Abstract

Graphene is widely recognized as an outstanding and multi-functional material in various application fields such as electronics, photonics, mechanics, and life sciences. We propose a neurotransmitter sensor with ultra-small volume for detecting the photonic light-matter response. Such detection can be achieved using surface-activated monolayer graphene sheets and CMOS-compatible silicon-photonic circuits. Patterned pieces of CVD-grown graphene are integrated on the top of a silicon micro-ring resonator, which induce the adsorption of catecholamine molecules originated from the π-stacking effect. We used dopamine to demonstrate such detection and examine the sensitivity of graphene-dopamine coupling. To avoid high optical insertion loss and degradation of resonance characteristics caused by a graphene’s extremely high optical absorption coefficient in the near infrared region, a ring resonator with adjusted coupling design is used to compensate for the drawbacks. Owing to the advanced nano-sensing platform and measurement system, an activated graphene-sensing surface of only ∼30 µm2/ch enables π coupling to dopamine with enough sensitivity to detect less than 10-µM solution concentration. The detection mechanism through the surface reaction is also verified by optical simulation and atomic force microscopy measurement, revealing that the flowing dopamine molecules can only occupy the outermost surface of graphene. We expect this sensor to contribute to the development of an innovative label-free and disposable bio-sensing platform with accurate, sensitive, and fast response.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid
Opt. Express 16(19) 15137-15148 (2008)

Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator

Nebiyu A. Yebo, Sreeprasanth Pulinthanathu Sree, Elisabeth Levrau, Christophe Detavernier, Zeger Hens, Johan A. Martens, and Roel Baets
Opt. Express 20(11) 11855-11862 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. C. Sudhof, “The synaptic vesicle cycle,” Annu. Rev. Neurosci. 27(1), 509–547 (2004).
    [Crossref]
  2. M. Zhou, Y. M. Zhai, and S. J. Dong, “Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Anal. Chem. 81(14), 5603–5613 (2009).
    [Crossref]
  3. R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
    [Crossref]
  4. M. A. Kurian, P. Gissen, M. Smith, S. J. R. Heales, and P. T. Clayton, “The monoamine neurotransmitter disorders: an expanding range of neurological syndromes,” Lancet Neurol. 10(8), 721–733 (2011).
    [Crossref]
  5. A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
    [Crossref]
  6. J. Ng, A. Papandreou, S. J. Heales, and M. A. Kurian, “Monoamine neurotransmitter disorders clinical advances and future perspectives,” Nat. Rev. Neurol. 11(10), 567–584 (2015).
    [Crossref]
  7. D. Rithesh Raj, S. Prasanth, T. V. Vineeshkumar, and C. Sudarsanakumar, “Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles,” Sens. Actuators, B 224, 600–606 (2016).
    [Crossref]
  8. H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, “Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent,” Anal. Chim. Acta 497(1-2), 93–99 (2003).
    [Crossref]
  9. W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Actuators, B 264, 440–447 (2018).
    [Crossref]
  10. A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
    [Crossref]
  11. R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
    [Crossref]
  12. P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
    [Crossref]
  13. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  14. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  15. R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
    [Crossref]
  16. R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
    [Crossref]
  17. N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, and M. Li, “Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides,” Nano Lett. 14(5), 2741–2746 (2014).
    [Crossref]
  18. D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
    [Crossref]
  19. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
    [Crossref]
  20. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
    [Crossref]
  21. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
    [Crossref]
  22. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  23. M. Liu, X. B. Yin, and X. Zhang, “Double-Layer Graphene Optical Modulator,” Nano Lett. 12(3), 1482–1485 (2012).
    [Crossref]
  24. M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref]
  25. R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
    [Crossref]
  26. A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical Control of Silicon Photonic Crystal Cavity by Graphene,” Nano Lett. 13(2), 515–518 (2013).
    [Crossref]
  27. Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Lett. 12(1), 414–419 (2012).
  28. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
    [Crossref]
  29. H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
    [Crossref]
  30. W. Lu and W. M. Worek, “Two-wavelength interferometric technique for measuring the refractive index of salt-water solutions,” Appl. Opt. 32(21), 3992–4002 (1993).
    [Crossref]
  31. W. M. Haynes, CRC handbook of chemistry and physics95th ed. (CRC, 2015-2016).
    [Crossref]
  32. T. E. Peddicord, K. M. Olsen, T. L. ZumBrunnen, D. J. Warner, and L. Webb, “Stability of high-concentration dopamine hydrochloride, norepinephrine bitartrate, epinephrine hydrochloride, and nitroglycerin in 5% dextrose injection,” Am. J. Health-Syst. Pharm. 54(12), 1417–1419 (1997).
  33. A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
    [Crossref]

