Abstract

Stokes polarimetry (SP) is a powerful technique that enables spatial reconstruction of the state of polarization (SoP) of a light beam using only intensity measurements. A given SoP is reconstructed from a set of four Stokes parameters, which are computed through four intensity measurements. Since all intensities must be performed on the same beam, it is common to record each intensity individually, one after the other, limiting its performance to light beams with static SoP. Here, we put forward a novel technique to extend SP to a broader set of light beams with dynamic SoP. This technique relies on the superposition principle, which enables the splitting of the input beam into identical copies, allowing the simultaneous measurement of all intensities. For this, the input beam is passed through a multiplexed digital hologram displayed on a polarization-insensitive Digital Micromirror Device (DMD) that grants independent and rapid (20 kHz) manipulation of each beam. We are able to reliably reconstruct the SoP with high fidelity and at speeds of up to 27 Hz, paving the way for real-time polarimetry of structured light.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-digital Stokes polarimetry with a digital micromirror device

Amogh Manthalkar, Isaac Nape, Najmeh Tabe Bordbar, Carmelo Rosales-Guzmán, Shanti Bhattacharya, Andrew Forbes, and Angela Dudley
Opt. Lett. 45(8) 2319-2322 (2020)

Digital Stokes polarimetry and its application to structured light: tutorial

Keshaan Singh, Najmeh Tabebordbar, Andrew Forbes, and Angela Dudley
J. Opt. Soc. Am. A 37(11) C33-C44 (2020)

Semi-autonomous real-time programmable fluorescence lifetime segmentation with a digital micromirror device

Justin Aluko, Camille Perrin, Viviane Devauges, Jakub Nedbal, Simon Poland, Daniel Matthews, Janek Whittaker, and Simon Ameer-Beg
Opt. Express 26(24) 31055-31074 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. G. Stokes, Mathematical and physical papers (Reprinted in Mathematical and Physical Papers, Vol. 3, 233, Cambridge University Press: London, 1901, 1852).
  2. A. Dudley, G. Milione, R. R. Alfano, and A. Forbes, “All-digital wavefront sensing for structured light beams,” Opt. Express 22(11), 14031–14040 (2014).
    [Crossref]
  3. R. Azzam, “Division-of-amplitude photopolarimeter (doap) for the simultaneous measurement of all four stokes parameters of light,” Opt. Acta 29(5), 685–689 (1982).
    [Crossref]
  4. M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, “Real-time measurement of space-variant polarizations,” Opt. Express 18(10), 10805–10812 (2010).
    [Crossref]
  5. D. H. Goldstain, Polarized light (CRC Press, 2011).
  6. D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
    [Crossref]
  7. N. A. Rubin, A. Zaidi, M. Juhl, R. P. Li, J. B. Mueller, R. C. Devlin, K. Leósson, and F. Capasso, “Polarization state generation and measurement with a single metasurface,” Opt. Express 26(17), 21455–21478 (2018).
    [Crossref]
  8. J. A. Davis, I. Moreno, M. M. Sánchez-López, K. Badham, J. Albero, and D. M. Cottrell, “Diffraction gratings generating orders with selective states of polarization,” Opt. Express 24(2), 907–917 (2016).
    [Crossref]
  9. X. Hu, Q. Zhao, P. Yu, X. Li, Z. Wang, Y. Li, and L. Gong, “Dynamic shaping of orbital-angular-momentum beams for information encoding,” Opt. Express 26(2), 1796–1808 (2018).
    [Crossref]
  10. Y.-X. Ren, R.-D. Lu, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. 527(7-8), 447–470 (2015).
    [Crossref]
  11. Y. Chen, Z.-X. Fang, Y.-X. Ren, L. Gong, and R.-D. Lu, “Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device,” Appl. Opt. 54(27), 8030–8035 (2015).
    [Crossref]
  12. K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
    [Crossref]
  13. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
    [Crossref]
  14. V. Lerner, D. Shwa, Y. Drori, and N. Katz, “Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device,” Opt. Lett. 37(23), 4826–4828 (2012).
    [Crossref]
  15. H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
    [Crossref]
  16. X.-B. Hu, B. Zhao, Z.-H. Zhu, W. Gao, and C. Rosales-Guzmán, “In situ detection of a cooperative target’s longitudinal and angular speed using structured light,” Opt. Lett. 44(12), 3070–3073 (2019).
    [Crossref]
  17. B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
    [Crossref]
  18. B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzmán, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
    [Crossref]
  19. N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Rep. 8(1), 17387 (2018).
    [Crossref]
  20. N. Bhebhe, C. Rosales-Guzman, and A. Forbes, “Classical and quantum analysis of propagation invariant vector flat-top beams,” Appl. Opt. 57(19), 5451–5458 (2018).
    [Crossref]
  21. C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
    [Crossref]
  22. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  23. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full poincaré beams,” Opt. Express 18(10), 10777–10785 (2010).
    [Crossref]
  24. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré beam patterns produced by nonseparable superpositions of laguerre-gauss and polarization modes of light,” Appl. Opt. 51(15), 2925–2934 (2012).
    [Crossref]
  25. E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89(3), 031801 (2014).
    [Crossref]
  26. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref]
  27. Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Optical vortex beam based optical fan for high-precision optical measurements and optical switching,” Opt. Lett. 39(17), 5098–5101 (2014).
    [Crossref]

2019 (1)

2018 (6)

2017 (2)

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

2016 (2)

2015 (3)

2014 (4)

2012 (2)

2010 (2)

2009 (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

1982 (1)

R. Azzam, “Division-of-amplitude photopolarimeter (doap) for the simultaneous measurement of all four stokes parameters of light,” Opt. Acta 29(5), 685–689 (1982).
[Crossref]

Albero, J.

