Abstract

A method aiming at improving the performance of integral imaging (II) based Fresnel hologram is proposed, which is generated by using the intermediate view reconstruction (IVR). The conventional integral holograms are generally generated through Fourier transforming the elemental images (EI) of II into hogels. However, a trade-off between the angular resolution and the spatial resolution of II is inevitable within the generation of integral hologram. The IVR is introduced to enhance the angular spectrum of II-based Fresnel hologram while keeping a compact image size and being free from moving the lenslet array. Multiple elemental image array (EIA) sequences are generated with the IVR and transformed to the corresponding holograms. All the generated hologram sequences shift depending on the relative position of the virtual lens array and are added together to synthesize the Fresnel hologram with a high angular spectrum. The synthesized hologram can reconstruct the 3D image with the combined light fields of all the integral hologram sequences. Finally, both the simulation with multiple objects and experiments of real 3D object are numerically and optically conducted. The high matching results among them confirm this work a better performance over the conventional methods.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resolution-enhanced holographic stereogram based on integral imaging using a moving array lenslet technique and an aperture array filter

Piao Dai, Guoqiang Lv, Zi Wang, Xu Zhang, Xin Gong, and Qibin Feng
Appl. Opt. 58(30) 8207-8212 (2019)

Orthographic projection images-based photon-counted integral Fourier holography

Min Wan, Inbarasan Muniraj, Ra’ed Malallah, Ni Chen, John J. Healy, James P. Ryle, and John T. Sheridan
Appl. Opt. 58(10) 2656-2661 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” EE Trans. Ind. Inf. 12(3), 886–901 (2016).
    [Crossref]
  2. S.-F. Lin and E.-S. Kim, “Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods,” Opt. Express 25(10), 11389–11404 (2017).
    [Crossref]
  3. Y. Sando, D. Barada, and T. Yatagai, “Holographic 3D display observable for multiple simultaneous viewers from all horizontal directions by using a time division method,” Opt. Lett. 39(19), 5555–5557 (2014).
    [Crossref]
  4. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  5. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [Crossref]
  6. D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
    [Crossref]
  7. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
    [Crossref]
  8. K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
    [Crossref]
  9. M. Ozaki, J.-I. Kato, and S. Kawata, “Surface-Plasmon Holography with White-Light Illumination,” Science 332(6026), 218–220 (2011).
    [Crossref]
  10. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [Crossref]
  11. G. Li, A. H. Phan, N. Kim, and J. H. Park, “Synthesis of computer-generated spherical hologram of real object with 360 field of view using a depth camera,” Appl. Opt. 52(15), 3567–3575 (2013).
    [Crossref]
  12. Y. Zhao, K. Kwon, Y. Piao, Y. Lim, S. Jeon, and N. Kim, “Computer generated holograms of real object from depth camera using polygon-based method,” in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper DW5I.8.
  13. J.-S. Chen and D.-P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
    [Crossref]
  14. Q. Smithwick, “Coarse integral holographic display,” U.S. Patent 9,310,769[P]. (2016).
  15. H. Yoshikawa and H. kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).
    [Crossref]
  16. Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4 K IP images to 8 K holograms,” Opt. Express 20(19), 21645–21655 (2012).
    [Crossref]
  17. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006).
    [Crossref]
  18. H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
    [Crossref]
  19. M.-K. Kim, Digital Holographic Microscopy (Springer, 2011), Chap. 2.
  20. C. Yang, X. Wang, J. Zhang, M. Martinez-Corral, and B. Javidi, “Reconstruction Improvement in Integral Fourier Holography by Micro-Scanning Method,” J. Display Technol. 11(9), 709–714 (2015).
    [Crossref]
  21. N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010).
    [Crossref]
  22. N. Chen, J. Yeom, J.-H. Jung, J.-H. Park, and B. Lee, “Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays,” Opt. Express 19(27), 26917–26927 (2011).
    [Crossref]
  23. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
    [Crossref]
  24. K. Wakunami, M. Yamaguchi, and B. Javidi, “High-resolution three-dimensional holographic display using dense ray sampling from integral imaging,” Opt. Lett. 37(24), 5103–5105 (2012).
    [Crossref]
  25. D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
    [Crossref]
  26. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E. S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
    [Crossref]
  27. M.-H. Kim and K.-H. Sohn, “Edge-preserving directional regularization technique for disparity estimation of steroscopic images,” IEEE Trans. on Consumer Electron. 45(3), 804–811 (1999).
    [Crossref]
  28. Z. Pan, Y. Zhang, and S. Kwong, “Efficient Motion and Disparity Estimation Optimization for Low Complexity Multiview Video Coding,” IEEE Trans. on Broadcast. 61(2), 166–176 (2015).
    [Crossref]
  29. N. Kalantari, T. Wang, and R. Ramamoorthi, “Learning-based view synthesis for light field cameras,” ACM Trans. Graph. 35(6), 1–10 (2016).
    [Crossref]
  30. L. Ai, “Intermediate view image reconstruction,” Figshare. (2019). https://doi.org/10.6084/m9.figshare.9735725
  31. L. Ai, “Hologram generation from elemental image array,” Figshare. (2019) https://doi.org/10.6084/m9.figshare.9735728
  32. L. Ai, “Hologram superimposition,” Figshare. (2019) https://doi.org/10.6084/m9.figshare.9735731
  33. L. Ai and X. Shi, “Light field image processing,” Figshare. (2019). https://doi.org/10.6084/m9.figshare.9735746

