Abstract

Solution-processed, lead halide-based perovskite solar cells have recently overcome important challenges, offering low-cost and high solar power conversion efficiencies. However, they still undergo unoptimized light collection due mainly to the thin (∼350 nm) polycrystalline absorber layers. Moreover, their high toxicity (due to the presence of lead in perovskite crystalline structures) makes it necessary that the thickness of the absorber layers to be further reduced. Here we address these issues via embedding spherical plasmonic nanoparticles of various sizes, composition, concentrations, and vertical positions, in realistic halide-based perovskite solar cells. We theoretically show that plasmon-enhanced near-field effects and scattering leads to a device photocurrent enhancement up to ∼7.3% when silver spheres are embedded inside the perovskite layer. An even further enhancement, up to ∼12%, is achieved with the combination of silver spheres in perovskite and aluminum spheres inside the hole transporting layer (PEDOT:PSS). The proper involvement of nanoparticles allows the employment of much thinner perovskite layers (up to 150 nm), reducing thus significantly the toxicity. Providing the requirements related to the design parameters of nanoparticles, our study establishes guidelines for a future development of highly-efficient, environmentally friendly and low-cost plasmonic perovskite solar cells.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model

Richard S. Kim, Jinfeng Zhu, Jeung Hun Park, Lu Li, Zhibin Yu, Huajun Shen, Mei Xue, Kang L. Wang, Gyechoon Park, Timothy J. Anderson, and Qibing Pei
Opt. Express 20(12) 12649-12657 (2012)

Efficiency enhancement of perovskite solar cells based on opal-like photonic crystals

Michaël Lobet, Pierre Piron, Jennifer Dewalque, Anthony Maho, Olivier Deparis, Catherine Henrist, and Jérôme Loicq
Opt. Express 27(22) 32308-32322 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. K. Kumawat, M. N. Tripathi, U. Waghmare, and D. Kabra, “Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical investigations,” J. Phys. Chem. A 120(22), 3917–3923 (2016).
    [Crossref]
  2. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
    [Crossref]
  3. NREL Best research-cell photovoltaic efficiency chart., (n.d.).
  4. G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
    [Crossref]
  5. G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
    [Crossref]
  6. M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
    [Crossref]
  7. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
    [Crossref]
  8. A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, and H. I. Karunadasa, “Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers,” Inorg. Chem. 56(1), 46–55 (2017).
    [Crossref]
  9. L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
    [Crossref]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref]
  11. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
    [Crossref]
  12. G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
    [Crossref]
  13. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  14. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
    [Crossref]
  15. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
    [Crossref]
  16. A. Peer, R. Biswas, J.-M. Park, R. Shinar, and J. Shinar, “Light management in perovskite solar cells and organic LEDs with microlens arrays,” Opt. Express 25(9), 10704 (2017).
    [Crossref]
  17. Q. G. Du, G. Shen, and S. John, “Light-trapping in perovskite solar cells,” AIP Adv. 6(6), 065002 (2016).
    [Crossref]
  18. Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
    [Crossref]
  19. W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
    [Crossref]
  20. G. Kakavelakis, K. Alexaki, E. Stratakis, and E. Kymakis, “Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer,” RSC Adv. 7(21), 12998–13002 (2017).
    [Crossref]
  21. B. Cai, Y. Peng, Y.-B. Cheng, and M. Gu, “4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells,” Opt. Express 23(24), A1700 (2015).
    [Crossref]
  22. N. K. Pathak and R. P. Sharma, “Study of broadband tunable properties of surface plasmon resonances of noble metal nanoparticles using mie scattering theory: plasmonic perovskite interaction,” Plasmonics 11(3), 713–719 (2016).
    [Crossref]
  23. S. Roopak, A. Ji, P. K. Parashar, and R. P. Sharma, “Light incoupling tolerance of resonant and nonresonant metal nanostructures embedded in perovskite medium: effect of various geometries on broad spectral resonance,” J. Phys. D: Appl. Phys. 50(33), 335105 (2017).
    [Crossref]
  24. J. Stratton, Electromagnetic theory (Wiley-IEEE Press, 2007).
  25. S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J. Phys. Chem. C 119(32), 18635–18640 (2015).
    [Crossref]
  26. S. Carretero-Palacios, A. Jiménez-Solano, and H. Míguez, “Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide,” ACS Energy Lett. 1(1), 323–331 (2016).
    [Crossref]
  27. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat. Commun. 4(1), 2761 (2013).
    [Crossref]
  28. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
    [Crossref]
  29. R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
    [Crossref]
  30. E. D. Palik, Handbook of Optical Constants of Solids. II (Academic Press, 1998).
  31. Solar Spectral Irradiance: Air Mass 1.5, https://rredc.nrel.gov/solar/spectra/am1.5/ .
  32. G. Kakavelakis, K. Petridis, and E. Kymakis, “Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells,” J. Mater. Chem. A 5(41), 21604–21624 (2017).
    [Crossref]
  33. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
    [Crossref]
  34. M. Omelyanovich, S. Makarov, V. Milichko, and C. Simovski, “Enhancement of perovskite solar cells by plasmonic nanoparticles,” Mater. Sci. Appl. 7, 836–847 (2016).
  35. R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
    [Crossref]
  36. H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
    [Crossref]
  37. Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
    [Crossref]
  38. N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Mater. Today 18(2), 65–72 (2015).
    [Crossref]
  39. J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
    [Crossref]
  40. S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
    [Crossref]
  41. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  42. T. Shen, S. Siontas, and D. Pacifici, “Plasmon-enhanced thin-film perovskite solar cells,” J. Phys. Chem. C 122(41), 23691–23697 (2018).
    [Crossref]
  43. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178 (2014).
    [Crossref]