2019 (1)

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

2018 (1)

W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Actuators, B 264, 440–447 (2018).
[Crossref]

2017 (1)

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

2016 (2)

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

D. Rithesh Raj, S. Prasanth, T. V. Vineeshkumar, and C. Sudarsanakumar, “Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles,” Sens. Actuators, B 224, 600–606 (2016).
[Crossref]

2015 (1)

J. Ng, A. Papandreou, S. J. Heales, and M. A. Kurian, “Monoamine neurotransmitter disorders clinical advances and future perspectives,” Nat. Rev. Neurol. 11(10), 567–584 (2015).
[Crossref]

2014 (5)

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, and M. Li, “Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides,” Nano Lett. 14(5), 2741–2746 (2014).
[Crossref]

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

2013 (3)

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical Control of Silicon Photonic Crystal Cavity by Graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref]

2012 (4)

Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Lett. 12(1), 414–419 (2012).

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

M. Liu, X. B. Yin, and X. Zhang, “Double-Layer Graphene Optical Modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
[Crossref]

2011 (2)

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

M. A. Kurian, P. Gissen, M. Smith, S. J. R. Heales, and P. T. Clayton, “The monoamine neurotransmitter disorders: an expanding range of neurological syndromes,” Lancet Neurol. 10(8), 721–733 (2011).
[Crossref]

2010 (3)

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (1)

M. Zhou, Y. M. Zhai, and S. J. Dong, “Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Anal. Chem. 81(14), 5603–5613 (2009).
[Crossref]

2008 (1)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

2004 (1)

T. C. Sudhof, “The synaptic vesicle cycle,” Annu. Rev. Neurosci. 27(1), 509–547 (2004).
[Crossref]

2003 (1)

H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, “Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent,” Anal. Chim. Acta 497(1-2), 93–99 (2003).
[Crossref]

2001 (1)

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

1999 (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

1997 (1)

T. E. Peddicord, K. M. Olsen, T. L. ZumBrunnen, D. J. Warner, and L. Webb, “Stability of high-concentration dopamine hydrochloride, norepinephrine bitartrate, epinephrine hydrochloride, and nitroglycerin in 5% dextrose injection,” Am. J. Health-Syst. Pharm. 54(12), 1417–1419 (1997).

1993 (1)

1976 (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

Adamson, D. H.

A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
[Crossref]

Anugrah, Y.

N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, and M. Li, “Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides,” Nano Lett. 14(5), 2741–2746 (2014).
[Crossref]

Asandei, A. D.

A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
[Crossref]

Assefa, S.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Bari, S. B.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bolten, J.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Borse, V. B.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Brose, N.

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Carrillo, J.-M. Y.

A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
[Crossref]

Chakraborty, B.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Chen, C. Y.

W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Actuators, B 264, 440–447 (2018).
[Crossref]

Chiu, P. W.

Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Lett. 12(1), 414–419 (2012).

Chmielak, B.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Clayton, P. T.

M. A. Kurian, P. Gissen, M. Smith, S. J. R. Heales, and P. T. Clayton, “The monoamine neurotransmitter disorders: an expanding range of neurological syndromes,” Lancet Neurol. 10(8), 721–733 (2011).
[Crossref]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Das, A.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Deshmukh, P. K.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Dobrynin, A. V.