Alfano, R. R.

Alonso, M. A.

Alpmann, C.

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Andrews, D. L.

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Azzam, R.

R. Azzam, “Division-of-amplitude photopolarimeter (doap) for the simultaneous measurement of all four stokes parameters of light,” Opt. Acta 29(5), 685–689 (1982).
[Crossref]

Badham, K.

Banzer, P.

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Bauer, T.

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Beckley, A. M.

Berry, M.

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Bertolotti, J.

Bhebhe, N.

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Rep. 8(1), 17387 (2018).
[Crossref]

N. Bhebhe, C. Rosales-Guzman, and A. Forbes, “Classical and quantum analysis of propagation invariant vector flat-top beams,” Appl. Opt. 57(19), 5451–5458 (2018).
[Crossref]

Brown, T. G.

Buller, G. S.

Capasso, F.

Chen, M.

Chen, X.

Chen, Y.

Cižmár, T.

Cottrell, D. M.

Cox, M. A.

Davidson, N.

Davis, J. A.

Dennis, M.

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Denz, C.

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Devlin, R. C.

Ding, D.-S.

Drori, Y.

Dudley, A.

Fang, Z.-X.

Forbes, A.

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzmán, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Rep. 8(1), 17387 (2018).
[Crossref]

N. Bhebhe, C. Rosales-Guzman, and A. Forbes, “Classical and quantum analysis of propagation invariant vector flat-top beams,” Appl. Opt. 57(19), 5451–5458 (2018).
[Crossref]

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

A. Dudley, G. Milione, R. R. Alfano, and A. Forbes, “All-digital wavefront sensing for structured light beams,” Opt. Express 22(11), 14031–14040 (2014).
[Crossref]

Fridman, M.

Friesem, A. A.

Galvez, E. J.

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89(3), 031801 (2014).
[Crossref]

E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré beam patterns produced by nonseparable superpositions of laguerre-gauss and polarization modes of light,” Appl. Opt. 51(15), 2925–2934 (2012).
[Crossref]

Gao, W.

Gerardot, B. D.

Goldstain, D. H.

D. H. Goldstain, Polarized light (CRC Press, 2011).

Gong, L.

Goorden, S. A.

Grinvald, E.

Hernandez-Aranda, R. I.

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Hu, X.

Hu, X.-B.

Juhl, M.

Katz, N.

Khadka, S.

Konrad, T.

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Kremer, P. E.

Kumar, S.

Kumar, V.

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89(3), 031801 (2014).
[Crossref]

Leósson, K.

Lerner, V.

Li, R. P.

Li, X.

Li, Y.

Lu, R.-D.

Ma, Y.

Mansuripur, M.

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

McLaren, M.

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Milione, G.

Mitchell, K. J.

Moreno, I.

Mosk, A. P.

Mouane, O.

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Mueller, J. B.

Nape, I.

Ndagano, B.

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzmán, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Nixon, M.

Nomoto, S.

Padgett, M. J.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Perez-Garcia, B.

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Phillips, D. B.

Ren, X.

Ren, Y.-X.

Rodriguez-Fajardo, V.

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Rep. 8(1), 17387 (2018).
[Crossref]

Rojec, B. L.

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89(3), 031801 (2014).
[Crossref]

Rosales-Guzman, C.

Rosales-Guzmán, C.

X.-B. Hu, B. Zhao, Z.-H. Zhu, W. Gao, and C. Rosales-Guzmán, “In situ detection of a cooperative target’s longitudinal and angular speed using structured light,” Opt. Lett. 44(12), 3070–3073 (2019).
[Crossref]

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzmán, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Rep. 8(1), 17387 (2018).
[Crossref]

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Roux, F. S.

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Rubin, N. A.

Rubinsztein-Dunlop, H.

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

Sánchez-López, M. M.

Schubert, W. H.

Shi, B.-S.

Shi, S.

Shwa, D.

Stokes, G. G.

G. G. Stokes, Mathematical and physical papers (Reprinted in Mathematical and Physical Papers, Vol. 3, 233, Cambridge University Press: London, 1901, 1852).

Taghizadeh, M. R.

Turtaev, S.

Viswanathan, N. K.

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89(3), 031801 (2014).
[Crossref]

Wang, Z.

Wen, D.

Williams, P. A. C.

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Rep. 8(1), 17387 (2018).
[Crossref]

Yu, P.

Yue, F.

Zaidi, A.

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Zhang, W.

Zhang, Y.

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Zhao, B.