2018 (3)

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

T. Shen, S. Siontas, and D. Pacifici, “Plasmon-enhanced thin-film perovskite solar cells,” J. Phys. Chem. C 122(41), 23691–23697 (2018).
[Crossref]

2017 (6)

S. Roopak, A. Ji, P. K. Parashar, and R. P. Sharma, “Light incoupling tolerance of resonant and nonresonant metal nanostructures embedded in perovskite medium: effect of various geometries on broad spectral resonance,” J. Phys. D: Appl. Phys. 50(33), 335105 (2017).
[Crossref]

G. Kakavelakis, K. Petridis, and E. Kymakis, “Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells,” J. Mater. Chem. A 5(41), 21604–21624 (2017).
[Crossref]

A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, and H. I. Karunadasa, “Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers,” Inorg. Chem. 56(1), 46–55 (2017).
[Crossref]

G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
[Crossref]

A. Peer, R. Biswas, J.-M. Park, R. Shinar, and J. Shinar, “Light management in perovskite solar cells and organic LEDs with microlens arrays,” Opt. Express 25(9), 10704 (2017).
[Crossref]

G. Kakavelakis, K. Alexaki, E. Stratakis, and E. Kymakis, “Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer,” RSC Adv. 7(21), 12998–13002 (2017).
[Crossref]

2016 (8)

G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
[Crossref]

Q. G. Du, G. Shen, and S. John, “Light-trapping in perovskite solar cells,” AIP Adv. 6(6), 065002 (2016).
[Crossref]

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

N. K. Kumawat, M. N. Tripathi, U. Waghmare, and D. Kabra, “Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical investigations,” J. Phys. Chem. A 120(22), 3917–3923 (2016).
[Crossref]

N. K. Pathak and R. P. Sharma, “Study of broadband tunable properties of surface plasmon resonances of noble metal nanoparticles using mie scattering theory: plasmonic perovskite interaction,” Plasmonics 11(3), 713–719 (2016).
[Crossref]

S. Carretero-Palacios, A. Jiménez-Solano, and H. Míguez, “Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide,” ACS Energy Lett. 1(1), 323–331 (2016).
[Crossref]

M. Omelyanovich, S. Makarov, V. Milichko, and C. Simovski, “Enhancement of perovskite solar cells by plasmonic nanoparticles,” Mater. Sci. Appl. 7, 836–847 (2016).

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

2015 (9)

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Mater. Today 18(2), 65–72 (2015).
[Crossref]

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J. Phys. Chem. C 119(32), 18635–18640 (2015).
[Crossref]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref]

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

B. Cai, Y. Peng, Y.-B. Cheng, and M. Gu, “4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells,” Opt. Express 23(24), A1700 (2015).
[Crossref]

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

2014 (2)

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178 (2014).
[Crossref]

2013 (3)

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat. Commun. 4(1), 2761 (2013).
[Crossref]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref]

2012 (1)

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref]

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

2009 (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

2007 (1)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

2006 (1)

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
[Crossref]

2003 (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

1999 (1)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Alexaki, K.