A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
[Crossref]

Dong, S. J.

M. Zhou, Y. M. Zhai, and S. J. Dong, “Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Anal. Chem. 81(14), 5603–5613 (2009).
[Crossref]

Dresselhaus, G.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref]

Dresselhaus, M. S.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Englund, D.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Fernandez-Chacon, R.

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Gan, X.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Gao, Y.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Garcia, J.

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Geim, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Geng, B. S.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Gerber, S. H.

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Giesecke, A. L.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Gissen, P.

M. A. Kurian, P. Gissen, M. Smith, S. J. R. Heales, and P. T. Clayton, “The monoamine neurotransmitter disorders: an expanding range of neurological syndromes,” Lancet Neurol. 10(8), 721–733 (2011).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Goto, T.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

Gotoh, H.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

Guan, B. O.

W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Actuators, B 264, 440–447 (2018).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Guo, T. A.

W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Actuators, B 264, 440–447 (2018).
[Crossref]

Harada, Y.

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Haynes, W. M.

W. M. Haynes, CRC handbook of chemistry and physics95th ed. (CRC, 2015-2016).
[Crossref]

Heales, S. J.

J. Ng, A. Papandreou, S. J. Heales, and M. A. Kurian, “Monoamine neurotransmitter disorders clinical advances and future perspectives,” Nat. Rev. Neurol. 11(10), 567–584 (2015).
[Crossref]

Heales, S. J. R.

M. A. Kurian, P. Gissen, M. Smith, S. J. R. Heales, and P. T. Clayton, “The monoamine neurotransmitter disorders: an expanding range of neurological syndromes,” Lancet Neurol. 10(8), 721–733 (2011).
[Crossref]

Heinz, T. F.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Hibino, H.

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Hire, C. C.

A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
[Crossref]

Hitachi, K.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hofmann, M.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref]

Hone, J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Hori, Y.

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

How, G. T. S.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Hu, W. J.

W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Actuators, B 264, 440–447 (2018).
[Crossref]

Huang, N. M.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Huang, Y. Y.

W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Actuators, B 264, 440–447 (2018).
[Crossref]

Hui, Q. S.

H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, “Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent,” Anal. Chim. Acta 497(1-2), 93–99 (2003).
[Crossref]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Ishizawa, A.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

Jamil, A.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Jayabal, S.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Jiang, J. G.

H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, “Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent,” Anal. Chim. Acta 497(1-2), 93–99 (2003).
[Crossref]

Jin, C. H.

Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Lett. 12(1), 414–419 (2012).

John, S. A.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Jorio, A.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref]

Ju, L.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Junginger, B.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Kamali, K. Z.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Khan, Z. G.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Kim, J.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical Control of Silicon Photonic Crystal Cavity by Graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref]

Kobayashi, Y.

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

Koester, S. J.

N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, and M. Li, “Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides,” Nano Lett. 14(5), 2741–2746 (2014).
[Crossref]

Konigstorfer, A.

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Kou, R.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Krishnamurthy, H. R.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Kuebart, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Kurian, M. A.

J. Ng, A. Papandreou, S. J. Heales, and M. A. Kurian, “Monoamine neurotransmitter disorders clinical advances and future perspectives,” Nat. Rev. Neurol. 11(10), 567–584 (2015).
[Crossref]

M. A. Kurian, P. Gissen, M. Smith, S. J. R. Heales, and P. T. Clayton, “The monoamine neurotransmitter disorders: an expanding range of neurological syndromes,” Lancet Neurol. 10(8), 721–733 (2011).
[Crossref]

Kurz, H.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

Li, M.

N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, and M. Li, “Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides,” Nano Lett. 14(5), 2741–2746 (2014).
[Crossref]

Lim, H. N.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Lin, Y. C.

Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Lett. 12(1), 414–419 (2012).

Liu, M.

