computational ghost imaging,” J. Opt. 21(5), 055702 (2019).
[Crossref]

Zhu, D.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Appl. Phys. Lett. (1)

H. Liu and S. Zhang, “Computational ghost imaging of hot objects in long-wave infrared range,” Appl. Phys. Lett. 111(3), 031110 (2017).
[Crossref]

Bull. Amer. Math. Soc. (1)

G. Strang, “Wavelet transforms versus fourier transforms,” Bull. Amer. Math. Soc. 28(2), 288–306 (1993).
[Crossref]

Comput. Vis. Image Underst. (1)

R. Szeliski, “Rapid octree construction from image sequences,” Comput. Vis. Image Underst. 58(1), 23–32 (1993).
[Crossref]

IEEE Trans. Comput. Imaging (1)

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Trans. Comput. Imaging 3(1), 36–46 (2017).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

A. Laurentini, “How far 3d shapes can be understood from 2d silhouettes,” IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 188–195 (1995).
[Crossref]

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989).
[Crossref]

Int. J. Comput. Vis. (1)

K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,” Int. J. Comput. Vis. 38(3), 199–218 (2000).
[Crossref]

J. Opt. (1)

C. Zhou, T. Tian, C. Gao, W. Gong, and L. Song, “Multi-resolution progressive computational ghost imaging,” J. Opt. 21(5), 055702 (2019).
[Crossref]

Math. Ann. (1)

A. Haar, “Zur theorie der orthogonalen funktionensysteme,” Math. Ann. 69(3), 331–371 (1910).
[Crossref]

Nat. Commun. (2)

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

Nature (1)

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (2)

Phys. Rev. A (3)

T. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Phys. Rev. Lett. (4)

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Sci. Rep. (3)

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

M. Aßmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep. 3(1), 1545 (2013).
[Crossref]

Science (1)

S. Ota, R. Horisaki, Y. Kawamura, M. Ugawa, I. Sato, K. Hashimoto, R. Kamesawa, K. Setoyama, S. Yamaguchi, K. Fujiu, K. Waki, and H. Noji, “Ghost cytometry,” Science 360(6394), 1246–1251 (2018).
[Crossref]

Other (4)

K. Baldwin, R. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, and A. Truscott, “Ghost imaging with atoms and photons for remote sensing,” in Optics and Photonics for Energy and the Environment, (Optical Society of America, 2017), pp. EM4B-1.

I. Daubechies, Ten lectures on wavelets, vol. 61 (SIAM, 1992).

H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences held June–July 2015, vol. 9795 (International Society for Optics and Photonics, 2015), p. 97952O.

G. Strang and T. Nguyen, Wavelets and filter banks (SIAM, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The schematic of the experimental setup. The light sources is a DMD with the transmitting lens (focal length 2.5mm). F1 and F2 are red and green filters; D1 and D2 are bucket detectors (Hamamatsu PMT H13320-03 with a photocathode area size of 3.7$\times$13.0 mm$^2$). We tested the imager with a 3D object (a shuttlecock model with the size of 7.5cm$\times$6cm$\times$6cm) and a sparse object (letters of "XJTU" with a duty ration of 1.5%). The distance between the DMD and the object is 0.4m.
Fig. 2.
Fig. 2. The images of the shuttlecock at multiple angles using Biwave-GI with a resolution of $512\times 512$.
Fig. 3.
Fig. 3. The 3D imaging result of the shuttlecock with space carving algorithm. The resolution is $1000\times 1000\times 1000$.
Fig. 4.
Fig. 4. The normalized bucket signals of three schemes. (a) Random patterns scheme; (b) Hadamard patterns scheme; (c) BiWave-GI scheme.
Fig. 5.
Fig. 5. Experiment results of MSHCGI, Bi-MSHCGI and Biwave-GI under different detector dynamic ranges (1, 4, 8 and 16 bits).
Fig. 6.
Fig. 6. SSIM value curves of MSHCGI, Bi-MSHCGI and Biwave-GI under different detector dynamic ranges (1 to 16 bits), respectively.
Fig. 7.
Fig. 7. SNR dependences of BiWave-GI on the external noise in bucket detector value.
Fig. 8.
Fig. 8. (a) The orginal object. (b) The recovered image of ‘XJTU’ at a sampling rate of $4.8\%$ with $M_j$. (c) The recovered image of ‘XJTU’ at a sampling rate of $2.4\%$ with $Q_j$.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

φ ( t ) = {       1 , t [ 0 , 1 2 ] 1 , t [ 1 2 , 1 ]       0 , o t h e r w i s e .
H j = 2 s q φ ( 2 s q t k ) ,
M j ( x , y ) = 2 s q φ ( 2 s q ( ( y 1 ) n + x ) k ) .
{ M 1 , M 2 , , M N } O b j = { B 1 , B 2 , , B N } M O b j = B .
O b j = M 1 B .
D S N R = Δ B / B ¯ ,
S S I M ( x , y ) ( 2 μ x μ y + C 1 ) ( 2 σ x y + C 2 ) ( μ x 2 + μ y 2 + C 1 ) ( σ x 2 + σ y 2 + C 2 ) ,
φ ( x , y ) = {       1 , x [ 0 , 1 2 ] y [ 0 , 1 2 ] 1 , x [ 1 2 , 1 ] y [ 0 , 1 2 ]       0 , o t h e r w i s e .
Q j ( x , y ) = 2 s L φ ( 2 s L x α , 2 s L y β / 2 ) ,

Metrics