G. Kakavelakis, K. Alexaki, E. Stratakis, and E. Kymakis, “Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer,” RSC Adv. 7(21), 12998–13002 (2017).
[Crossref]

Anaya, M.

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref]

Armin, A.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Aussenegg, F. R.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Ball, J. M.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat. Commun. 4(1), 2761 (2013).
[Crossref]

Bi, C.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Biswas, R.

Bonaccorso, F.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Burn, P. L.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Burschka, J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Cai, B.

Calvo, M. E.

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J. Phys. Chem. C 119(32), 18635–18640 (2015).
[Crossref]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref]

Cao, T.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Carretero-Palacios, S.

S. Carretero-Palacios, A. Jiménez-Solano, and H. Míguez, “Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide,” ACS Energy Lett. 1(1), 323–331 (2016).
[Crossref]

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J. Phys. Chem. C 119(32), 18635–18640 (2015).
[Crossref]

Chen, C.-P.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Chen, N.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Chen, Z.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Cheng, Y.-B.

Crossland, E. J. W.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Cui, Y.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Darwich, M.

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat. Commun. 4(1), 2761 (2013).
[Crossref]

Del Rio Castillo, A. E.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

Dereux, A.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Docampo, P.

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat. Commun. 4(1), 2761 (2013).
[Crossref]

Dong, Q.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Du, Q. G.

Q. G. Du, G. Shen, and S. John, “Light-trapping in perovskite solar cells,” AIP Adv. 6(6), 065002 (2016).
[Crossref]

Durose, K.

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

El-Sayed, M. A.

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Eperon, G. E.

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat. Commun. 4(1), 2761 (2013).
[Crossref]

Eustis, S.

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
[Crossref]

Friend, R. H.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Gao, P.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Gao, Y.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Generosi, A.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

Girard, C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Gong, Q.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Gotschy, W.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Grätzel, M.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Gu, M.

Hall, S.

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

Hao, Y.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Heuer-Jungemann, A.

G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
[Crossref]

Hörantner, M. T.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Hsieh, C.-M.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Hsu, H.-L.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Hu, H.

Huang, C.-L.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Huang, H.

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

Huang, J.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Huang, P.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Huang, Y.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Hüttner, S.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Jaffe, A.

A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, and H. I. Karunadasa, “Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers,” Inorg. Chem. 56(1), 46–55 (2017).
[Crossref]

Jeng, R.-J.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Ji, A.

S. Roopak, A. Ji, P. K. Parashar, and R. P. Sharma, “Light incoupling tolerance of resonant and nonresonant metal nanostructures embedded in perovskite medium: effect of various geometries on broad spectral resonance,” J. Phys. D: Appl. Phys. 50(33), 335105 (2017).
[Crossref]

Jiménez-Solano, A.

S. Carretero-Palacios, A. Jiménez-Solano, and H. Míguez, “Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide,” ACS Energy Lett. 1(1), 323–331 (2016).
[Crossref]

John, S.

Q. G. Du, G. Shen, and S. John, “Light-trapping in perovskite solar cells,” AIP Adv. 6(6), 065002 (2016).
[Crossref]

Johnston, M. B.

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref]

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Juang, T.-Y.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Kabra, D.

N. K. Kumawat, M. N. Tripathi, U. Waghmare, and D. Kabra, “Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical investigations,” J. Phys. Chem. A 120(22), 3917–3923 (2016).
[Crossref]

Kakavelakis, G.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
[Crossref]

G. Kakavelakis, K. Alexaki, E. Stratakis, and E. Kymakis, “Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer,” RSC Adv. 7(21), 12998–13002 (2017).
[Crossref]

G. Kakavelakis, K. Petridis, and E. Kymakis, “Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells,” J. Mater. Chem. A 5(41), 21604–21624 (2017).
[Crossref]

G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
[Crossref]

Kanaras, A. G.

G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
[Crossref]

Karunadasa, H. I.

A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, and H. I. Karunadasa, “Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers,” Inorg. Chem. 56(1), 46–55 (2017).
[Crossref]

Kay, J.

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

Kioseoglou, G.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
[Crossref]

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Konios, D.

