Abstract

We present a holographic multiplane near-eye display method based on Fresnel holography and amplitude-only wavefront modulation. Our method can create multiple focal images across a wide depth range while maintaining a high resolution (1080P) and refresh rate (60 Hz). To suppress the DC and conjugation signals inherent in amplitude-only wavefront modulation, we develop an optimization algorithm which completely separates primary diffracted light from DC and conjugation at a pre-defined intermediate plane. Spatial filtering at this plane leads to a dramatic increase in the image contrast. The experimental results demonstrate our approach can create continuous focus cues in complex 3D scenes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A full-color compact 3D see-through near-eye display system based on complex amplitude modulation

Zhiqi Zhang, Juan Liu, Qiankun Gao, Xinhui Duan, and Xueliang Shi
Opt. Express 27(5) 7023-7035 (2019)

Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm

Peng Sun, Shengqian Chang, Siqi Liu, Xiao Tao, Chang Wang, and Zhenrong Zheng
Opt. Express 26(8) 10140-10151 (2018)

Optical see-through holographic near-eye-display with eyebox steering and depth of field control

Jae-Hyeung Park and Seong-Bok Kim
Opt. Express 26(21) 27076-27088 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref]
  2. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence - accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref]
  3. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
    [Crossref]
  4. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref]
  5. F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
    [Crossref]
  6. H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
    [Crossref]
  7. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A Stereo Display Prototype with Multiple Focal Distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  8. D. Cheng, Y. Wang, H. Hua, and J. Sasian, “Design of a wide-angle, lightweight head-mounted display using free-form optics tiling,” Opt. Lett. 36(11), 2098–2100 (2011).
    [Crossref]
  9. X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  10. G. Tan, T. Zhan, Y. H. Lee, J. Xiong, and S. T. Wu, “Polarization-multiplexed multiplane display,” Opt. Lett. 43(22), 5651–5654 (2018).
    [Crossref]
  11. W. Cui and L. Gao, “Optical mapping near-eye three-dimensional display with correct focus cues,” Opt. Lett. 42(13), 2475–2478 (2017).
    [Crossref]
  12. W. Cui and L. Gao, “All-passive transformable optical mapping near-eye display,” Sci. Rep. 9(1), 6064 (2019).
    [Crossref]
  13. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref]
  14. G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
    [Crossref]
  15. R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multiplane displays,” ACM Trans. Graph. 34(4), 1–12 (2015).
    [Crossref]
  16. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [Crossref]
  17. G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
    [Crossref]
  18. P. Zhou, Y. Li, S. Liu, and Y. Su, “Compact design for optical-see-through holographic displays employing holographic optical elements,” Opt. Express 26(18), 22866–22876 (2018).
    [Crossref]
  19. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref]
  20. A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
    [Crossref]
  21. H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [Crossref]
  22. Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
    [Crossref]
  23. J. H. Park and S. B. Kim, “Optical see-through holographic near-eye-display with eyebox steering and depth of field control,” Opt. Express 26(21), 27076–27088 (2018).
    [Crossref]
  24. S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J,” Inf. Disp. 20(2), 45–59 (2019).
    [Crossref]
  25. V. Arrizón, G. Méndez, and D. Sanches-de-La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13(20), 7913–7927 (2005).
    [Crossref]
  26. J. S. Chen and D. P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
    [Crossref]
  27. S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
    [Crossref]
  28. S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
    [Crossref]
  29. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  30. T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
    [Crossref]
  31. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  32. C. Chang, Y. Qi, J. Wu, J. Xia, and S. Nie, “Image magnified lensless holographic projection by convergent spherical beam illumination,” Chin. Opt. Lett. 16(10), 100901 (2018).
    [Crossref]
  33. A. V. Zea, J. F. B. Ramirez, and R. Torroba, “Optimized random phase only holograms,” Opt. Lett. 43(4), 731–734 (2018).
    [Crossref]
  34. W. Qu, H. Gu, H. Zhang, and Q. Tan, “Image magnification in lensless holographic projection using double-sampling Fresnel diffraction,” Appl. Opt. 54(34), 10018–10021 (2015).
    [Crossref]
  35. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref]
  36. Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
    [Crossref]
  37. Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
    [Crossref]

2019 (2)

W. Cui and L. Gao, “All-passive transformable optical mapping near-eye display,” Sci. Rep. 9(1), 6064 (2019).
[Crossref]

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J,” Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

2018 (7)

2017 (4)

W. Cui and L. Gao, “Optical mapping near-eye three-dimensional display with correct focus cues,” Opt. Lett. 42(13), 2475–2478 (2017).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
[Crossref]

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

2016 (2)

2015 (5)

2014 (4)

2013 (3)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence - accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

2005 (1)

2004 (2)

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A Stereo Display Prototype with Multiple Focal Distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Akeley, K.