Zhao, Q.

Zhou, Z.-Y.

Zhu, Z.-H.

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Ann. Phys. (1)

Y.-X. Ren, R.-D. Lu, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. 527(7-8), 447–470 (2015).
[Crossref]

Appl. Opt. (3)

J. Lightwave Technol. (1)

J. Opt. (2)

H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, and T. Bauer, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2017).
[Crossref]

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

Nat. Phys. (1)

B. Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad, and A. Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13(4), 397–402 (2017).
[Crossref]

Opt. Acta (1)

R. Azzam, “Division-of-amplitude photopolarimeter (doap) for the simultaneous measurement of all four stokes parameters of light,” Opt. Acta 29(5), 685–689 (1982).
[Crossref]

Opt. Express (9)

M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, “Real-time measurement of space-variant polarizations,” Opt. Express 18(10), 10805–10812 (2010).
[Crossref]

A. Dudley, G. Milione, R. R. Alfano, and A. Forbes, “All-digital wavefront sensing for structured light beams,” Opt. Express 22(11), 14031–14040 (2014).
[Crossref]

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref]

N. A. Rubin, A. Zaidi, M. Juhl, R. P. Li, J. B. Mueller, R. C. Devlin, K. Leósson, and F. Capasso, “Polarization state generation and measurement with a single metasurface,” Opt. Express 26(17), 21455–21478 (2018).
[Crossref]

J. A. Davis, I. Moreno, M. M. Sánchez-López, K. Badham, J. Albero, and D. M. Cottrell, “Diffraction gratings generating orders with selective states of polarization,” Opt. Express 24(2), 907–917 (2016).
[Crossref]

X. Hu, Q. Zhao, P. Yu, X. Li, Z. Wang, Y. Li, and L. Gong, “Dynamic shaping of orbital-angular-momentum beams for information encoding,” Opt. Express 26(2), 1796–1808 (2018).
[Crossref]

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
[Crossref]

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref]

A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full poincaré beams,” Opt. Express 18(10), 10777–10785 (2010).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

E. J. Galvez, B. L. Rojec, V. Kumar, and N. K. Viswanathan, “Generation of isolated asymmetric umbilics in light’s polarization,” Phys. Rev. A 89(3), 031801 (2014).
[Crossref]

Phys. Rev. Lett. (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Sci. Rep. (1)

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Rep. 8(1), 17387 (2018).
[Crossref]

Other (2)

G. G. Stokes, Mathematical and physical papers (Reprinted in Mathematical and Physical Papers, Vol. 3, 233, Cambridge University Press: London, 1901, 1852).

D. H. Goldstain, Polarized light (CRC Press, 2011).

Supplementary Material (2)

NameDescription
» Visualization 1       All-digital Stokes polarimetry for the real-time reconstruction of the state of polarization of a light beam using a digital micromirror device (simulation)
» Visualization 2       All-digital Stokes polarimetry for the real-time reconstruction of the state of polarization of a light beam using a digital micromirror device (experiment)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) In standard polarymetry, the intensities required to reconstruct a SoP are recorded one by one at different times t $_1$ , t $_2$ , t $_3$ and t $_4$ . (b) In our technique, a digital hologram displayed on a Digital Micro Device (DMD), splits the input beam into four identical copies for a simultaneous measurement of the intensities.
Fig. 2.
Fig. 2. A vector beams is generated from a CW Gaussian beam ( $\lambda =532$ nm) using a q-plate (q=1/2) and a Half Wave-Plate (HWP1). The resulting beam is split into four identical copies propagating along parallel paths using a Digital Micromirror Device (DMD) in combination with lenses L1 and L2. The linear polarizers P1 and P2 filter $I_H$ and $I_D$ , respectively, while P3 in combination with a quarter wave-plate (QWP2) filters $I_R$ . Lens L3 focuses the four beams into a CCD to measure all the intensities simultaneously. The systems E1 (a Rotating Half Wave-Plate: RHWP) and E2 (a QWP in combination with a non-linear crystal: NLC), inserted in the path of the beam, enable real-time evolution of the input beam’s SoP.
Fig. 3.
Fig. 3. (a) Calibration image to find the centers of the beams. (b) Example image of the intensities $I_0$ , $I_D$ , $I_H$ and $I_R$ . (c) Computed Stokes parameters. (d) Reconstructed polarization distribution.
Fig. 4.
Fig. 4. Extracted frames of the real-time reconstruction of polarization after passing the beam through the system E1. (a) Experiment Visualization 1 and (b) simulation (Visualization 2)
Fig. 5.
Fig. 5. Experimental (top raw) and simulated (botom row) reconstruction of the SoP as the temperature of a non-linear crystal changes from $22 ^\circ C$ to $36^\circ C$ . The arrows indicate the rotation of polarization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( ρ , ϕ ) = cos ( θ ) exp [ i ϕ ] e R ^ + sin ( θ ) exp [ i ϕ ] exp [ i α ] e L ^ ,
S 0 = I 0 , S 1 = 2 I H S 0 , S 2 = 2 I D S 0 , and S 3 = 2 I R S 0 ,

Metrics