G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
[Crossref]

Krenn, J. R.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Kumawat, N. K.

N. K. Kumawat, M. N. Tripathi, U. Waghmare, and D. Kabra, “Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical investigations,” J. Phys. Chem. A 120(22), 3917–3923 (2016).
[Crossref]

Kymakis, E.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
[Crossref]

G. Kakavelakis, K. Alexaki, E. Stratakis, and E. Kymakis, “Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer,” RSC Adv. 7(21), 12998–13002 (2017).
[Crossref]

G. Kakavelakis, K. Petridis, and E. Kymakis, “Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells,” J. Mater. Chem. A 5(41), 21604–21624 (2017).
[Crossref]

G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
[Crossref]

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Lei, B.

Leitner, A.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Li, Y.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Lidorikis, E.

G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
[Crossref]

Lin, Q.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Liu, F.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Liu, P.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

Liu, W.

Lozano, G.

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref]

Lu, Z.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Ma, H.

Ma, Y.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Makarov, S.

M. Omelyanovich, S. Makarov, V. Milichko, and C. Simovski, “Enhancement of perovskite solar cells by plasmonic nanoparticles,” Mater. Sci. Appl. 7, 836–847 (2016).

Maksudov, T.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
[Crossref]

Meredith, P.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Míguez, H.

S. Carretero-Palacios, A. Jiménez-Solano, and H. Míguez, “Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide,” ACS Energy Lett. 1(1), 323–331 (2016).
[Crossref]

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J. Phys. Chem. C 119(32), 18635–18640 (2015).
[Crossref]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref]

Milichko, V.

M. Omelyanovich, S. Makarov, V. Milichko, and C. Simovski, “Enhancement of perovskite solar cells by plasmonic nanoparticles,” Mater. Sci. Appl. 7, 836–847 (2016).

Mitrovic, I. Z.

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

Miyasaka, T.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Moon, S.-J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Nagiri, R. C. R.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Najafi, L.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

Nazeeruddin, M. K.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

Omelyanovich, M.

M. Omelyanovich, S. Makarov, V. Milichko, and C. Simovski, “Enhancement of perovskite solar cells by plasmonic nanoparticles,” Mater. Sci. Appl. 7, 836–847 (2016).

Paci, B.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

Pacifici, D.

T. Shen, S. Siontas, and D. Pacifici, “Plasmon-enhanced thin-film perovskite solar cells,” J. Phys. Chem. C 122(41), 23691–23697 (2018).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids. II (Academic Press, 1998).

Pan, X.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Papachatzakis, M.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

Paradisanos, I.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
[Crossref]

Parashar, P. K.

S. Roopak, A. Ji, P. K. Parashar, and R. P. Sharma, “Light incoupling tolerance of resonant and nonresonant metal nanostructures embedded in perovskite medium: effect of various geometries on broad spectral resonance,” J. Phys. D: Appl. Phys. 50(33), 335105 (2017).
[Crossref]

Park, J.-M.

Park, N.-G.

N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Mater. Today 18(2), 65–72 (2015).
[Crossref]

Pathak, N. K.

N. K. Pathak and R. P. Sharma, “Study of broadband tunable properties of surface plasmon resonances of noble metal nanoparticles using mie scattering theory: plasmonic perovskite interaction,” Plasmonics 11(3), 713–719 (2016).
[Crossref]

Peer, A.

Pellet, N.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Peng, Y.

Petridis, K.

G. Kakavelakis, K. Petridis, and E. Kymakis, “Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells,” J. Mater. Chem. A 5(41), 21604–21624 (2017).
[Crossref]

Phillips, L. J.

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Qu, B.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Ramirez, I.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Rashed, A. M.

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

Riede, M.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Roopak, S.

S. Roopak, A. Ji, P. K. Parashar, and R. P. Sharma, “Light incoupling tolerance of resonant and nonresonant metal nanostructures embedded in perovskite medium: effect of various geometries on broad spectral resonance,” J. Phys. D: Appl. Phys. 50(33), 335105 (2017).
[Crossref]

Saliba, M.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref]

Santbergen, R.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref]

Schider, G.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Shao, Y.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Sharma, R. P.