2018 (1)

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

2017 (1)

2016 (3)

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” EE Trans. Ind. Inf. 12(3), 886–901 (2016).
[Crossref]

N. Kalantari, T. Wang, and R. Ramamoorthi, “Learning-based view synthesis for light field cameras,” ACM Trans. Graph. 35(6), 1–10 (2016).
[Crossref]

2015 (4)

Z. Pan, Y. Zhang, and S. Kwong, “Efficient Motion and Disparity Estimation Optimization for Low Complexity Multiview Video Coding,” IEEE Trans. on Broadcast. 61(2), 166–176 (2015).
[Crossref]

J.-S. Chen and D.-P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
[Crossref]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref]

C. Yang, X. Wang, J. Zhang, M. Martinez-Corral, and B. Javidi, “Reconstruction Improvement in Integral Fourier Holography by Micro-Scanning Method,” J. Display Technol. 11(9), 709–714 (2015).
[Crossref]

2014 (1)

2013 (2)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

G. Li, A. H. Phan, N. Kim, and J. H. Park, “Synthesis of computer-generated spherical hologram of real object with 360 field of view using a depth camera,” Appl. Opt. 52(15), 3567–3575 (2013).
[Crossref]

2012 (3)

2011 (3)

2010 (2)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010).
[Crossref]

2008 (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

2006 (3)

1999 (1)

M.-H. Kim and K.-H. Sohn, “Edge-preserving directional regularization technique for disparity estimation of steroscopic images,” IEEE Trans. on Consumer Electron. 45(3), 804–811 (1999).
[Crossref]

1995 (1)

H. Yoshikawa and H. kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).
[Crossref]

Ai, L.

L. Ai, “Intermediate view image reconstruction,” Figshare. (2019). https://doi.org/10.6084/m9.figshare.9735725

L. Ai, “Hologram generation from elemental image array,” Figshare. (2019) https://doi.org/10.6084/m9.figshare.9735728

L. Ai, “Hologram superimposition,” Figshare. (2019) https://doi.org/10.6084/m9.figshare.9735731

L. Ai and X. Shi, “Light field image processing,” Figshare. (2019). https://doi.org/10.6084/m9.figshare.9735746

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Barada, D.

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Brooker, G.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, J.-S.

Chen, N.

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Chu, D.-P.

Costner, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Gneiting, S.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Goodsell, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Haymore, B.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Hsieh, P.-Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Hwang, D.-C.

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[Crossref]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E. S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

Ichihashi, Y.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4 K IP images to 8 K holograms,” Opt. Express 20(19), 21645–21655 (2012).
[Crossref]

Javidi, B.

Jeon, S.

Y. Zhao, K. Kwon, Y. Piao, Y. Lim, S. Jeon, and N. Kim, “Computer generated holograms of real object from depth camera using polygon-based method,” in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper DW5I.8.

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Jung, J.-H.

Kalantari, N.

N. Kalantari, T. Wang, and R. Ramamoorthi, “Learning-based view synthesis for light field cameras,” ACM Trans. Graph. 35(6), 1–10 (2016).
[Crossref]

kameyama, H.

H. Yoshikawa and H. kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).
[Crossref]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Kato, J.-I.