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence - accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A Stereo Display Prototype with Multiple Focal Distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Albert, R. A.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multiplane displays,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

Arrizón, V.

Banks, M. S.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multiplane displays,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref]

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence - accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A Stereo Display Prototype with Multiple Focal Distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Bulbul, A.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multiplane displays,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Chang, C.

Chen, J. S.

Chen, K.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Cheng, D.

Cho, J.

Chu, D.

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
[Crossref]

Chu, D. P.

Cui, W.

W. Cui and L. Gao, “All-passive transformable optical mapping near-eye display,” Sci. Rep. 9(1), 6064 (2019).
[Crossref]

W. Cui and L. Gao, “Optical mapping near-eye three-dimensional display with correct focus cues,” Opt. Lett. 42(13), 2475–2478 (2017).
[Crossref]

Deng, Y.

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
[Crossref]

Endo, Y.

Gao, J.

Gao, L.

W. Cui and L. Gao, “All-passive transformable optical mapping near-eye display,” Sci. Rep. 9(1), 6064 (2019).
[Crossref]

W. Cui and L. Gao, “Optical mapping near-eye three-dimensional display with correct focus cues,” Opt. Lett. 42(13), 2475–2478 (2017).
[Crossref]

Gao, Q.

Gauza, S.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref]

Georgiou, A.

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence - accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A Stereo Display Prototype with Multiple Focal Distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

Gou, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Gu, H.

Hahn, J.

Han, J.

Hands, P. J. W.

Hirayama, R.

Hoffman, D. M.

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence - accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Hu, X.

X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref]

Hua, H.

Huang, F. C.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Huang, H.

Ito, T.

Javidi, B.

Jeong, Y.

Ji, Y. M.

Kakue, T.

Kazempourradi, S.

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J,” Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Kim, H.

Kim, H. J.

Kim, M.

Kim, S. B.

Kim, S. H.

Kirby, A. K.

Kollin, J.

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Lanman, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Lee, B.

Lee, D.

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Lee, Y. H.

G. Tan, T. Zhan, Y. H. Lee, J. Xiong, and S. T. Wu, “Polarization-multiplexed multiplane display,” Opt. Lett. 43(22), 5651–5654 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Li, B.

Li, G.

Li, X.

Li, Y.

Liu, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Liu, J.

Liu, S.

Love, G. D.

Luebke, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Mainmone, A.

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Makowski, M.

Méndez, G.

Moon, E.

Narain, R.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multiplane displays,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

Nie, S.

O’Brien, J. F.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multiplane displays,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

Ohtsuka, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref]

Oikawa, M.

Okada, N.

Park, J. H.

Peng, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Qi, Y.

Qu, W.

Ramirez, J. F. B.

Ravikumar, S.

Roh, J.

Sakai, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref]

Sanches-de-La-Llave, D.

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Sasian, J.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Shimobaba, T.

Su, Y.

Suyama, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref]

Tabiryan, N. V.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Takada, H.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref]

Tan, G.

G. Tan, T. Zhan, Y. H. Lee, J. Xiong, and S. T. Wu, “Polarization-multiplexed multiplane display,” Opt. Lett. 43(22), 5651–5654 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Tan, Q.

Torroba, R.

Uehira, K.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref]

Ulusoy, E.

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J,” Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

Urey, H.

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J,” Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

Wang, Y.

Ward, G. J.

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multiplane displays,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

Watt, S. J.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A Stereo Display Prototype with Multiple Focal Distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Weng, Y.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Wetzstein, G.

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Wu, J.

Wu, S. T.

G. Tan, T. Zhan, Y. H. Lee, J. Xiong, and S. T. Wu, “Polarization-multiplexed multiplane display,” Opt. Lett. 43(22), 5651–5654 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Xia, J.

Xiong, J.

Yeom, H. J.

Zea, A. V.

Zhan, T.

G. Tan, T. Zhan, Y. H. Lee, J. Xiong, and S. T. Wu, “Polarization-multiplexed multiplane display,” Opt. Lett. 43(22), 5651–5654 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Zhang, H.

Zhou, P.