S. Roopak, A. Ji, P. K. Parashar, and R. P. Sharma, “Light incoupling tolerance of resonant and nonresonant metal nanostructures embedded in perovskite medium: effect of various geometries on broad spectral resonance,” J. Phys. D: Appl. Phys. 50(33), 335105 (2017).
[Crossref]

N. K. Pathak and R. P. Sharma, “Study of broadband tunable properties of surface plasmon resonances of noble metal nanoparticles using mie scattering theory: plasmonic perovskite interaction,” Plasmonics 11(3), 713–719 (2016).
[Crossref]

Shen, G.

Q. G. Du, G. Shen, and S. John, “Light-trapping in perovskite solar cells,” AIP Adv. 6(6), 065002 (2016).
[Crossref]

Shen, T.

T. Shen, S. Siontas, and D. Pacifici, “Plasmon-enhanced thin-film perovskite solar cells,” J. Phys. Chem. C 122(41), 23691–23697 (2018).
[Crossref]

Shi, X.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref]

Shinar, J.

Shinar, R.

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Simovski, C.

M. Omelyanovich, S. Makarov, V. Milichko, and C. Simovski, “Enhancement of perovskite solar cells by plasmonic nanoparticles,” Mater. Sci. Appl. 7, 836–847 (2016).

Siontas, S.

T. Shen, S. Siontas, and D. Pacifici, “Plasmon-enhanced thin-film perovskite solar cells,” J. Phys. Chem. C 122(41), 23691–23697 (2018).
[Crossref]

Slavney, A. H.

A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, and H. I. Karunadasa, “Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers,” Inorg. Chem. 56(1), 46–55 (2017).
[Crossref]

Smaha, R. W.

A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, and H. I. Karunadasa, “Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers,” Inorg. Chem. 56(1), 46–55 (2017).
[Crossref]

Smets, A. H. M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref]

Smith, I. C.

A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, and H. I. Karunadasa, “Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers,” Inorg. Chem. 56(1), 46–55 (2017).
[Crossref]

Snaith, H. J.

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref]

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref]

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat. Commun. 4(1), 2761 (2013).
[Crossref]

Song, B.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Stranks, S. D.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref]

Stratakis, E.

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
[Crossref]

G. Kakavelakis, K. Alexaki, E. Stratakis, and E. Kymakis, “Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer,” RSC Adv. 7(21), 12998–13002 (2017).
[Crossref]

G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
[Crossref]

Stratton, J.

J. Stratton, Electromagnetic theory (Wiley-IEEE Press, 2007).

Sun, Y.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref]

Sun, Z.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Tan, H.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref]

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Treharne, R. E.

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

Tripathi, M. N.

N. K. Kumawat, M. N. Tripathi, U. Waghmare, and D. Kabra, “Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical investigations,” J. Phys. Chem. A 120(22), 3917–3923 (2016).
[Crossref]

Umeyama, D.

A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, and H. I. Karunadasa, “Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers,” Inorg. Chem. 56(1), 46–55 (2017).
[Crossref]

Vangelidis, I.

G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
[Crossref]

Waghmare, U.

N. K. Kumawat, M. N. Tripathi, U. Waghmare, and D. Kabra, “Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical investigations,” J. Phys. Chem. A 120(22), 3917–3923 (2016).
[Crossref]

Wang, C.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Wang, Q.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Wang, S.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Wang, Z.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Weeber, J. C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Weerakkody, A.

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

Wiesner, U.

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref]

Wu, R.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

Xia, H.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Xiahou, Y.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Xiao, L.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Xiao, Z.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Xie, W.

Xiong, J.

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

Xu, Q.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Yang, B.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

Yang, C.-C.

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Yang, J.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

Yates, P.

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

Yuan, L.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Yuan, Y.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Zeman, M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref]

Zhang, C.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

Zhang, D.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Zhang, J.

Zhang, K.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Zhang, W.

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref]

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref]

Zheng, L.

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Zhou, C.

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

Zhou, Y.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

Zhu, K.