M. Ozaki, J.-I. Kato, and S. Kawata, “Surface-Plasmon Holography with White-Light Illumination,” Science 332(6026), 218–220 (2011).
[Crossref]

Kawata, S.

M. Ozaki, J.-I. Kato, and S. Kawata, “Surface-Plasmon Holography with White-Light Illumination,” Science 332(6026), 218–220 (2011).
[Crossref]

Kim, E. S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E. S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

Kim, E.-S.

Kim, M.-H.

M.-H. Kim and K.-H. Sohn, “Edge-preserving directional regularization technique for disparity estimation of steroscopic images,” IEEE Trans. on Consumer Electron. 45(3), 804–811 (1999).
[Crossref]

Kim, M.-K.

M.-K. Kim, Digital Holographic Microscopy (Springer, 2011), Chap. 2.

Kim, N.

G. Li, A. H. Phan, N. Kim, and J. H. Park, “Synthesis of computer-generated spherical hologram of real object with 360 field of view using a depth camera,” Appl. Opt. 52(15), 3567–3575 (2013).
[Crossref]

N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010).
[Crossref]

Y. Zhao, K. Kwon, Y. Piao, Y. Lim, S. Jeon, and N. Kim, “Computer generated holograms of real object from depth camera using polygon-based method,” in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper DW5I.8.

Kim, S.-C.

Kurita, T.

Kwon, K.

Y. Zhao, K. Kwon, Y. Piao, Y. Lim, S. Jeon, and N. Kim, “Computer generated holograms of real object from depth camera using polygon-based method,” in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper DW5I.8.

Kwong, S.

Z. Pan, Y. Zhang, and S. Kwong, “Efficient Motion and Disparity Estimation Optimization for Low Complexity Multiview Video Coding,” IEEE Trans. on Broadcast. 61(2), 166–176 (2015).
[Crossref]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Lee, B.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Li, G.

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Lim, Y.

Y. Zhao, K. Kwon, Y. Piao, Y. Lim, S. Jeon, and N. Kim, “Computer generated holograms of real object from depth camera using polygon-based method,” in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper DW5I.8.

Lin, S.-F.

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Lindsey, M.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Martinez-Corral, M.

Mishina, T.

Monk, A.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Nygaard, E.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Oi, R.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4 K IP images to 8 K holograms,” Opt. Express 20(19), 21645–21655 (2012).
[Crossref]

Okano, F.

Okui, M.

Ozaki, M.

M. Ozaki, J.-I. Kato, and S. Kawata, “Surface-Plasmon Holography with White-Light Illumination,” Science 332(6026), 218–220 (2011).
[Crossref]

Pan, Z.

Z. Pan, Y. Zhang, and S. Kwong, “Efficient Motion and Disparity Estimation Optimization for Low Complexity Multiview Video Coding,” IEEE Trans. on Broadcast. 61(2), 166–176 (2015).
[Crossref]

Park, J. H.

Park, J.-H.

Park, J.-S.

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[Crossref]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E. S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

Pearson, M.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Peatross, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Phan, A. H.

Piao, Y.

Y. Zhao, K. Kwon, Y. Piao, Y. Lim, S. Jeon, and N. Kim, “Computer generated holograms of real object from depth camera using polygon-based method,” in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper DW5I.8.

Poon, T.-C.

P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” EE Trans. Ind. Inf. 12(3), 886–901 (2016).
[Crossref]

Qaderi, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Qiu, C.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Ramamoorthi, R.

N. Kalantari, T. Wang, and R. Ramamoorthi, “Learning-based view synthesis for light field cameras,” ACM Trans. Graph. 35(6), 1–10 (2016).
[Crossref]

Rasmussen, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Rogers, W.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Rosen, J.

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Sando, Y.

Sasaki, H.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref]

Senoh, T.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4 K IP images to 8 K holograms,” Opt. Express 20(19), 21645–21655 (2012).
[Crossref]

Shi, X.

L. Ai and X. Shi, “Light field image processing,” Figshare. (2019). https://doi.org/10.6084/m9.figshare.9735746

Shin, D.-H.

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[Crossref]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E. S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Smalley, D. E.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Smithwick, Q.

Q. Smithwick, “Coarse integral holographic display,” U.S. Patent 9,310,769[P]. (2016).

Sohn, K.-H.

M.-H. Kim and K.-H. Sohn, “Edge-preserving directional regularization technique for disparity estimation of steroscopic images,” IEEE Trans. on Consumer Electron. 45(3), 804–811 (1999).
[Crossref]

Squire, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Tsang, P. W. M.