M. Liu, X. B. Yin, and X. Zhang, “Double-Layer Graphene Optical Modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Liu, Y. K.

W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Actuators, B 264, 440–447 (2018).
[Crossref]

Lu, C. C.

Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Lett. 12(1), 414–419 (2012).

Lu, W.

Ma, R.

N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, and M. Li, “Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides,” Nano Lett. 14(5), 2741–2746 (2014).
[Crossref]

Majumdar, A.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical Control of Silicon Photonic Crystal Cavity by Graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref]

Matheisen, C.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Matos, M. F.

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Matsuda, N.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

Meric, I.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Mohsin, M.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

More, M. P.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Nakajima, H.

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Nangare, S. N.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Neumaier, D.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Ng, J.

J. Ng, A. Papandreou, S. J. Heales, and M. A. Kurian, “Monoamine neurotransmitter disorders clinical advances and future perspectives,” Nat. Rev. Neurol. 11(10), 567–584 (2015).
[Crossref]

Nishi, H.

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

Nishikawa, T.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

Novoselov, K. S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Olsen, K. M.

T. E. Peddicord, K. M. Olsen, T. L. ZumBrunnen, D. J. Warner, and L. Webb, “Stability of high-concentration dopamine hydrochloride, norepinephrine bitartrate, epinephrine hydrochloride, and nitroglycerin in 5% dextrose injection,” Am. J. Health-Syst. Pharm. 54(12), 1417–1419 (1997).

Omar, F. S.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Oyer, A. J.

A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
[Crossref]

Pandey, G. R.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Pandikumar, A.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Papandreou, A.

J. Ng, A. Papandreou, S. J. Heales, and M. A. Kurian, “Monoamine neurotransmitter disorders clinical advances and future perspectives,” Nat. Rev. Neurol. 11(10), 567–584 (2015).
[Crossref]

Patil, A. G.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Patil, A. M.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Patil, D. R.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Patil, P. O.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Peddicord, T. E.

T. E. Peddicord, K. M. Olsen, T. L. ZumBrunnen, D. J. Warner, and L. Webb, “Stability of high-concentration dopamine hydrochloride, norepinephrine bitartrate, epinephrine hydrochloride, and nitroglycerin in 5% dextrose injection,” Am. J. Health-Syst. Pharm. 54(12), 1417–1419 (1997).

Pisana, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Piscanec, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Porschatis, C.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Prasanth, S.

D. Rithesh Raj, S. Prasanth, T. V. Vineeshkumar, and C. Sudarsanakumar, “Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles,” Sens. Actuators, B 224, 600–606 (2016).
[Crossref]

Prinzen, A.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Ramaraj, R.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Rithesh Raj, D.

D. Rithesh Raj, S. Prasanth, T. V. Vineeshkumar, and C. Sudarsanakumar, “Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles,” Sens. Actuators, B 224, 600–606 (2016).
[Crossref]

Rizo, J.

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Rosenmund, C.

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Saha, S. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Saito, R.

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref]

Schall, D.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Schniepp, H. C.

A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
[Crossref]

See, T. P.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shepard, K.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Shiue, R.-J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Smith, M.

M. A. Kurian, P. Gissen, M. Smith, S. J. R. Heales, and P. T. Clayton, “The monoamine neurotransmitter disorders: an expanding range of neurological syndromes,” Lancet Neurol. 10(8), 721–733 (2011).
[Crossref]

Sogawa, T.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

Sood, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Stevens, C. F.

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Sudarsanakumar, C.

D. Rithesh Raj, S. Prasanth, T. V. Vineeshkumar, and C. Sudarsanakumar, “Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles,” Sens. Actuators, B 224, 600–606 (2016).
[Crossref]

Sudhof, T. C.

T. C. Sudhof, “The synaptic vesicle cycle,” Annu. Rev. Neurosci. 27(1), 509–547 (2004).
[Crossref]

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

Suenaga, K.

Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Lett. 12(1), 414–419 (2012).