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

ACS Energy Lett. (1)

S. Carretero-Palacios, A. Jiménez-Solano, and H. Míguez, “Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user’s guide,” ACS Energy Lett. 1(1), 323–331 (2016).
[Crossref]

Adv. Energy Mater. (3)

G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer,” Adv. Energy Mater. 7(7), 1602120 (2017).
[Crossref]

G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis, T. Maksudov, L. Najafi, A. E. Del Rio Castillo, G. Kioseoglou, E. Stratakis, F. Bonaccorso, and E. Kymakis, “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater. 8(12), 1702287 (2018).
[Crossref]

G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis, and E. Kymakis, “Plasmonic backscattering effect in high-efficient organic photovoltaic devices,” Adv. Energy Mater. 6(2), 1501640 (2016).
[Crossref]

AIP Adv. (1)

Q. G. Du, G. Shen, and S. John, “Light-trapping in perovskite solar cells,” AIP Adv. 6(6), 065002 (2016).
[Crossref]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Energy Environ. Sci. (2)

J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, “Optical properties and limiting photocurrent of thin-film perovskite solar cells,” Energy Environ. Sci. 8(2), 602–609 (2015).
[Crossref]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619–2623 (2014).
[Crossref]

Inorg. Chem. (1)

A. H. Slavney, R. W. Smaha, I. C. Smith, A. Jaffe, D. Umeyama, and H. I. Karunadasa, “Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers,” Inorg. Chem. 56(1), 46–55 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

J. Appl. Phys. (1)

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
[Crossref]

J. Mater. Chem. A (1)

G. Kakavelakis, K. Petridis, and E. Kymakis, “Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells,” J. Mater. Chem. A 5(41), 21604–21624 (2017).
[Crossref]

J. Phys. Chem. A (1)

N. K. Kumawat, M. N. Tripathi, U. Waghmare, and D. Kabra, “Structural, optical, and electronic properties of wide bandgap perovskites: experimental and theoretical investigations,” J. Phys. Chem. A 120(22), 3917–3923 (2016).
[Crossref]

J. Phys. Chem. C (4)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[Crossref]

S. Carretero-Palacios, M. E. Calvo, and H. Míguez, “Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles,” J. Phys. Chem. C 119(32), 18635–18640 (2015).
[Crossref]

R. Wu, B. Yang, C. Zhang, Y. Huang, Y. Cui, P. Liu, C. Zhou, Y. Hao, Y. Gao, and J. Yang, “Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods,” J. Phys. Chem. C 120(13), 6996–7004 (2016).
[Crossref]

T. Shen, S. Siontas, and D. Pacifici, “Plasmon-enhanced thin-film perovskite solar cells,” J. Phys. Chem. C 122(41), 23691–23697 (2018).
[Crossref]

J. Phys. Chem. Lett. (1)

M. Anaya, G. Lozano, M. E. Calvo, W. Zhang, M. B. Johnston, H. J. Snaith, and H. Míguez, “Optical description of mesostructured organic–inorganic halide perovskite solar cells,” J. Phys. Chem. Lett. 6(1), 48–53 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Roopak, A. Ji, P. K. Parashar, and R. P. Sharma, “Light incoupling tolerance of resonant and nonresonant metal nanostructures embedded in perovskite medium: effect of various geometries on broad spectral resonance,” J. Phys. D: Appl. Phys. 50(33), 335105 (2017).
[Crossref]

Mater. Sci. Appl. (1)

M. Omelyanovich, S. Makarov, V. Milichko, and C. Simovski, “Enhancement of perovskite solar cells by plasmonic nanoparticles,” Mater. Sci. Appl. 7, 836–847 (2016).

Mater. Today (1)

N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Mater. Today 18(2), 65–72 (2015).
[Crossref]

Nano Lett. (2)

W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H. J. Snaith, “Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles,” Nano Lett. 13(9), 4505–4510 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref]

Nat. Commun. (1)

P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat. Commun. 4(1), 2761 (2013).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Nat. Photonics (1)

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Nature (1)

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Opt. Express (3)

Org. Electron. (2)

Z. Sun, Y. Xiahou, T. Cao, K. Zhang, Z. Wang, P. Huang, K. Zhu, L. Yuan, Y. Zhou, B. Song, H. Xia, and N. Chen, “Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer,” Org. Electron. 52, 309–316 (2018).
[Crossref]

R. Wu, J. Yang, J. Xiong, P. Liu, C. Zhou, H. Huang, Y. Gao, and B. Yang, “Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage,” Org. Electron. 26, 265–272 (2015).
[Crossref]

Phys. Rev. Lett. (1)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
[Crossref]

Plasmonics (1)