P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” EE Trans. Ind. Inf. 12(3), 886–901 (2016).
[Crossref]

Van Wagoner, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Wakunami, K.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref]

K. Wakunami, M. Yamaguchi, and B. Javidi, “High-resolution three-dimensional holographic display using dense ray sampling from integral imaging,” Opt. Lett. 37(24), 5103–5105 (2012).
[Crossref]

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
[Crossref]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Wang, T.

N. Kalantari, T. Wang, and R. Ramamoorthi, “Learning-based view synthesis for light field cameras,” ACM Trans. Graph. 35(6), 1–10 (2016).
[Crossref]

Wang, X.

Yamaguchi, M.

Yamamoto, K.

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4 K IP images to 8 K holograms,” Opt. Express 20(19), 21645–21655 (2012).
[Crossref]

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Yang, C.

Yatagai, T.

Yeom, J.

Yoshikawa, H.

H. Yoshikawa and H. kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, J.

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, Y.

Z. Pan, Y. Zhang, and S. Kwong, “Efficient Motion and Disparity Estimation Optimization for Low Complexity Multiview Video Coding,” IEEE Trans. on Broadcast. 61(2), 166–176 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, K. Kwon, Y. Piao, Y. Lim, S. Jeon, and N. Kim, “Computer generated holograms of real object from depth camera using polygon-based method,” in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper DW5I.8.

ACM Trans. Graph. (1)

N. Kalantari, T. Wang, and R. Ramamoorthi, “Learning-based view synthesis for light field cameras,” ACM Trans. Graph. 35(6), 1–10 (2016).
[Crossref]

Appl. Opt. (3)

EE Trans. Ind. Inf. (1)

P. W. M. Tsang and T.-C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” EE Trans. Ind. Inf. 12(3), 886–901 (2016).
[Crossref]

IEEE Trans. on Broadcast. (1)

Z. Pan, Y. Zhang, and S. Kwong, “Efficient Motion and Disparity Estimation Optimization for Low Complexity Multiview Video Coding,” IEEE Trans. on Broadcast. 61(2), 166–176 (2015).
[Crossref]

IEEE Trans. on Consumer Electron. (1)

M.-H. Kim and K.-H. Sohn, “Edge-preserving directional regularization technique for disparity estimation of steroscopic images,” IEEE Trans. on Consumer Electron. 45(3), 804–811 (1999).
[Crossref]

J. Display Technol. (1)

Nat. Commun. (2)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

K. Wakunami, P.-Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref]

Nat. Photonics (2)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Nature (2)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Opt. Eng. (1)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E. S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45(11), 117004 (2006).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

H. Yoshikawa and H. kameyama, “Integral holography,” Proc. SPIE 2406, 226–234 (1995).
[Crossref]

Sci. Rep. (1)

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2015).
[Crossref]

Science (1)

M. Ozaki, J.-I. Kato, and S. Kawata, “Surface-Plasmon Holography with White-Light Illumination,” Science 332(6026), 218–220 (2011).
[Crossref]

Other (7)

Y. Zhao, K. Kwon, Y. Piao, Y. Lim, S. Jeon, and N. Kim, “Computer generated holograms of real object from depth camera using polygon-based method,” in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper DW5I.8.

Q. Smithwick, “Coarse integral holographic display,” U.S. Patent 9,310,769[P]. (2016).

M.-K. Kim, Digital Holographic Microscopy (Springer, 2011), Chap. 2.

L. Ai, “Intermediate view image reconstruction,” Figshare. (2019). https://doi.org/10.6084/m9.figshare.9735725

L. Ai, “Hologram generation from elemental image array,” Figshare. (2019) https://doi.org/10.6084/m9.figshare.9735728

L. Ai, “Hologram superimposition,” Figshare. (2019) https://doi.org/10.6084/m9.figshare.9735731

L. Ai and X. Shi, “Light field image processing,” Figshare. (2019). https://doi.org/10.6084/m9.figshare.9735746

Supplementary Material (4)

NameDescription
» Code 1       the algorithm of intermediated view reconstruction, named IVRsoteware.zip
» Code 2       hologram generation from EIA
» Code 3       he algorithm of holograms superimposition in the spatial frequency domain, named HoloSuper.m
» Code 4       the algorithm of EIA acquisition from light field camera’s raw data, named LF-code.zip