Sun, Y.

H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, “Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent,” Anal. Chim. Acta 497(1-2), 93–99 (2003).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Suzuki, S.

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Tade, R. S.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Tanabe, S.

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Templ, W.

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Tsuchizawa, T.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Ulin-Avila, E.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Veerapandian, M.

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

Vineeshkumar, T. V.

D. Rithesh Raj, S. Prasanth, T. V. Vineeshkumar, and C. Sudarsanakumar, “Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles,” Sens. Actuators, B 224, 600–606 (2016).
[Crossref]

Vuckovic, J.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical Control of Silicon Photonic Crystal Cavity by Graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref]

Waghmare, U. V.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Wang, F.

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical Control of Silicon Photonic Crystal Cavity by Graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref]

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Wang, H. Y.

H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, “Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent,” Anal. Chim. Acta 497(1-2), 93–99 (2003).
[Crossref]

Warabi, K.

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Warner, D. J.

T. E. Peddicord, K. M. Olsen, T. L. ZumBrunnen, D. J. Warner, and L. Webb, “Stability of high-concentration dopamine hydrochloride, norepinephrine bitartrate, epinephrine hydrochloride, and nitroglycerin in 5% dextrose injection,” Am. J. Health-Syst. Pharm. 54(12), 1417–1419 (1997).

Webb, L.

T. E. Peddicord, K. M. Olsen, T. L. ZumBrunnen, D. J. Warner, and L. Webb, “Stability of high-concentration dopamine hydrochloride, norepinephrine bitartrate, epinephrine hydrochloride, and nitroglycerin in 5% dextrose injection,” Am. J. Health-Syst. Pharm. 54(12), 1417–1419 (1997).

Worek, W. M.

Xu, L. X.

H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, “Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent,” Anal. Chim. Acta 497(1-2), 93–99 (2003).
[Crossref]

Yamada, K.

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Yamamoto, T.

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

Yeh, C. H.

Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Lett. 12(1), 414–419 (2012).

Yin, X. B.

M. Liu, X. B. Yin, and X. Zhang, “Double-Layer Graphene Optical Modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Youngblood, N.

N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, and M. Li, “Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides,” Nano Lett. 14(5), 2741–2746 (2014).
[Crossref]

Yusoff, N.

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Zentgraf, T.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Zhai, Y. M.

M. Zhou, Y. M. Zhai, and S. J. Dong, “Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Anal. Chem. 81(14), 5603–5613 (2009).
[Crossref]

Zhang, X.

M. Liu, X. B. Yin, and X. Zhang, “Double-Layer Graphene Optical Modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Zhou, M.

M. Zhou, Y. M. Zhai, and S. J. Dong, “Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Anal. Chem. 81(14), 5603–5613 (2009).
[Crossref]

ZumBrunnen, T. L.

T. E. Peddicord, K. M. Olsen, T. L. ZumBrunnen, D. J. Warner, and L. Webb, “Stability of high-concentration dopamine hydrochloride, norepinephrine bitartrate, epinephrine hydrochloride, and nitroglycerin in 5% dextrose injection,” Am. J. Health-Syst. Pharm. 54(12), 1417–1419 (1997).

ACS Photonics (1)

D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, and H. Kurz, “50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems,” ACS Photonics 1(9), 781–784 (2014).
[Crossref]

Am. J. Health-Syst. Pharm. (1)

T. E. Peddicord, K. M. Olsen, T. L. ZumBrunnen, D. J. Warner, and L. Webb, “Stability of high-concentration dopamine hydrochloride, norepinephrine bitartrate, epinephrine hydrochloride, and nitroglycerin in 5% dextrose injection,” Am. J. Health-Syst. Pharm. 54(12), 1417–1419 (1997).