N. K. Pathak and R. P. Sharma, “Study of broadband tunable properties of surface plasmon resonances of noble metal nanoparticles using mie scattering theory: plasmonic perovskite interaction,” Plasmonics 11(3), 713–719 (2016).
[Crossref]

RSC Adv. (2)

G. Kakavelakis, K. Alexaki, E. Stratakis, and E. Kymakis, “Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer,” RSC Adv. 7(21), 12998–13002 (2017).
[Crossref]

Z. Lu, X. Pan, Y. Ma, Y. Li, L. Zheng, D. Zhang, Q. Xu, Z. Chen, S. Wang, B. Qu, F. Liu, Y. Huang, L. Xiao, and Q. Gong, “Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles,” RSC Adv. 5(15), 11175–11179 (2015).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, “Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks,” Sol. Energy Mater. Sol. Cells 147, 327–333 (2016).
[Crossref]

H.-L. Hsu, T.-Y. Juang, C.-P. Chen, C.-M. Hsieh, C.-C. Yang, C.-L. Huang, and R.-J. Jeng, “Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates,” Sol. Energy Mater. Sol. Cells 140, 224–231 (2015).
[Crossref]

Other (5)

NREL Best research-cell photovoltaic efficiency chart., (n.d.).

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

J. Stratton, Electromagnetic theory (Wiley-IEEE Press, 2007).

E. D. Palik, Handbook of Optical Constants of Solids. II (Academic Press, 1998).

Solar Spectral Irradiance: Air Mass 1.5, https://rredc.nrel.gov/solar/spectra/am1.5/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Geometry of the inverted planar heterojunction perovskite solar cell. The thickness and role of the different layers of the cell are discussed in the main text.
Fig. 2.
Fig. 2. (a) Absorption in each layer of the PSC. (b) Total absorption (red solid line) of the PSC, absorption in perovskite due to the first reflection only (green dashed-dotted line). Inset: refractive index (black line), n, and absorption coefficient (blue line), k, of perovskite CH3NH3PBI3.
Fig. 3.
Fig. 3. (a) Scattering (solid lines) and absorption (dashed lines) cross-sections (Qscatt., abs) of a silver sphere (orange line – sphere radius 40 nm), gold sphere (blue line- sphere radius 40 nm) and aluminum sphere (green line - sphere radius 60 nm) inside a homogeneous perovskite matrix (here the matrix is considered with no losses and the absorption cross-section represents only ohmic losses inside the spheres); (b) Absorption in perovskite for plasmonic PSCs with silver (orange dashed-dotted line), gold (blue line) and aluminum (green dashed line) spheres placed at the middle of the perovskite layer (see inset) compared to the pristine case (black line). The radii of spheres are as in (a), and they are placed in square lattice with spacing L = 300 nm.
Fig. 4.
Fig. 4. Normalized (relative to the incident field, E0) distribution of the squared amplitude of the electric field, at λ=779 nm for silver, gold and aluminum (left, central, right figures respectively) spheres with optimum radius and periodicity for each case.
Fig. 5.
Fig. 5. (a) η (%) as a function of Z which denotes the distance of the center of the metallic nanoparticle from the top perovskite surface, for a periodic (in the x-y plane) system of silver spheres with radius r = 40 (blue line) and 70 nm (orange line), and periodicity 300 nm. Dashed lines indicate the averaged η (%) for all positions for each case. (b) Absorption of perovskite for the plasmonic PSC with silver spheres of r = 40 nm placed at different vertical positions (Z1=70 nm – orange line, Z2=175 nm – blue line, Z3=245 nm – green line, Z4=270 nm – red line) inside the perovskite layer, as depicted at the right panel, compared to the case with silver spheres of r = 70 nm at Z5=100 nm (orange dashed line) and the pristine case (black line).
Fig. 6.
Fig. 6. Normalized distribution of the squared amplitude of the electric field, |E|2/|E0|2, at λ=673 nm, for the pristine PSC (a), and for a PSC with spherical silver nanoparticles placed at the four different vertical positions shown in Fig. 5, i.e. at Z1 (b), Z2 (c), Z3 (d), and at Z4 (e). In all cases the nanoparticles radius is 40 nm and their lateral spacing 300 nm. E0 is the incident electric field.
Fig. 7.