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

ACM Trans. Graph. (5)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

F. C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A Stereo Display Prototype with Multiple Focal Distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

R. Narain, R. A. Albert, A. Bulbul, G. J. Ward, M. S. Banks, and J. F. O’Brien, “Optimal presentation of imagery with focus cues on multiplane displays,” ACM Trans. Graph. 34(4), 1–12 (2015).
[Crossref]

A. Mainmone, A. Georgiou, and J. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Inf. Disp. (1)

S. Kazempourradi, E. Ulusoy, and H. Urey, “Full-color computational holographic near-eye display,” J,” Inf. Disp. 20(2), 45–59 (2019).
[Crossref]

J. Disp. Technol. (1)

X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

J. Vis. (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence - accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Nat. Nanotechnol. (1)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Opt. Data Process. Storage (1)

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Opt. Express (14)

V. Arrizón, G. Méndez, and D. Sanches-de-La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13(20), 7913–7927 (2005).
[Crossref]

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref]

J. H. Park and S. B. Kim, “Optical see-through holographic near-eye-display with eyebox steering and depth of field control,” Opt. Express 26(21), 27076–27088 (2018).
[Crossref]

H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
[Crossref]

P. Zhou, Y. Li, S. Liu, and Y. Su, “Compact design for optical-see-through holographic displays employing holographic optical elements,” Opt. Express 26(18), 22866–22876 (2018).
[Crossref]

H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
[Crossref]

Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
[Crossref]

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
[Crossref]

E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref]

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref]

J. S. Chen and D. P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
[Crossref]

Opt. Lett. (5)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Sci. Rep. (2)

Y. Deng and D. Chu, “Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays,” Sci. Rep. 7(1), 5893 (2017).
[Crossref]

W. Cui and L. Gao, “All-passive transformable optical mapping near-eye display,” Sci. Rep. 9(1), 6064 (2019).
[Crossref]

Vision Res. (1)

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

Supplementary Material (2)

NameDescription
» Visualization 1       dynamic focusing for 3D tilted grid
» Visualization 2       dynamic focusing for 3D dice

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Operating principle. (a) Computation model from a 3D scene to the hologram. (b) Procedure for generating an optimized band-limited random phase. (c) Complete procedure for generating AO-CGH.
Fig. 2.
Fig. 2. Comparison of image quality without and with filtering. (a)-(c) are the results from without using filtering. (d)-(f) are the results from our method with filtering. (a), (d) Simulated reconstructions at the filtered plane. (b), (e) Simulated reconstructions at the image plane. (c), (f) Experimental reconstructions at the image plane.
Fig. 3.
Fig. 3. Optical setup. BS, beam splitter; DMD, digital micromirror device.
Fig. 4.
Fig. 4. Experimental results of displaying a multi-plane object. (a) Camera focuses at 400mm. (b) Camera focuses at 700mm. (c) Camera focuses at 1000mm.
Fig. 5.
Fig. 5. Experimental results of displaying continuous 3D scenes. (a) Multiple-layer rendering for a continuous 3D scene. (b) Images captured at five different depths when displaying a 3D tilted grid (Visualization 1). (c) Images captured at three different depths when displaying 3D dices (Visualization 2).
Fig. 6.
Fig. 6. Illustration of the system parameters. (a) Parameters for the FOV and eyebox. (b) Configuration for transmissive display.
Fig. 7.
Fig. 7. Results obtained with and without using speckle reduce method. (a) with time-averaging method. (b) without time-averaging method.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

M i ( x m , y m ) = I i ( x , y ) exp [ i φ i i n i t ( x , y ) ] exp { i k 2 ( z i + d ) [ ( x m x ) 2 + ( y m y ) 2 ] } d x d y ,
M ( x m , y m ) = i = 1 N M i ( x m , y m ) ,
H ( x h , y h ) = M ( x m , y m ) exp { i k 2 d [ ( x h x m ) 2 + ( y h y m ) 2 ] } d x m d y m .
H c ( x h , y h ) = H ( x h , y h ) exp [ i k 2 d ( x h 2 + y h 2 ) ] .
H c ( x h , y h ) = M ( x m , y m ) exp [ i k 2 d ( x m 2 + y m 2 ) ] exp [ i k d ( x h x m + y h y m ) ] d x m d y m .
A ( x h , y h ) = c 0 { b ( x h , y h ) + a ( x h , y h ) cos [ φ ( x h , y h ) 2 π ( u 0 x h + v 0 y h ) ] } ,
θ L max ( z + d + z b ) = N d Δ d + ( z b 1 + z / d ) N d Δ d = L d d ,
θ 2 N A 1 N A 2 .