Anal. Chem. (1)

M. Zhou, Y. M. Zhai, and S. J. Dong, “Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Anal. Chem. 81(14), 5603–5613 (2009).
[Crossref]

Anal. Chim. Acta (1)

H. Y. Wang, Q. S. Hui, L. X. Xu, J. G. Jiang, and Y. Sun, “Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent,” Anal. Chim. Acta 497(1-2), 93–99 (2003).
[Crossref]

Annu. Rev. Neurosci. (1)

T. C. Sudhof, “The synaptic vesicle cycle,” Annu. Rev. Neurosci. 27(1), 509–547 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

R. Kou, S. Tanabe, T. Tsuchizawa, T. Yamamoto, H. Hibino, H. Nakajima, and K. Yamada, “Influence of graphene on quality factor variation in a silicon ring resonator,” Appl. Phys. Lett. 104(9), 091122 (2014).
[Crossref]

A. Ishizawa, T. Goto, R. Kou, T. Tsuchizawa, N. Matsuda, K. Hitachi, T. Nishikawa, K. Yamada, T. Sogawa, and H. Gotoh, “Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure,” Appl. Phys. Lett. 111(2), 021105 (2017).
[Crossref]

R. Kou, Y. Hori, T. Tsuchizawa, K. Warabi, Y. Kobayashi, Y. Harada, H. Hibino, T. Yamamoto, H. Nakajima, and K. Yamada, “Ultra-fine metal gate operated graphene optical intensity modulator,” Appl. Phys. Lett. 109(25), 251101 (2016).
[Crossref]

Biosens. Bioelectron. (1)

P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil, M. P. More, M. Veerapandian, and S. B. Bari, “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review,” Biosens. Bioelectron. 139, 111324 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

IEEE Photonics J. (1)

R. Kou, Y. Kobayashi, K. Warabi, H. Nishi, T. Tsuchizawa, T. Yamamoto, H. Nakajima, and K. Yamada, “Efficient- and Broadband-Coupled Selective Spot-Size Converters With Damage-Free Graphene Integration Process,” IEEE Photonics J. 6(3), 1–9 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

A. J. Oyer, J.-M. Y. Carrillo, C. C. Hire, H. C. Schniepp, A. D. Asandei, A. V. Dobrynin, and D. H. Adamson, “Stabilization of Graphene Sheets by a Structured Benzene/Hexafluorobenzene Mixed Solvent,” J. Am. Chem. Soc. 134(11), 5018–5021 (2012).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5(2), 329–528 (1976).
[Crossref]

Jpn. J. Appl. Phys. (1)

R. Kou, S. Tanabe, T. Tsuchizawa, K. Warabi, S. Suzuki, H. Hibino, H. Nakajima, and K. Yamada, “Characterization of Optical Absorption and Polarization Dependence of Single-Layer Graphene Integrated on a Silicon Wire Waveguide,” Jpn. J. Appl. Phys. 52(6R), 060203 (2013).
[Crossref]

Lancet Neurol. (1)

M. A. Kurian, P. Gissen, M. Smith, S. J. R. Heales, and P. T. Clayton, “The monoamine neurotransmitter disorders: an expanding range of neurological syndromes,” Lancet Neurol. 10(8), 721–733 (2011).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nano Lett. (5)

N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, and M. Li, “Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides,” Nano Lett. 14(5), 2741–2746 (2014).
[Crossref]

A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical Control of Silicon Photonic Crystal Cavity by Graphene,” Nano Lett. 13(2), 515–518 (2013).
[Crossref]

Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, “Graphene Annealing: How Clean Can It Be?” Nano Lett. 12(1), 414–419 (2012).