Fig. 7. (a) Absorption of perovskite versus wavelength for different lattice constants (160 nm – blue line; 200 nm – orange line; 300 nm – green line; 400 nm – red line; and 500 nm – magenta line) compared to the pristine case (black line) and (b) the resulting photocurrent density for the different concentrations investigated, assuming silver spheres with a constant radius of 70 nm, and vertical position Z5 as shown in Fig. 5. The simulations to examine randomness were conducted assuming a periodicity of L = 2×300 = 600 nm (along x-, and y-axis), due to the optimum L = 300 nm case of the square lattice, keeping this way the same concentration. Random deviations to the particles lateral position were induced (their spacing in the lateral direction varies randomly thus it is not equal to 300 nm) two times, showing here the results of their average. The result is depicted as the green rhombus. The simulations to examine clustering were conducted assuming again a periodicity of L = 2×300 = 600 nm (along x-, and y-axis), assuming four spheres per unit cell (without altering this way the particles concentration), where we decreased gradually their inter-particle distance going from particles to particle tetramers. The result is depicted as the blue square.
Fig. 8.
Fig. 8. Photocurrent enhancement factor η (%) of PSCs containing r = 40 (lines with squares), 70 nm (lines with circles), L = 300 nm silver spheres placed both close to the top surface of the perovskite layer (Z1 for r = 40 nm and Z5 for r = 70 nm - see right panel in Fig. 5) (orange lines) and at the middle (Z2) (blue lines) as a function of silica shell thickness, compared to the pristine case. Right panel: Spatial distribution of the normalized electric field intensity at λ=779 nm for silica coated silver spheres (Ag@SiO2): r = 40@10 (middle), r = 70@10 (right) compared to the uncoated r = 40 nm case (left).
Fig. 9.
Fig. 9. (a) Absorption in perovskite for the pristine (black line) and the plasmonic PSC (green line) assuming aluminum spheres with radius equal to 18 nm and a period of 65 nm placed inside the PEDOT:PSS carrier transporting layer. The origin of the absorption enhancement is depicted at the right inset where the scattered field, due to the presence of the aluminum nanoparticles, is plotted for λ=517 nm. (b) Jph of the pristine (black line), plasmonic PSC (green line) as a function of the perovskite thickness.
Fig. 10.
Fig. 10. (a) Absorption in perovskite with thickness equal to 350 nm for the following cases: pristine device (black dashed line), aluminum spheres placed inside the PEDOT:PSS (green line – sphere radius 18 nm, period 65 nm), silver spheres inside the perovskite in the middle (orange line – sphere radius 30 nm, period 325 nm) and their combined case (blue line). Inset: Spatial distribution of the normalized electric field intensity for the combined case at λ=517 nm (left), λ=790 nm (right) verifying the “additive” response of spectrally separated resonances originating from nanoparticles at different PSC layers. (b) Jph as a function of the perovskite thickness for the plasmonic PSCs. The green line corresponds to the case when only aluminum spheres (radius 18 nm, period 65 nm) are placed inside the PEDOT:PSS, the orange line corresponds to the case when only silver spheres are placed in the middle or close to the bottom (position Z4 of Fig. 5) of the perovskite (with sphere radius of 40 nm and 30 nm respectively, and a period of 300 nm), the blue line shows the effect of the combination of aluminum spheres inside the PEDOT:PSS and silver spheres inside the perovskite in the middle or at Z4 (with silver sphere radius of 30 nm, and a period of 325 nm); all results are compared to the pristine case (black line).
Fig. 11.
Fig. 11. Dependence of Jph on incident angle averaged over both TE and TM polarizations for the plasmonic PSCs compared to the pristine case. The green line corresponds to the case when only aluminum spheres (radius 18 nm, period 65 nm) are placed inside the PEDOT:PSS, the orange line corresponds to the case when only silver spheres are placed in the middle or close to the bottom (position Z4 of Fig. 5) of the perovskite (with sphere radius of 40 nm and 30 nm respectively, and a period of 300 nm), the blue line shows the effect of the combination of aluminum spheres inside the PEDOT:PSS and silver spheres inside the perovskite in the middle or close to the bottom (position Z4 of Fig. 5) (with sphere radius of 30 nm, and a period of 325 nm); all results are compared to the pristine case (black line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J p h = q A p ( λ ) Φ A M 1.5 G ( λ ) d λ ,