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of integral imaging pick-ups with different lenslet array and their corresponding integral holograms: (a) Large pitch capture. (b) Relative small pitch capture.
Fig. 2.
Fig. 2. The whole structure of the proposed performance enhanced integral holography.
Fig. 3.
Fig. 3. The principle of the intermediate EI generation at any sampling position.
Fig. 4.
Fig. 4. Captured EIA and synthetic EIA with different relative virtual capturing displacement, (a) Plane object of ‘3’. (b) EIA from capture. (c) EIA1/2,1/2 from the IVR synthesis.
Fig. 5.
Fig. 5. Integral Fresnel hologram generated from the two EIAs. (a) Amplitude of integral hologram from EIA1. (b) Phase of integral Fresnel hologram from EIA. (c) Amplitude of integral Fresnel hologram from EIA1/2, 1/2. (d) Phase of integral Fresnel hologram from EIA1/2, 1/2.
Fig. 6.
Fig. 6. The concept of hologram fusion for providing sufficient spectrum angular of the reconstructed 3D image.
Fig. 7.
Fig. 7. The flowchart of the holograms fusion process.
Fig. 8.
Fig. 8. (a) The amplitude of resulting hologram. (b) The phase of the resulting hologram. (c) The magnification of yellow square on (a). (d) The magnification of the same position in the hologram of Fig. 5(a).
Fig. 9.
Fig. 9. Numerical reconstruction results of (a) CIIR of EIA shown in Fig. 4(b). (b) Integral Fresnel hologram generated from insufficient pixel number of EI. (c) Integral Fresnel hologram of Fig. 5(a). (d) The resulting hologram of Fig. 8(a). (e) The intensity profile along the white line in Fig. 9(a). (f) The intensity profile along the white line in Fig. 9(b). (g) The intensity profile along the white line in Fig. 9(c). (h) The intensity profile along the white line in Fig. 9(d).
Fig. 10.
Fig. 10. Simulation for two color objects:(a) Image of Olympic rings. (b) The numerical reconstruction result focused on 11.2 cm of conventional integral hologram. (c) The numerical reconstruction result focused on 11.2 cm the resulting hologram. (d) Image of background mosaic. (e) The numerical reconstruction result focused on 13.9 cm of conventional integral hologram. (f) The numerical reconstruction result focused on 13.9 cm of resulting hologram.
Fig. 11.
Fig. 11. Optical experiment of real 3D object: (a) Capturing setup with the light field camera. (a) Setup of the holographic display. (c) EIA resampled from original light filed image. (d) CIIR of the EIA at the depth of 30 times focal length. (e) Optical reconstruction result from conventional integral Fresnel hologram. (f) Optical reconstruction of the resulting hologram.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E p , q + α ( x , y ) = ( 1 α ) E p , q ( x + α d ( x , y ) , y ) + α E p , q + 1 ( x ( 1 α ) d ( x , y ) , y ) .
E p + β , q + α ( y , x ) = ( 1 β ) E p + 1 , q + α ( y + β d ( x , y ) , x ) + β E p , q + α ( y ( 1 β ) d ( x , y ) , x ) ,
H p  +  β , q  +  α ( u , v ) = e 2 i k f λ f E p  +  β , q  +  α ( x , y ) e i 2 π ( x u + y v λ f ) d x d y ,
H p  +  β , q  +  α ( u Δ p m , v Δ p n ) = x = 1 M y = 1 N E p  +  β , q  +  α ( x , y ) e i 2 π ( x u Δ p m 2 λ f + y v Δ p n 2 λ f ) ,
M Δ p m 2 = λ f , N Δ p n 2 = λ f ,
H H = 1 S s = 1 S H H β s , α s ( u β s M Δ p m , v α s N Δ p n ) ,
H H = F 1 { 1 S s = 1 S F { H H β s , α s } e j 2 π P M β s M Δ p m k u e j 2 π Q N α s N Δ p n k v } ,
I ( x , y ) = 1 i λ d [ e i k d e i π d λ ( ( x d λ ) 2 + ( y d λ ) 2 ) ] H H ( u , v ) r ( u , v ) e i π d λ [ u 2 + v 2 ] e 2 π i [ u x d λ + v y d λ ] d u d v ,
f = M Δ p m 2 λ .
d = D M Δ p m 2 λ f M Δ p m 2 λ .

Metrics