M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Lett. 10(3), 751–758 (2010).
[Crossref]

M. Liu, X. B. Yin, and X. Zhang, “Double-Layer Graphene Optical Modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

Nat. Nanotechnol. (1)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3(4), 210–215 (2008).
[Crossref]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013).
[Crossref]

Nat. Rev. Neurol. (1)

J. Ng, A. Papandreou, S. J. Heales, and M. A. Kurian, “Monoamine neurotransmitter disorders clinical advances and future perspectives,” Nat. Rev. Neurol. 11(10), 567–584 (2015).
[Crossref]

Nature (2)

R. Fernandez-Chacon, A. Konigstorfer, S. H. Gerber, J. Garcia, M. F. Matos, C. F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T. C. Sudhof, “Synaptotagmin I functions as a calcium regulator of release probability,” Nature 410(6824), 41–49 (2001).
[Crossref]

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

RSC Adv. (1)

A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, K. Z. Kamali, N. Yusoff, A. Jamil, R. Ramaraj, S. A. John, H. N. Lim, and N. M. Huang, “Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,” RSC Adv. 4(108), 63296–63323 (2014).
[Crossref]

Sens. Actuators, B (2)

D. Rithesh Raj, S. Prasanth, T. V. Vineeshkumar, and C. Sudarsanakumar, “Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles,” Sens. Actuators, B 224, 600–606 (2016).
[Crossref]

W. J. Hu, Y. Y. Huang, C. Y. Chen, Y. K. Liu, T. A. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Actuators, B 264, 440–447 (2018).
[Crossref]

Other (1)

W. M. Haynes, CRC handbook of chemistry and physics95th ed. (CRC, 2015-2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Sensing configuration for neurotransmitter detection. Sample consists of high-Q silicon ring resonator and partially integrated mono-layer graphene sheets on it. Bottom right is expanded view of graphene-covered reaction field, where adsorption of graphene and dopamine is illustrated. (b) Optical microscope image of fabricated sensing sample. Total of 9 channels and reference waveguides are integrated. Green sidelines are over-cladding layers of SiO2 for efficient taper coupling, and rest is open (air cladding). (c) SEM image of silicon ring resonator. Sections of graphene (length 5 µm; width 3 µm in image) are loaded on both left and right sides of circumference.
Fig. 2.
Fig. 2. (a) Schematic image of proposed sensing device. (b) Color-contour plots of transmitted peak intensity from drop port. Note that a and r are single-pass amplitude transmission of ring resonator and self-coupling coefficient of DC, respectively. Experimental results are plotted with designed parameters to compare conventional (red diamonds), and adjusted coupling designs (blue circles). White dashed line corresponds to “a­ = r”. (c) Color-contour plots of Q factor in same manner as (b). (d) Spectrum comparison of adjusted coupling and conventional ring resonators. Peak transmittance was improved by 13 dB (20 times). (e) Summary of adjusted coupling design LGr was set to 0, 5, and 10 µm, respectively.
Fig. 3.
Fig. 3. (a) Sensing measurement setup. µ-fluidics made of PDMS on silicon photonic circuit was mounted onto optical fiber alignment stage with temperature control. (b) Measured relationship of refractive index change and resonant peak shift with NaCl-solution calibration. Slope sensitivity of 120 nm/RIU was observed.
Fig. 4.
Fig. 4. Experimental system for real-time optical sensing measurement.
Fig. 5.
Fig. 5. (a) Peak shift as function of DA-solution concentration obtained from flowing measurement and simulation with COMSOL. Upper-right inset is three-dimensional image of DA structure, right is simulated mode distribution (Ex) at DA concentration of 500 µM. (b) Reaction curve of graphene-integrated sample at concentrations of 5, 16, and 50 µM. (c) Reaction curve of reference silicon ring resonator.
Fig. 6.
Fig. 6. AFM measurement results on thickness profiles of pristine graphene (after all fabrication steps), activated pristine graphene at 400 °C, and DA-flowed graphene samples with 5 and 50 µM. Inset is topography image of tested pattern at DA concentration of 50 µM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( ϕ ) = I d r o p I i n p u t = ( 1 r 2 ) 2 a 1 2 r 2 a cos ϕ + ( r 2 a ) 2
a = exp ( α L r i n g 2 ) , r = cos ( κ L D C ) , ϕ = β L r i n g
T max = ( 1 r 2 ) 2 a ( 1 r 2 a ) 2

Metrics